① 粉煤灰的高附加值利用
目前,粉煤灰的主要利用方向之一是逐步由粗放型、低级别利用向高技术、高附加值利用方向发展,这也是近几年来国内、外众多学者致力研究的热点问题之一。
Iyer 和 Scott ( 2001) 对粉煤灰的高附加值利用做过甚为全面的总结,包括利用粉煤灰制备沸石、合成莫来石、生产玻璃质材料、制作复合材料、用作废物处理的吸附剂、废物固化、回收有用金属及矿物材料以及粉煤灰在农业方面的应用等。但是,正如他们在结论中所指出的: 这些重要开发领域的多数研究成果仍然处于实验室阶段,要实现工业化生产还需要大量的工作要做。Querol 等 ( 2002) 对利用粉煤灰制备沸石的研究进展作过专门评述,并且指出: 尽管利用粉煤灰合成沸石所占比例较小,但由于沸石的环境效益,这一研究备受关注。
我国在粉煤灰利用方面也做出了杰出贡献,涌现了大量的专利技术 ( 魏荣森,2004) 。在粉煤灰的高附加值利用领域,主要有合成莫来石 ( 邵刚勤等,1997) 、制备沸石 ( 王德举等,2002) 、制作复合材料 ( 王明珠等,2005) 、提取氧化铝 ( 赵剑宇等,2003) 、生产复合肥 ( 孙克刚等,2002) 等,但目前能够实现工业化生产的实例少之又少( Iyer 等,2001; Querol 等,2002; Chandra 等,2005; Rohatgi 等,2006) 。
下面重点对利用粉煤灰烧结合成莫来石和合成堇青石的情况做一详细介绍。
( 1) 合成莫来石
莫来石 ( Mullite) 是一种矿物,因产于苏格兰北部的 Mull 岛而得名。莫来石具有高熔点 ( 约 1890℃) 、高剪切模量和良好的抗蠕变、抗热震、抗侵蚀等性能,被广泛应用于耐火材料和陶瓷工业。Schneider 等 1994 年在 《Mullite and Mullite Ceramics》专著中对莫来石的化学成分、晶体结构及物理、化学特性,以及莫来石产品的工业合成与利用进行过详细的论述; 2008 年又结合近期研究成果对莫来石的结构和特性进行了评述 ( Schneider等,2008) 。表 1. 4 列出了莫来石及其他高级氧化物陶瓷的热-力学性能。
表 1. 4 莫来石及其他高级氧化物陶瓷的热-力学性能
( 据倪文等,1995)
与合成莫来石情况相似,利用粉煤灰合成堇青石的文献虽有报道,但数量极少。1995年,Sampathkumar 等在 《Materials Research Bulletin》上首次发表了 “利用粉煤灰合成 α-堇青石 ( 印度石) ”一文。他们采用的原料为 “粉煤灰 + 滑石 + 氧化铝”,按照堇青石的化学计量配比 ( MgO 13. 8%,Al2O334. 8% ,SiO251. 4% ) ,在 1370℃ 下合成了理想的堇青石矿物,经 XRD 分析只有堇青石相存在。合成样品的材料性能 ( 包括热膨胀系数) 可与常规原料合成的堇青石相媲美。
Kumar 等 ( 2000) 采用 “原始粉煤灰 + 滑石 + 氧化铝” 和 “处理后粉煤灰 + 滑石 +氧化铝”在 1350℃ ×2 h 条件下获得了较纯的堇青石原料。粉煤灰的处理工艺选取了浮选除炭和磁选除铁两种方法。获得的堇青石样品中主晶相为 α-堇青石 ( 印度石) ,次晶相为β-堇青石和莫来石。另外,在利用原始粉煤灰合成的样品中还发现有衍射峰强度较低的铁堇青石相。1350℃合成样品的密度达到最大值。实验还表明,在 915℃ ×2 h 合成条件下,出现莫来石、尖晶石 ( Mg、Al) 和 α-Al2O3; 在 1200℃ × 2 h 条件下出现 β-堇青石、莫来石、尖晶石 ( Mg、Al) 和 α-Al2O3; 至 1315℃ × 2 h 条件尖晶石相消失,新出现 α-堇青石相,与 β-堇青石和莫来石相伴生。粉煤灰除炭、除铁后合成的堇青石样品密度低于原始粉煤灰合成的堇青石样品,其物理特性均可与工业堇青石相媲美,而且随着温度升高,其断裂模数优于工业堇青石。
Goren 等 ( 2006) 利用 “粉煤灰 + 滑石 + 熔融氧化铝和二氧化硅” 在 1350℃ × 3 h 和1375℃ × 1 h 条件下合成了只有一种晶相的 α-堇青石,并且表明烧结温度与烧结时间对堇青石再结晶具有同等重要的作用。如果采用 1300℃ ×3 h 条件烧结,得到的堇青石样品除了主晶相 α-堇青石外,尚有 MgAl2O4尖晶石和方石英次晶相存在。
国内尚未见到利用粉煤灰合成堇青石的报道,仅有的几篇文献是利用粉煤灰在 1000℃左右温度下制备堇青石质玻璃陶瓷 ( Shao 等,2004; He 等,2005; 刘浩等,2006) ,采用的原料除粉煤灰外,还有氧化铝、碱式碳酸镁和石英砂,以弥补粉煤灰中 Al2O3、MgO和 SiO2的不足。此法制备堇青石玻璃陶瓷的优点是取其堇青石的低介电常数、低热膨胀性能和较高的强度,获得性能优异的玻璃陶瓷; 缺点是首先需要 1500℃ × 2 h 条件熔制基础玻璃或母体玻璃,然后淬冷、粉碎、再熔融,至少 3 次以确保均质性,成型后在800 ± ℃ × 2 h 条件核化,1000 ± ℃ × 2 h 条件晶化。烧结法制备微晶玻璃的一般工艺流程为: 配料→熔制→淬冷→粉碎→成型→烧结,工艺相对复杂,能耗较高。张学斌等 ( 2006)用 Al2O3含量为32. 99%的粉煤灰,在1100 ~1350℃添加40%造孔剂 ( 淀粉) 试制堇青石多孔陶瓷,优化的烧结条件为 1300℃ ×4 h。
利用高铝粉煤灰制备堇青石 ( 2MgO·2Al2O3·5SiO2) 与制备莫来石 ( 3Al2O3·2SiO2)相比,其最大的优点在于,以我国盛产的优质低价滑石 ( 或滑石粉) 为原料,替代莫来石制备中添加的价格昂贵的工业氧化铝 ( 或铝土矿) ,以降低制备成本。因为莫来石矿物中 Al2O3的含量高达71. 8%,而堇青石矿物中 Al2O3含量仅为34. 8%。利用高铝粉煤灰合成堇青石与合成莫来石生产工艺相似,存在的问题同样是粉煤灰中杂质的预处理。但对高铝粉煤灰合成堇青石而言,粉煤灰中 MgO 为有利成分,因为堇青石中 MgO 的理论值为 13. 8%。
② 粉煤灰中的晶体矿物
玻璃体通常是粉煤灰的主要组成部分,但晶体物质的含量有时也比较高,范围在11% ~ 48% 之间。主要晶体相物质有莫来石、石英、赤铁矿、磁铁矿、铝酸三钙、黄长石、默硅镁钙石、方镁石、石灰石等,在所有晶相中莫来石所占比例最大,可达到总量的6% ~ 15% ,此外粉煤灰中还含有未燃尽的炭粒 ( 钱觉时,2002) 。
表 4. 1 是 Rohatgi 等 ( 1995) 列出的粉煤灰中可能的晶体矿物,其中高钙粉煤灰中的矿物要比低钙粉煤灰中的矿物复杂得多。Vassilev 等 ( 1996) 对保加利亚 11 个热电厂煤灰 ( 包括飞灰、底灰、结渣和储灰池灰) 的研究识别出矿物和其他物相多达 71 种,其中绝大多数含量都在 1% 以下,含量为 1% ~ 10% 的主要是石英、高岭石、长石、磁铁矿、赤铁矿、硬石膏和炭粒,含量在 10% 以上的主要是莫来石和玻璃体。我国粉煤灰的物相及组成范围见表 4. 2。
Vassilev 等 ( 1996,2003) 将粉煤灰中矿物或相的成因分为 3 种: 原生成因 ( prima-ry) 、次生成因 ( secondary) 和后生成因 ( tertiary) 。
原生成因是指原来存在于煤中的矿物或相,在煤的燃烧过程中未经历任何相的转变;次生成因是指在煤燃烧过程中形成的新矿物或相; 后生成因则是指粉煤灰在经水处理、干燥、存储和运输过程中形成的新矿物或相。根据 Vassilev 等 ( 1996,2003) 的研究,粉煤灰中的矿物和相主要为次生 ( 包括各种硅酸盐、氧化物、硫酸盐、碳酸盐、炭粒和玻璃体) ,少量为原生 ( 包括部分硅酸盐、氧化物、硫酸盐、碳酸盐和磷酸盐) ,后生的数量为最少 ( 常见的是硫酸盐、碳酸盐和氯化物) 。这种差异主要与煤中矿物种类、数量、燃烧条件和后期处理方式有关。在粉煤灰的常见矿物中,石英、长石、方解石、磷灰石一般都是原生成因,而莫来石、磁铁矿、赤铁矿、硬石膏基本属于次生成因,后生矿物主要是石膏。粉煤灰中的原生矿物主要以分散的粒状和集合体出现,次生矿物主要存在于玻璃体或玻璃体的外表面以及炭粒孔隙之中,而后生矿物则主要以集合体的形式存在。
表 4. 1 粉煤灰中的晶体矿物组成
( 据Rohatgi 等,1995)
表 4. 2 我国粉煤灰的物相组成及范围
许多研究人员都曾经详细研究过煤燃烧过程中的矿物转化及其机理,Huffman 等( 1991) 对美国 18 种煤的高温特性进行了研究,给出的 FeO-SiO2-Al2O3平衡相图 ( 图4. 1) 说明,煤灰中矿物整体上位于莫来石区域,在富铁区域首先发生熔融,液相也可能是在富铁共熔区域内首先形成的。粉煤灰在 CaO-SiO2-Al2O3相图中的位置主要位于莫来石、钙长石区域 ( 图 4. 2) ,由于 CaO 的存在及含量变化较大,所以也会存在钙黄长石、石膏以及石灰石等矿物 ( Mollah 等,1999) 。
图 4. 3 显示不同矿物及其含量随温度的变化情况 ( Huffman 等,1991) ,大约在 900℃以下,样品中所观察到的矿物基本上都能与煤中的矿物相对应。方铁矿和富铁的铁酸盐相主要来自富铁矿物,如黄铁矿、菱铁矿和硫酸铁等。900℃以下时玻璃体中的铁含量正比于含钾黏土矿物和煤中伊利石中铁的含量,通常认为这是由于在 K2O-SiO2-Al2O3相图中有很多低熔点的共熔区域。在 900 ~ 1000℃之间,方铁矿和其他富铁氧化物将会和石英、高岭石发生反应而熔融。在 1000 ~ 1200℃之间,由于铁尖晶石和铝酸铁等的形成,铁的这种熔融反应停止,超过 1200℃所有的铁将会与液态的硅酸盐结合。
图 4. 1 FeO-SiO2-Al2O3相图( 阴影为粉煤灰区域)
图 4. 2 CaO-SiO2-Al2O3相图( 阴影为粉煤灰区域)
图 4. 3 煤灰矿物含量随温度的变化曲线
Spears ( 2000) 对英国煤燃烧过程中黏土矿物的转化行为也做过详细研究,他认为粉煤灰中的莫来石主要来源于煤中高岭石矿物的转化,而粉煤灰中的玻璃相和空心微珠主要得益于煤中的伊利石矿物。我国学者邵靖邦等 ( 1996) 也详细给出了煤中 12 种矿物在不同温度下的化学反应及其矿物相。盛昌栋等 ( 1998) 综合国内外研究成果评述了煤中含铁矿物在煤粉燃烧过程中的行为。不同人给出的化学反应式基本一致,存在的差异主要是矿物转变过程中的温度问题。
Demir 等 ( 2001) 根据多人研究成果列出煤中矿物不同温度下的化学反应及其矿物相转变如下:
高铝粉煤灰特性及其在合成莫来石和堇青石中的应用
高铝粉煤灰的物相组成与普通粉煤灰也有很大差别。XRD 分析 ( SIROQUANT 软件)表明,准格尔电厂高铝粉煤灰中含有 55. 2% 的玻璃相和 44. 8% 的结晶矿物相,结晶矿物主要为 35. 6%莫来石和 8. 4%刚玉,另有次要矿物 0. 5%方解石、0. 2% 石英和 0. 2% 金红石 ( 表 4. 3; 图 4. 4,图 4. 5) 。
表 4. 3 XRD 和 SIROQUANT 软件测得的高铝粉煤灰物相组成 ( %)
莫来石和刚玉均为煤燃烧过程中形成的二次矿物相,特别是刚玉相在普通粉煤灰中几乎难以寻觅,但在准格尔电厂高铝粉煤灰中高达 8. 4%,这种情况十分少见。
莫来石矿物含量高达 35. 6%,也比普通粉煤灰中常见的含量 20% 左右高出许多。粉煤灰中高含量的莫来石主要来源于煤中丰富的高岭石在高温下的分解和转化产物; 莫来石的另一来源途径是,煤中丰富的勃姆石矿物失水转变为 γ-Al2O3再与高岭石分解产生的非晶态 SiO2反应生成莫来石。刚玉则主要来自煤中勃姆石矿物失水后的晶体转化。
粉煤灰中极其少量的石英主要是原生 ( primary) 或次生 ( secondary) 矿物。在普通粉煤灰中石英是最常见的矿物 ( Vassilev 等,1996) ,呈多角形到浑圆状 ( 熔点 1713℃,软化温度≥1300℃) 。石英在准格尔电厂高铝粉煤灰中含量极少,与电厂炉前煤中石英含量很少有关 ( 邵龙义等,1996) ,也说明准格尔电厂高铝粉煤灰中的石英主要为原生残余矿物。
粉煤灰中的金红石主要是原生矿物 ( 熔点 1827℃) ,但 Vassilev 等 ( 1995) 认为,若煤中矿物含有锐钛矿时也可以次生形成。从炉前煤矿物组成看 ( 邵龙义等,1996) ,准格尔电厂粉煤灰中的金红石应为原生矿物。
图 4. 4 准格尔电厂高铝粉煤灰 XRD 图谱
图 4. 5 测定的 ( 上) 和计算的 ( 中) XRD 图谱及其二者之间的差分 ( 下)
粉煤灰中的方解石主要是原生或后生 ( Tertiary) 的,几乎没有次生成因的,当温度低于 700 ~ 950℃ 时,较粗颗粒的方解石可能出现不完全分解而残留下来 ( Vassilev 等,1996) 。
赵蕾 ( 2007) 测得准格尔电厂高铝粉煤灰样品中的主晶相和玻璃相含量与我们的研究结果基本一致,且莫来石含量在飞灰中明显高于底灰,而烧失量则与之相反 ( 表 4. 4) ;利用 120、160、300、360 和 500 目分级筛将准格尔电厂高铝粉煤灰按粒度分为 6 级,测得不同粒度段粉煤灰中的矿物相和玻璃相含量见表 4. 5。
表 4. 4 准格尔电厂燃煤产物的物相组成
( 据赵蕾,2007)
表 4. 5 准格尔电厂不同粒度粉煤灰的物相组成
( 据赵蕾,2007)
目数表示每平方英寸上的孔的数目,目数越大,孔径越小。目数与微米之间的对应关系可查相关资料获得。
高铝粉煤灰特性及其在合成莫来石和堇青石中的应用
从表 4. 5 可以看出,莫来石和刚玉相含量随粉煤灰粒度减小其含量增多,而玻璃相含量则相应减少; Goodarzi ( 2006) 研究加拿大火电厂普通粉煤灰时发现,同一电厂布袋除尘器收集到的飞灰颗粒粒径小于静电除尘器,并且前者飞灰中的莫来石含量高于后者,因此推断莫来石更多地聚集于细颗粒中。将磁性飞灰与非磁性飞灰相比,非磁性飞灰中的莫来石和刚玉相含量明显高于磁性飞灰,而含铁矿物明显出现在磁性飞灰中 ( 表 4. 6) 。
表 4. 6 准格尔电厂磁性和非磁性飞灰的物相组成
( 据赵蕾,2007)
下面对准格尔电厂高铝粉煤灰中主要矿物的形成机理作详细探讨。
( 1) 莫来石
莫来石是在 Al2O3-SiO2二元相图中唯一稳定的结晶硅酸盐,具有极好的化学稳定性,典型化学成分为 3Al2O3·2SiO2,但实际上莫来石的成分可以从 3Al2O3·2SiO2到 2Al2O3·SiO2连续变化。众多的研究结果表明,莫来石并非一个固定的化学组成,它不仅有经典的 3 ∶2 型莫来石 ( α-莫来石) ,也有 2∶1 型莫来石 ( β-莫来石) ,还存在 1∶1 过渡型莫来石。莫来石的通式可以表示为: Al4 + 2xSi2 - 2xO10 - x,其中 x 表示单位晶胞中的氧空位,0≤x≤1,氧空位是由于莫来石晶格中的两个硅原子被两个铝原子替代所致: O2 -+ 2Si4 +→2Al3 ++ □, 见图 4. 6。
图 4. 6 莫来石结构沿 ( 001) 面的投影( 引自 Ban 等,1992)
就结晶学观点来说,莫来石的晶体结构符合最终组成硅线石 ( x = 0) 和具有莫来石结构的氧化铝 ( x =1) 之间的任何结构。实际上,在 1 atm下,硅线石和莫来石之间以及莫来石与具有莫来石结构的氧化铝之间分别存在非混熔区域,莫来石固熔体仅存在于组成为 x =0. 2 和 x =0. 6 之间,相当于莫来石的 Al2O3含量为 58 mol% 和 75 mol% ( Schnei-der 等,1990) 。烧结 3∶2 型莫来石 x = 0. 25,Al2O3≈72%; 电熔 2∶1 型莫来石 x = 0. 40,Al2O3≈78%; 经有机或无机先驱粉在 < 1000℃ 合成条件下经热处理得到的化学莫来石( x > 0. 80,Al2O3> 90% ) 也 已 经 得 到 证 实 ( Schneider 等,2008 ) 。我国学 者 高 振 昕 等( 2002) 也指出,介稳态高铝莫来石 x = 0. 57。
粉煤灰中的莫来石主要来源于煤中的黏土矿物,特别是高岭石矿物,因为高岭石在3 种常见的黏土矿物中 Al2O3/ SiO2质量比最高,为 0. 85 ( 41% Al2O3,48% SiO2,11%H2O) 。
高铝粉煤灰特性及其在合成莫来石和堇青石中的应用
根据任国斌等 ( 1988) 的资料,高岭石加热到 700 ~800℃时,结构中的 [OH] 以水的形式分解脱失,形成偏高岭石; 继续加热到 950℃,偏高岭石转变为莫来石和非晶质SiO2,这些非晶质 SiO2在更高的温度下可以转变为方石英。由高岭石高温分解产生的莫来石称为一次莫来石。
高铝粉煤灰特性及其在合成莫来石和堇青石中的应用
上述转变过程中没有铝硅尖晶石中间相生成,这种情况也是存在的 ( Okada 等,1992; Castelein 等,2001) ,但是大多数人认为高岭石在转变为莫来石过程中有铝硅尖晶石中间相生成 ( 林彬荫等,1989; 高振昕等,2002) ,沃罗尔 ( 1980) 给出的高岭石高温下转变为莫来石的过程如下:
高铝粉煤灰特性及其在合成莫来石和堇青石中的应用
上式中的预莫来石 ( Al2O3·SiO2) 也就是现在所称的过渡组成 1∶1 莫来石。从上述情况看,高岭石转化为莫来石在形成方式和转化温度上的争议仍然会存在很长一段时间。
勃姆石又称一水软铝石,化学式为 γ-AlO ( OH) 或 γ-Al2O3·H2O,其中 含 85%Al2O3,15% H2O,成分中可能有少量 Fe3 +替代 Al3 +,晶体结构属层状。加热时于 530 ~600℃ 之间失水后相变为 γ-Al2O3( 林彬荫等,1989) 。γ-Al2O3结构与尖晶石结构相近,是具有缺陷的尖晶石结构。在 1200℃ 以上高温下,γ-Al2O3通过调整有缺陷的尖晶石结构,与高岭石分解出来的非晶质 SiO2反应生成莫来石,即二次莫来石。
高铝粉煤灰特性及其在合成莫来石和堇青石中的应用
准格尔电厂燃煤中高含量的高岭石和勃姆石为莫来石形成提供了充足的物质来源,因为电厂锅炉燃烧温度在 1200 ~1700℃,中心温度甚至超过 1700℃,所以在准格尔电厂粉煤灰中就形成了含量高达 35. 6%的莫来石。粉煤灰中的莫来石多数以颗粒骨架结构存在,而骨架孔隙和表面通常被玻璃质充填和覆盖,所以在 SEM 下不易直接识别,如果用盐酸或氢氟酸侵蚀粉煤灰中的玻璃质,就可以发现有大量的针状莫来石晶体存在。
粉煤灰形成过程中结晶的莫来石,由于受到杂质的影响常常混入其他阳离子,特别是粉煤灰中的 Fe3 +和 Ti4 +可以进入莫来石晶格替代部分铝离子。Gomse 等 ( 2000) 对法国东部一家火电厂粉煤灰采用多种研究手段进行了研究,得出粉煤灰中莫来石的平均化学式为 Al4. 61Fe0. 05Ti0. 02O9. 65,XRD 和 NMR ( 核磁共振) 等研究得到的化学式为 Al4. 70Si1. 30O9. 65( 对应 x = 0. 35,Al2O3含量为 75. 5%) ,其中铝含量略高出经典的莫来石化学式 Al4. 5Si1. 5O9. 75( 对应 x = 0. 25,Al2O3含量为71. 8%) ,介于烧结3∶2 莫来石和电熔2∶1 莫来石之间。粉煤灰形成过程中的瞬时冷却使得莫来石并不能充分结晶和均一化,导致了莫来石在结构和成分上的差异。
( 2) 刚玉
刚玉是次生矿物,其熔融温度为2050℃,在准格尔电厂炉前煤中并没有检测到。Vas-silev 等 ( 1996) 认为,刚玉主要是黏土矿物熔融后重新结晶形成的,也可能是铝的氢氧化物发生脱羟基化作用形成。从准格尔电厂炉前煤矿物组成看,高铝粉煤灰中的刚玉主要来自煤中的勃姆石,即:
高铝粉煤灰特性及其在合成莫来石和堇青石中的应用
粉末衍射标准联合委员会 ( JCPDS) 的 XRD 卡片资料表明 Al2O3有 γ、η、χ、δ、θ、κ、τ 和 ε 过渡相,惟一稳定相为 α-Al2O3( 刚玉) 。至于 β-Al2O3,它不属于 Al2O3变体。这些过渡相的呈现类型和相变顺序取决于原始矿物的种类和形成方式。原始矿物为勃姆石,则其相变顺序极可能是 γ→δ→θ→α; 若原始矿物为三水铝石,则相变可能包括γ→χ→τ→θ→α; 如果原始矿物为一水硬铝石,则直接相变为 α-Al2O3( 刚玉) 。过渡型氧化铝的结晶参数见表 4. 7。
表 4. 7 过渡型氧化铝的结晶参数
( 据高振昕等,2002)
( 3) 石英
石英是粉煤灰中的常见矿物,石英在粉煤灰形成过程中是否熔融及其熔融温度也是一个颇具争议的问题。在常压下石英的同质多像转变形式为 ( 武汉地质学院矿物教研室,1979) :
高铝粉煤灰特性及其在合成莫来石和堇青石中的应用
在低温范围鳞石英和方石英的转变为:
高铝粉煤灰特性及其在合成莫来石和堇青石中的应用
石英、磷石英和方石英均有低温 ( α) 变体和高温 ( β) 变体,这种高低温变体间的转变,结构中的 [SiO4] 四面体只有稍微移动和旋转,其他变体的转变 [SiO4] 四面体则需要断开和重新排列。所以,同一晶型不同变体 α、β 间转变较快,各晶型间的转变速度较慢。
通常情况下,煤中的石英均为 α-石英,也就是我们经常所说的石英,其化学成分较纯 ( SiO2通常接近 100% ) ,化学性质相当稳定。有人认为石英在燃煤过程中只存在矿物相的转变,不存在熔融,因为锅炉的燃烧温度并不高,达不到石英的熔融温度( 鳞石英的熔点为 1670℃ ,方石英的熔点为 1713℃ ) ,但大部分人认为存在部分熔融( Demir 等,2001; Spears,2000) 。根据 Mitchell 和 Gluskoter ( 1976) 的报道,将石英暴露于大约 1200 ~ 1300℃ 的氧化条件下 30 min,石英可以转化为玻璃相 ( Demir 等,2001) 。由于燃煤中的石英颗粒大小不一,小的可能全部熔融,大的则可能存在部分熔融或表面熔融,因为从 XRD 曲线上基本都能够发现石英的衍射峰,用 FESEM-EDX 分析,也能够发现粉煤灰中的石英颗粒,而且基本保持了原来的粒状特征。粉煤灰中的石英可以是原生的 ( 石英的软化温度≥1300℃,有熔融的,也有半熔融的) ,也可以是次生的,但以原生为主,部分石英 ( 主要是骨架形) 还可来源于熔融物的重结晶作用 ( Vassilev 等,1996) 。
准格尔电厂粉煤灰中的石英数量较少,呈分散的粒状,具多角形或不规则形,基本保持一定的外形,但也可以发现有的石英边缘有熔融现象,根据形态和成分 ( FESEM-EDX分析) 仍然可以区分出来,它们在底灰中的数量略高于飞灰。
( 4) 其他次要矿物
用 XRD 法鉴定矿物的不足之处是对含量较低的矿物不敏感,也就是说,对于含量在1% ~ 2% 以下的矿物 XRD 衍射峰不明显,很难做出准确的判断。所以,我们在用 XRD 鉴定粉煤灰中矿物的同时,采用了 FESEM-EDX 方法对所有样品进行了分析,发现除上述矿物外,仍然有少量的磁铁矿、赤铁矿和金红石矿物,它们通常富集在玻璃体的表面或构成玻璃微珠的骨架。用磁选法很容易分选出粉煤灰中的磁性颗粒,其表面大部分比较粗糙,为粉煤灰冷却过程中析出的晶体,可以通过 FESEM-EDX 分析得以确认。
在粉煤灰中,磁铁矿通常表现为树枝状、粒状或八面体晶型; 而赤铁矿多表现为薄板状或薄片状或硬壳状晶体,通常形成 “铁玫瑰”或 “足球”状,极少数情况下可以继承黄铁矿晶型,呈现出立方体或立方体-八面体复合晶型。一般来说,粗颗粒的飞灰和底灰中容易富集磁铁矿,而细颗粒的飞灰中容易富集赤铁矿,这是因为细颗粒飞灰形成时具有相对较高的氧化条件 ( Vassilev 等,1996) ,我们的研究也基本如此,但在飞灰中也并不缺乏磁铁矿微珠颗粒。此外,粉煤灰中还存在未完全燃烧的炭粒和残余黏土矿物,它们在底灰中的含量明显高于飞灰。空心炭在底灰中富集较多,丝质体组分的碎片呈光滑或带有瘤状的杆状颗粒,既存在于底灰也存在于飞灰中。此次研究,在个别粉煤灰微珠颗粒中还发现有针状或柱状的金红石矿物,形成球体的骨架,有玻璃质或多或少充填于金红石骨架孔隙之中。金红石通常是粉煤灰中 TiO2的主要物质来源,其熔点高达 1827℃,主要为原生成因,但也可以来自熔体的结晶作用或者来自锐钛矿同质异像的转变 ( Vassilev 等,1996) 。图 4. 7 是准格尔电厂粉煤灰 FESEM-EDX 分析得到的部分矿物图像和主要成分特征。
高铝粉煤灰特性及其在合成莫来石和堇青石中的应用
图 4. 7 准格尔电厂粉煤灰中的晶体矿物 ( 附有 EDX 能谱点的颗粒)
③ 我国粉煤灰利用情况
我国是全球第一煤炭消费大国,2004 年全国煤炭消耗量为 18. 45 ×108t ( 不包括出口0. 87 × 108t) ,其中电煤消耗量超过 9. 86 × 108t,比 2003 年增加 1. 36 × 108t 左右,或增长16% 左右,电煤的需求量已经占到了煤炭总耗量的 53% ,由此产生的粉煤灰排放量高达2 × 108t。目前粉煤灰的利用领域主要是交通、建材、矿山、水利、冶金等行业,粉煤灰的平均利用率在 45% ~50%,所以每年尚有未利用的粉煤灰大量堆积。截至 2000 年底,我国粉煤灰的累计堆存量高达 12. 5 × 108t,根据统计数据,每万吨粉煤灰需堆灰场 4 ~ 5亩,共需堆灰场 50 万 ~ 62. 5 万亩,以灰场储灰每吨灰渣需综合处理费 20 ~ 40 元计,则每年的综合处理费就需 30 亿 ~60 亿元 ( 林介东等,2002) 。此外,粉煤灰的排放与堆积还会造成严重的环境和生态污染,如何快速、高效地利用或处置粉煤灰,特别是高附加值利用粉煤灰,是摆在我们面前的一项十分紧迫而艰巨的任务。
我国粉煤灰的综合利用一直受到国家的高度重视。早在 20 世纪 50 年代,粉煤灰已在建筑工程中用作混凝土、砂浆的掺和料,在建材工业中用来生产砖,在道路工程中用作道路基础材料等。从 60 年代开始,粉煤灰利用重点转向墙体材料,研制生产了粉煤灰密实砌块、墙板,粉煤灰烧结陶粒和粉煤灰黏土烧结砖等。70 年代,国家为建材工业中粉煤灰的利用投资了 5. 7 亿元,总设计用灰量为 1064. 89 ×104t,设计生产线 261 条。80 年代以来,随着我国改革开放的不断深入,国家把资源综合利用列为经济建设中的一项重大决策。对粉煤灰的处置和利用在指导思想上不断深化,从 “以储为主”改为 “储用结合,积极利用”,再进一步明确为 “以用为主”,使粉煤灰综合利用得到蓬勃发展。我国在1987 年创办了 《粉煤灰综合利用》 专业杂志,其后又有 《粉煤灰》、《粉煤灰人》 等杂志陆续创办,并建立了粉煤灰综合利用网站www. flyingash. com,类似于美国的粉煤灰网站www. flyash. com 和煤灰协会网站www. acaa-usa. org,刊载粉煤灰理论研究与应用方面的大量信息,为粉煤灰的研究和资源化利用提供了信息平台。
我国粉煤灰在不同领域的应用情况如表 1. 3 所示 ( 奚新国和许钟梓,2003) 。尽管表中的应用分类不甚严密,但我们仍然可以看出,我国粉煤灰的利用领域也主要集中于水泥、混凝土和填筑材料等方面,高附加值利用水平依然很低。
表 1. 2 美国粉煤灰应用领域及其所占比例
( 据奚新国和许钟梓,2003)
粉煤灰在水泥、混凝土以及公路建设中应用的主要技术论著,可以参见美国 ACAA协会 2003 年出版的 《Fly Ash Facts for Highway Engineers》技术报告,该报告自 1986 年出版以来经过多次修改,并以 10 个章节的内容系统地描述了粉煤灰在公路建设中应用的技术信息。
我国在这一领域比较著名的技术论著有 1989 年沈旦申编写的 《粉煤灰混凝土》和2002 年钱觉时所著的 《粉煤灰特性与粉煤灰混凝土》,后者参阅了大量国内、外粉煤灰研究文献和技术成果,特别是美国方面的最新研究成果,全面系统地论述了粉煤灰的形成与分类,粉煤灰的物理、化学性质、矿物组成、环境特性,以及粉煤灰在混凝土中应用等方面的内容。从国内、外粉煤灰利用研究情况看,有 3 个方面值得关注。
( 1) 大灰量直接利用
粉煤灰作为填筑材料 ( 如修路、筑坝、回填等) 在工程中的使用,是粉煤灰大用量、直接利用的一种重要途径。粉煤灰填筑工程的特点,首先是投资少、上马快,不像粉煤灰在建材产品中的利用那样,要花费较多的投资兴建工厂。填筑路堤或工程回填,只要提供运灰工具和摊铺、碾压机械,就可以进行施工。其次是用灰量大,如上海沪嘉高速公路,按路堤高 27 m,路幅 26 m 计,每千米可用湿灰约 10 ×104t。这个用量相当于一个年产加气混凝土 10 ×104t 工厂的用灰量,或相当于年产 15 亿块粉煤灰黏土烧结砖的用灰量。再次,对灰的质量不像使用在水泥、混凝土中那样严格,干灰、湿灰都可使用。
( 2) 中级别利用
主要指粉煤灰在水泥、混凝土及其建筑制品方面的应用。此类应用通常需要对粉煤灰进行加工处理,如需要分选和细磨等。粉煤灰在混凝土中的应用技术开发始于 20 世纪 50年代初期,至今一直都是很活跃的研究课题。通过粉煤灰在混凝土中的应用基础研究、性能研究、工程研究等,进一步认识到对粉煤灰的 “形态效应”、 “活性效应”、 “微集效应”等必须在应用技术中充分注意才能控制和保证粉煤灰混凝土的质量,同时也证实了粉煤灰在混凝土的应用中存在着一定的 “负因素”和 “变易性”。只有开发粉煤灰产品和选用符合质量要求的粉煤灰,并在混凝土中合理使用,才能符合各种类别和不同等级的混凝土的质量要求。
粉煤灰建筑制品可分为非烧制型和烧制型两种,非烧制型粉煤灰建筑制品的诸多产品中,最先得到开发的是蒸养制品,如硅酸盐砌块、蒸养粉煤灰砖、大型硅酸盐墙板等。20世纪 80 年代后期,随着各种外加剂技术的发展,自然养护的产品得以发展。粉煤灰烧制型建筑制品,主要是利用粉煤灰代替部分黏土制作烧结砖、空心砖、墙地砖以及粉煤灰烧结陶粒等,掺加粉煤灰生产陶质制品,是很有发展前途的新型建筑材料。
近年来,粉煤灰在农业方面的利用快速增加。根据卡庆斯基土壤质地分类制标准,按照颗粒组成,粉煤灰相当于紫砂土、砂壤土和轻壤土,持水特性与类似质地土壤相一致。保持水分除靠颗粒之间的毛细管孔隙外,还在颗粒破碎球体的洞穴和蜂窝状孔隙内蓄水。粉煤灰的颗粒结构决定了与土壤水分相比,粉煤灰水分更易被植物利用。这一特性在农业中得到了充分肯定。此外,粉煤灰在改良土壤、育秧、覆盖越冬作物,用粉煤灰制作硅钙肥、磁化粉煤灰、与腐殖酸混合的堆积肥,灰场覆土造田,用粉煤灰回填坑洼地和矿区塌陷区复垦造地等方面收效显著。
( 3) 高级别利用
粉煤灰是空心玻璃体等组分的混合物,其中玻璃微珠系硅铝质玻璃体,碳以多孔状炭粒和碎屑状炭粒出现在富铁玻璃珠中。颗粒的形态、密度和成分均有差异,利用途径和经济价值也不尽相同。因此,通过一定的化学或物理方法将它们从粉煤灰中分选或提取出来,做到物尽其用,如分选出的空心微珠可以作为塑料、橡胶、金属的填充剂等。这一方面,虽然粉煤灰消耗量不大,但粉煤灰的利用价值较高,故称为高级别利用,或称之为精细利用。
粉煤灰是包含多种元素的重要资源。因此,粉煤灰高级别利用项目甚多,国外研制的项目也不少,但真正能够形成生产力,又能坚持下来的不多。我国已研究开发的项目有:粉煤灰漂珠、沉珠的分选和利用,粉煤灰中炭粒的分选和利用,粉煤灰中富铁玻璃微珠的分选和利用,以及粉煤灰中铝、铁、镓的提取等等。
④ 粉煤灰有没有辐射对人体有没有害
辐射?没有辐射这种功能。对人体有一定危害。
我国电厂排放的粉煤灰,其主要化学成分有二氧化硅,氧化铝,三氧化铁,氧化钙和三氧化硫,属硅铝型低钙粉煤灰.由于氧化钙和氧化镁含量低*约占+,-,且易溶成分含量仅占&,.!,,所以纯粉煤灰自凝性较差.硅铝型低钙粉煤灰是由少部分结晶物质和一部分非结晶物质和石英成分组成.一般情况下粉煤灰颗料表面是光滑而发亮的,完全的粉煤灰不含粘土矿物,因而不具有粘聚力,其颗粒尺寸为颗粒级配曲线介于粉质粘土和粉质砂土之间.在压实过程中有着和粉质土相似的工程性质,
粉煤灰的化学组成。硅含量最高,其次是铝,以复杂的复盐形式存在,酸溶性较差。铁含量相对较低,以氧化物形式存在,酸溶性好。此外还有未燃尽的炭粒、CaO和少量的MgO、Na2O、K2O、SO3等。粉煤灰中的有害成分是未燃尽炭粒,其吸水性大,强度低,易风化,不利于粉煤灰的资源化。粉煤灰中的SiO2、Al2O3对粉煤灰的火山灰性质贡献很大,Al2O3对降低粉煤灰的熔点有利,使其易于形成玻璃微珠,均为资源化的有益成分。将粉煤灰应用于建筑工业,结合态的CaO含量愈高,能提高其自硬性,使其活性大大高于低钙粉煤灰,对提高混凝土的早期强度很有帮助。我国电厂排放的粉煤灰90%以上为低钙粉煤灰,开发高钙粉煤灰不失为改善粉煤灰资源化特性条途径。
粉煤灰的颗粒组成。按照粉煤灰颗粒形貌,可将粉煤灰颗粒分为:玻璃微珠;海绵状玻璃体(包括颗粒较小、较密实、孔隙小的玻璃体和颗粒较大、疏松多孔的玻璃体);炭粒。我国电厂排放的粉煤灰中微珠含量不高,大部分是海绵状玻璃体,颗粒分布极不均匀。通过研磨处理,破坏原有粉煤灰的形貌结构,使其成为粒度比较均匀的破碎多面体,提高其比表面积,从而提高其表面活性,改善其性能的差异性。
粉煤灰可用作水泥、砂浆、混凝土的掺合料,并成为水泥、混凝土的组分,粉煤灰作为原料代替黏土生产水泥熟料的原料、制造烧结砖、蒸压加气混凝土、泡沫混凝土、空心砌砖、烧结或非烧结陶粒,铺筑道路;构筑坝体,建设港口,农田坑洼低地、煤矿塌陷区及矿井的回填;也可以从中分选漂珠、微珠、铁精粉、碳、铝等有用物质,其中漂珠、微珠可分别用作保温材料、耐火材料、塑料、橡胶填料。
⑤ 粉煤灰综合利用产业主要包括哪些
粉煤灰综合利用产业包括:建材;民用;农业种植;水处理等等产业。
比如:云砼石(粉煤灰综合利用项目成果)可以用于桥梁建设、pc构件、砂浆骨料;用于污水处理;用于土壤改良;用于民用家装地暖回填,装饰混凝土及水磨地坪。
⑥ 粉煤灰怎么提取氧化铝
国外利用粉煤灰提取氧化铝/氢氧化铝的研究起步较早,早在20世纪50年代,
波兰克拉科夫矿冶学院格日麦克教授以高铝煤矸石或高铝粉煤灰(Al2O3>30%)
为主要原料,采用石灰石煅烧法,从中提取氧化铝并利用其残渣生产硅酸盐水泥,
取得了一些研究成果,并于1960年在波兰获得两项专利。
美国采用Ames法(石灰烧结法),年处理粉煤灰30万吨,Al2O3提取率为80%。
美国橡树岭国家实验室已完成DAL法(酸浸法)从粉煤灰中提取各种金属、
残渣作填料的研究。此外美国还将粉煤灰掺入铝中,提高铝的产量,降低成本、
增加硬度、改善可加工性及提高耐磨性。
近些年来国外有关这方面的报道较少,较新的研究成果是Park等采用明矾中间
体法从粉煤灰中提取了氧化铝。
我国从粉煤灰中提取氧化铝的研究同样可以追溯到 20 世纪50 年代,至1980
年,安徽冶金科研所和合肥水泥研究所提出用石灰石烧结-碳酸钠溶出工艺从粉煤
灰中提取氧化铝、其硅钙渣用作水泥原料的工艺路线,于1982 年2 月通过专家鉴
定。宁夏自治区建材研究院在90 年前后展开了碱-石灰烧结法从粉煤灰中提取氧化
铝的研究,其特点之一就是先对粉煤灰进行脱硅处理之后再采用碱-石灰烧结法从
中提取氧化铝。内蒙古蒙西集团和中国科学院长春应用化学研究所合作,已经进
行了将近10 年的研究,目前已经获得了一套石灰石烧结法提取氧化铝并联产水泥
的技术路线,该项目2006 年初通过批准,现已开始投资兴建年产40 万吨氧化铝
的生产线。此外,东北大学在山西也展开了类似的研究,目前也已取得阶段性成
果。
从粉煤灰中提取氧化铝的方法按主要添加剂的酸碱性来说可分为酸法、碱法
以及酸碱混合法。
打字不易,如满意,望采纳。
⑦ 粉煤灰在混凝土中最终起到什么作用
粉煤灰的三大效应
我国著名学者沈旦申、张荫济先生早在上世纪80年代总结国内外大量研究成果,提出粉煤灰《三大效应》理论,科学全面的阐述了粉煤灰在混凝土及粉煤灰制品中的作用和机理。对指导我国粉煤灰综合利用起到了积极的作用。
一、粉煤灰的“形态效应”
在显微镜下显示,粉煤灰中含有70%以上的玻璃微珠,粒形完整,表面光滑,质地致密。这种形态对混凝土而言,无疑能起到减水作用、致密作用和匀质作用,促进初期水泥水化的解絮作用,改变拌和物的流变性质、初始结构以及硬化后的多种功能,尤其对泵送混凝土,能起到良好的润滑作用。
二、粉煤灰的“活性效应”
粉煤灰的“活性效应”因粉煤灰系人工火山灰质材料,所以又称之为“火山灰效应”。因粉煤灰中的化学成份含有大量活性sio2及al2o3,在潮湿的环境中与ca(oh)2等碱性物质发生化学反应,生成水化硅酸钙、水化铝酸钙等胶凝物质,对粉煤灰制品及混凝土能起到增强作用和堵塞混凝土中的毛细组织,提高混凝土的抗腐蚀能力。
三、粉煤灰的微集料效应
粉煤灰中粒径很小的微珠和碎屑,在水泥石中可以相当于未水化的水泥颗粒,极细小的微珠相当于活泼的纳米材料,能明显的改善和增强混凝土及制品的结构强度,提高匀质性和致密性。
在上述粉煤灰的三大效应中,形态效应是物理效应,活性效应是化学效应,而微集料效应既有物理效应又有化学效应。这三种效应相互关联,互为补充。粉煤灰的品质越高,效应越大。所以我们在应用粉煤灰时应根据水泥、混凝土、粉煤灰制品的不同要求选用适宜和定量的粉煤灰。如不恰当,则会起到反作用。
⑧ 高铝粉煤灰预处理效果及合成堇青石原料配比
( 1) 粉煤灰的除杂质效果
高铝粉煤灰经 800℃ ×2 h 除碳,粉煤灰的烧失量由原来的 2. 10% 降至 1. 02%,除碳效果明显。除碳前、后粉煤灰粒度变化不大 ( 图 6. 5) ,说明粉煤灰中的炭粒与无机颗粒大小相近,分布一致。若原始粉煤灰中残炭含量较低,高温除碳是比较理想的方法; 若原始粉煤灰中残炭含量较高,可采用浮选方法 ( 如重介旋流器、微泡浮选机等分选装置)去除,去除的残炭可用作气体或液体废物的吸附剂或加工制备成过滤材料加以充分利用。
图 6. 5 除碳前、后高铝粉煤灰的粒度分布
酸法除钙使粉煤灰中的氧化钙含量从 4. 22% 降至 0. 95%,尽管合成堇青石实验中CaO 固溶体的含量可达 4. 7% ( Sundar 等,1993) ,但在天然堇青石中 CaO 含量一般在0. 1% 以下。粉煤灰经 20% 盐酸酸洗后,其他氧化物含量也略有降低 ( 表 6. 4) 。铁的去除方法通常采用磁选机 ( 高梯度强磁场 107Gs / cm 数量级) 去除,加大磁通量方法不仅可以从粉煤灰中分选出强磁性矿物,而且还可以分选出弱磁性矿物。如果在除碳加热过程中将炉膛中的气氛营造成还原性气氛,也可以将部分非磁性矿物,如赤铁矿 ( Fe2O3) ,转化为磁性矿物,如磁铁矿 ( Fe3O4) ,然后再用磁选机分选去除。除去的含铁矿物可以用作炼铁的原料加以利用。若粉煤灰中 TiO2含量较高,还可以采用氟化铝法除去其中的钛( 林和成等,1999) 。
表 6. 4 高铝粉煤灰除杂质前、后化学成分之对比 ( %)
( 2) 合成堇青石配料的粒度
将除碳后的高铝粉煤灰,用郑州东方机器制造厂生产的 ZJM-20 型周期式搅拌球磨机,以球∶灰∶水 =5∶1∶1 配比研磨 5 h 后,粉煤灰的粒度从原来的 < 100 μm 降至 30 μm 以下,且 10 μm 以下的颗粒达 95%以上,说明研磨效果相当理想 ( 图 6. 6 ( a) ) ; 研磨 5 h 并经20% 盐酸清洗后的粉煤灰粒度有所下降,从 < 30 μm 变为 20 μm 以下,而且主峰位置明显转向细颗粒方向一侧,从 4. 89 μm 转至 1. 27 μm ( 图 6. 6 ( b) ) ,说明粉煤灰经酸洗后粒度减小,这是因为盐酸会侵蚀粉煤灰颗粒的外表面。
图 6. 6 细磨 5 h 后粉煤灰粒度与进一步酸洗后粉煤灰粒度分布
实验用的滑石粉直接采用市售辽宁大石桥国利微粉厂生产的 1250 目 ( 10 μm) 滑石粉做配料,以增加合成堇青石原料中缺乏的 MgO 和含量不足的 SiO2数量。工业化生产堇青石时可将滑石原料直接与除碳后的粉煤灰,按堇青石化学计量配比混合后一起细磨,以减少工艺程序,降低生产成本。实验用滑石粉和合成原料配料后的激光粒度分析结果见图6. 7。可以看出,滑石粉的粒度 85% 处于 10 μm 之下,粒度呈正态分布,满足合成堇青石对原料粒度的要求。滑石粉的颗粒形貌在 SEM 下观察呈现叶片状 ( 图 6. 8) 。
图 6. 7 滑石粉的粒度分布
图 6. 8 滑石粉的形貌特征
A、B、C 3 个系列样品配方比例分别为:
A 系列: 酸洗前粉煤灰 + 滑石粉; 滑石∶粉煤灰 = 1∶1. 6288;
B 系列: 酸洗后粉煤灰 + 滑石粉; 滑石∶粉煤灰 = 1∶1. 6288;
C 系列: 酸洗后粉煤灰 + 滑石粉; 滑石∶粉煤灰 = 1∶1. 5150。
激光粒度分析结果表明,A 系列配方粒度相对较粗; B、C 系列配方粒度相对较细。这一结果与粉煤灰酸洗前后粒度变化特征相一致,即酸洗后粉煤灰粒度变小,使得 B、C系列配方粒度减小。B、C 系列二者之间差异不大 ( 图 6. 9) 。各配料激光粒度分析测定参数特征见表 6. 5,A 系列 10 μm 以下颗粒占 79. 18%,B 系列 10 μm 以下颗粒占 99. 30%,C 系列 10 μm 以下颗粒占 98. 54% ,均可满足合成堇青石对原料粒度的要求。
图 6. 9 配料的粒度分布
表 6. 5 配料的激光粒度测定参数
A、B、C 配料的颗粒形貌特征如图 6. 10 所示。
图 6. 10 配料的颗粒形貌
( 3) 合成堇青石配料的化学成分
A、B 和 C 系列配方的化学成分见表 6. 6。其中 A 和 C 系列最接近化学计量堇青石配方,B 系列稍有差异。由于粉煤灰中存在杂质氧化物,所以合成堇青石的化学计量配比主要考虑 MgO、SiO2、Al2O33 种氧化物之间的比例,即 3 种氧化物归一化后的百分比最接近堇青石的化学计量比。Acme 公司生产的陶瓷窑具是世界名牌产品,各种造型的组合支架纤细、质轻,具有极高的节能效果,制品强度高,抗热震性好,其中两种产品的化学成分见表 6. 7。
表 6. 6 合成堇青石配料的化学成分 ( %)
表 6. 7 Acme 公司生产的堇青石产品的化学成分 ( %)
根据 Camerucci 等 ( 2003) 的研究成果 ( 图 6. 11) ,合成堇青石原料在 1350℃时,固熔体的范围较大,也就是说合成原料的配比范围较宽,有利于工业化生产; 在 1400℃时,固熔体的范围变小,对合成原料配比要求严格。所以本次实验温度分别选择在 1350℃和1370℃ ,恒温时间选择了 2 h 和 3 h,这一范围也与 MgO-Al2O3-SiO2系相图中堇青石形成范围基本一致 ( 图 6. 12) 。恒温时间的选择取决于成型试样的密度和体积,以使其充分发生固相反应为宜。
图 6. 11 合成堇青石原料在 MgO-Al2O3-SiO2三元系统中的位置
图 6. 12 MgO-Al2O3-SiO2系相图( 据陈美凤,1992)
通常而言,利用矿物原料直接制备堇青石产品时,对产品规格的控制难度较大,多数情况下都是首先制备出堇青石原料,再按需要的产品性能将堇青石原料与其他原料 ( 如莫来石) 进行配比,取其各种原料的优点,获得优质的堇青石或堇青石复合材料制品。例如,工业上使用的莫来石-堇青石棚板,即可用预合成堇青石作骨料。
⑨ 在混凝土制品中添加的粉煤灰主要是起什么作用的
1、粉煤灰在混凝土中的合理使用,不但能部分替代水泥,降低工程造价,而且由于其特有的性能可以很有效地用于各种使用要求的混凝土中,改善和提高混凝土的性能。
2、在现代混凝土中,粉煤灰已经与水泥、集料、水和外加剂同样重要,是矿物外加剂,也可称为第二胶凝材料,是混凝土的一种组分。 具体作用及性能如下:
1) 掺入粉煤灰可改善新拌混凝土的和易性
新拌混凝土的和易性受浆体的体积、水灰比、骨料的级配、形状、孔隙率等的影响。掺用粉煤灰对新拌混凝土的明显好处是增大浆体的体积,大量的浆体填充了骨料间的孔隙,包裹并润滑了骨料颗粒,从而使混凝土拌和物具有更好的粘聚性和可塑性。粉煤灰的骨料颗粒可以减少浆体与骨料间的界面摩擦,在骨料的接触点起滚珠轴承效果,从而改善了混凝土拌和物的和易性。
2) 粉煤灰可抑制新拌混凝土的泌水
粉煤灰的掺入可以补偿细骨料中的细屑不足,中断砂浆基体中泌水渠道的连续性,同时粉煤灰作为水泥的取代材料在同样的稠度下会使混凝土的用水量有不同程度的降低,因而掺用粉煤灰对防止新拌混凝土的泌水是有利的。
3 )掺用粉煤灰,可以提高混凝土的后期强度
有试验资料表明,在混凝土中掺入粉煤灰后,随着粉煤灰掺量的增加,早期强度(28天以前)逐减,而后期强度逐渐增加。粉煤灰对混凝土的强度有三重影响:减少用水量,增大胶结料含量和通过长期火山灰反应提高强度。
当原材料和环境条件一定时,掺粉煤灰混凝土的强度增长主要取决于粉煤灰的火山灰效应,即粉煤灰中玻璃态的活性氧化硅、氧化铝与水泥浆体中的Ca(OH)2作用生成碱度较小的二次水化硅酸钙、水化铝酸钙的速度和数量。粉煤灰在混凝土中,当Ca(OH)2薄膜覆盖在粉煤灰颗粒表面上时,就开始发生火山灰效应。但由于在Ca(OH)2薄膜与粉煤灰颗粒表面之间存在着水解层,钙离子要通过水解层与粉煤灰的活性组分反应,反应产物在层内逐级聚集,水解层未被火山灰反应产物充满到某种程度时,不会使强度有较大增长。随着水解层被反应产物充满,粉煤灰颗粒和水泥水化产物之间逐步形成牢固联系,从而导致混凝土强度、不透水性和耐磨性的增长,这就是掺粉煤灰混凝土早期强度较低、后期强度增长较高的主要原因。
4) 掺粉煤灰可降低混凝土的水化热
混凝土中水泥的水化反应是放热反应,在混凝土中掺入粉煤灰由于减少了水泥的用量可以降低水化热。水化放热的多少和速度取决于水泥的物理、化学性能和掺入粉煤灰的量,例如,若按重量计用粉煤灰取代30%的水泥时,可使因水化热导致的绝热温升降低15%左右。众所周知,温度升高时水泥水化速率会显著加快,研究表明:与20℃相比,30℃时硅酸盐水泥的水化速率要加快1倍。一些大型、超大型混凝土结构,其断面尺寸增大,混凝土设计强度等级提高,所用水泥强度等级高,单位量增大,施行新标准后水泥的粉磨细度加大,这些因素的叠加,导致混凝土硬化过程温升明显加剧,温峰升高,这是导致许多混凝土结构物在施工期间,模板刚拆除时就发现大量裂缝的原因。粉煤灰混凝土可减少水泥的水化热,减少结构物由于温度而造成的裂缝。
5)掺粉煤灰可改善混凝土的耐久性
在混凝土中掺粉煤灰对其冻融耐久性有很大影响。当粉煤灰质量较差,粗颗粒多,含碳量高都对混凝土抗冻融性有不利影响。质量差的粉煤灰随掺量的增加,其抗冻融耐久性降低。但当掺用质量较好的粉煤灰同时适当降低水灰比,则可以收到改善抗冻性的效果。
水泥混凝土中如果使用了高碱水泥,会与某些活性集料发生碱集料反应,会引起混凝土产生膨胀、开裂,导致混凝土结构破坏,而且这种破坏会继续发展下去,难以补救。近年来,我国水泥含碱量的增加、混凝土中水泥用量的提高及含碱外加剂的普遍应用,更增加了碱集料反应破坏的潜在危险。在混凝土中掺加粉煤灰,可以有效地防止碱集料反应,提高混凝土的耐久性。
⑩ 王立久的工作成果(奖励、专利等)
新型墙体材料(建筑模网砼、粉煤灰砖、冷成型加气砌块、尾矿砖、粉煤灰砼空心砌块、尾矿砼空心砌块、哈尼网轻质墙板)
新型装饰材料(粉煤灰微晶玻璃、人工合成砂岩装饰板)
新型砼外加剂(超缓凝剂、粉煤灰活化剂)
新型耐火材料(镁碳砖、钙镁碳砖、锆橄榄石砖等)
新型生物材料(人造骨材料等);新型膜材料(NiO膜、SiO2膜等)
新型保温材料(相变节能材料、泡沫微晶玻璃、Nano孔绝热材料、粉煤灰壳陶粒、粉煤灰冷成型加气砼等)
Nano硅酸盐水泥、Nano聚氨酯弹性体 铝铂复合粉煤灰保温瓦,1991,中国
折钩拉筋,1999,中国
模网件间连接钩筋,1999,中国
无加劲肋的建筑模网生产工艺 2001,中国
哈尼结构模网 2001,中国
蛇皮网压网、拉网一次成型法 2001,中国
带空气夹层的混凝土墙体结构用建筑模网实用 王立久任铮钺2002.10
钢丝网架叠合混凝土楼板施工方法发明 王立久曹明莉2001.11
混凝土连续碳化测试仪及测试方法发明 王立久曹明莉2001.11
混凝土墙体水泥模板结构发明 王立久王宝民2001.11
组合拉筋建筑模网 发明 王立久2002.2.10
复合泡沫微晶玻璃及其制作方法 发明 王立久2002.2.22
混凝土电渗技术 发明 王立久2002.12.14
卫型砖墙体节能技术发明 王立久2002.12.14
水泥/发电联产技术发明 王立久2002.12.14
可作为水泥生料的混凝土2007年3月21日)