导航:首页 > 证书转让 > 压实度成果

压实度成果

发布时间:2021-12-02 10:15:15

⑴ 研究概况及主要进展

自从人类进行煤炭开采伊始,就存在煤炭顶板安全问题。多年来,国内外学者对煤矿顶板稳定性研究进行了不懈的探索,取得了大量的研究成果。特别是近 30 多年来, “块体理论”、“模糊评判法”、“灰色理论法”、“模糊聚类法”、“人工神经网络法”、“沉积学方法”、“层次分析法”、“地震属性法”、“地应力分布法”等多种方法,从不同角度分析了顶板稳定性,对煤矿的安全生产起到了指导性作用。

1.2.1 国外研究历史

1.2.1.1 引入沉积作用分析

据郭德勇等 ( 2002,2003) 资料,20 世纪 60 年代,Zienkwicz ( 1977) ,Goodman( 1968) ,Desai 等就将有限元引入地质研究中。20 世纪 70 年代,Elliott ( 1974) ,Ferm 等( 1978) ,Horne 等 ( 1978) ,Hylbert ( 1977) 等学者注意到沉积作用与顶板稳定性的联系,将沉积学理论引入到顶板稳定性的研究中,着重分析了河道作用和决口扇沉积对顶板稳定性的影响。20 世纪 80 年代初,Petranoff ( 1980) ,Bunnell ( 1982) 等尝试从沉积学角度对顶板条件进行了分类,Houseknecht 等 ( 1982) 则进一步将沉积条件与煤和瓦斯突出、煤层变化相联系,Truman 和 Horne ( 1982) 已开始尝试将此类研究成果用于指导生产: 查明了影响煤矿顶板岩层稳定性的主要沉积地质因素有冲刷与凸顶、滑面、擦痕、夹薄顶煤层的砂页岩互层等; 发现煤矿顶板岩层在垂向上和侧向上厚度和岩性变化很大,在矿井煤炭开采过程中顶板冒落、老顶来压和岩煤层突出往往发生在老顶砂岩与页岩的过渡部位。T.V.Petranoff ( 1980) 和 H.H.Damberger ( 1980) 指出,井下回采时,煤层顶板的质量取决于各种岩石类型的内在联系、同沉积构造、沉积早期的压实强度和后期构造特征诸因素。其中顶板的大部分特征可能与沉积作用或早期压实过程有关,后期的构造运动起着强化这些早期特征的作用。1982 年,美国学者 C.D.Elifrits 将地理信息系统 ( GIS) 技术应用于房柱式开采煤矿地面塌陷,开拓了 GIS 在煤矿灾害方面应用之先河。

20 世纪 90 年代,V.R.Shear-Albin ( 1993) 总结认为煤矿井下遇到的大多数控制问题可归因于开采煤层围岩的沉积作用或早期压实强度和后期构造特征诸因素。其中顶板的大部分特征表现在沉积特征和构造特征两方面。与此同时,在地质构造复杂的矿区多采用仪器探测技术,如利用地质雷达探测工作面前方地质构造和地质异常体等技术。前苏联地质学家更重视利用各类地质参数预测开采前方地质变化,如研究煤的物理化学特征来预测断层,统计地质数据进行构造变形分析; 前联邦德国在鲁尔区采用构造成因解析法、槽波地震等方法对工作面前方构造及顶板稳定性进行分析预测,均取得了良好的效果。

1.2.1.2 引入地震分析技术

20 世纪 70 年代与 80 年代期间,在石油地震勘探中用得最多的地震属性研究是基于振幅的瞬时属性。90 年代,地震属性技术取得了重大突破,其范围从计算单道瞬时同相轴属性到提取复杂的多道分时窗的地震同相轴属性以及到生成地震体属性。地震属性技术的应用范围也从简单检测振幅异常发展到检测流体前缘随时间的变化。

1994 年,Amoco 石油公司开发了可用于描绘断层和地层特征的三维相干算法,在1995 年的第 65 届 SEG 年会上,Amoco 石油公司公布了一项用于描述断层和地层特征的解释性处理技术,即相干体 ( Coherence Cube) 技术。相干体技术的出现在地球物理界引起很大的反响,被视为三维地震领域尤其是资料处理解释方面的革命,加深了人们对三维数据体的地质理解。

1995~ 1996 年,Bahorich 和 Farmer 把地震相干性技术从其他地震数据处理技术中分离出来,将相干性作为一种独立的地震属性展示在物探工作者面前,并指出,对应于该项技术的相干算法在地质构造检测方面特别有效,可突出地下地层的细微变化。

在此期间,Mikes S.Bahorich 发表了关于相干数据体的论文,借助三维相干数据体解释地震资料不连续性成像的断层和岩性变化区带。Kenneth A.Ortmann 应用三维相干数据体研究大地构造的扭曲运动,延伸了相干数据体的应用领域。Schlumberger-GeoQuest 地震解释软件公司也把与相干体技术对应的软件推向市场,加速了相干体技术的应用和普及。

Marfurt 等在 1998 年和 1999 年分别提出了他们的研究成果 ( 李增学,1994) ,讨论了用基于相似的相干算法计算三维地震属性和存在构造倾角的相干计算方法。Marfurt 等人在原有的 C1、C2和 C3相干算法的基础上,对相干算法进行了一定程度的改进。

1.2.2 国内研究进展

1.2.2.1 传统地质学分析

国内一些学者从含煤地层沉积环境入手,在分析煤层及其顶板形成沉积条件的基础上,按不同沉积模式分别建立了区域性沉积模式与顶板稳定性关系,对顶板稳定性进行了成功预测。葛道凯 ( 1994) 、彭苏萍 ( 2000) 、孟召平 ( 2002) 等就沉积层序和顶板砂体厚度变化诸方面对顶板冒落性影响进行相似模拟试验研究的基础上,提出了顶板稳定性地质模型,并指出煤层顶板性质基本上取决于沉积建造亚相特征,顶、底板原始沉积环境的空间分布控制了采场顶板整体质量。提出从影响顶板稳定性的地质因素入手,结合岩石力学和采矿工程学的研究方法对煤层顶板稳定性进行了较详细的研究。

于双忠 ( 1994) 和彭向峰 ( 1997) 等从工程地质分析方法入手提出了煤矿巷道围岩稳定性评价新方法: 首先选定 4 个主要的影响因素,即岩石强度、结构面、水对岩体的影响及原岩地应力状态,然后把这 4 个指标综合到一张分类图表中。丁述理 ( 1998) 等建立了单因素分析、综合评判的研究方法: 根据能独立反映某地区某段岩石 ( 体) 工程稳定性的一些独立的因素或变数,如岩石的单向抗压强度、分层厚度、裂隙发育程度、岩性、岩石的形成环境、岩心完整性、岩心采取率等钻孔资料获得的信息,分析这些单因素的评价结果,去粗取精、去伪存真、综合评判,从而有效地削弱各种技术因素、自然因素和人为因素的影响,使最终分析结果能更准确地反映顶板岩石工程稳定性的实际情况。孟召平、程浪洪 ( 2007) 等分析了淮南矿区地应力条件,通过现场地应力测量和理论分析以及数值模拟计算,探讨了圆形硐室围岩应力分布和不同侧压下回采工作面顶板稳定性分布,得出了回采工作面顶、底板稳定性与侧压系数大小密切相关的结论。

徐东强 ( 1999,2000) 等提出运用块体理论法进行矿体顶板稳定性分析,通过详细的现场结构面调查,采用赤平极射投影或矢量分析方法,确定采场中的优势结构面产状,判断由优势结构面所切割块体的稳定性。

1.2.2.2 顶板稳定性的定量分析进展

从 20 世纪 70 年代起,我国的一些科研工作者开始了针对顶板稳定性的岩体工程力学数学方法及结合计算机进行的模拟运算,以期对煤层顶板稳定性进行定量评价和预测。涂敏 ( 1995) 利用模糊类聚法分析了煤层顶板稳定性; 杨双锁等 ( 1997) 利用有限元法对采场顶板稳定性进行了定量分析及分类研究; 张树光等 ( 2000) 应用离散元法对顶板稳定性进行了分析,如通过采用水平层状、正交节理模型顶板建立模型,检测整个顶板的变形来实现其稳定性预测和分析; 曹庆奎、蔡振禹 ( 2004) 利用加权灰色模型评价了煤层顶板稳定性,经过实例分析提出了主观赋权法和客观赋权法相结合的灰色加权关联度综合评价法,该方法可较好地反映出煤层顶板地质条件的灰色性特征,使评价结果客观合理; 文晓红、杨晓东 ( 2004) 提出了将单因素分析、模糊二级评判法相结合的方法来研究煤层顶板稳定性,合理选择能反映煤层稳定性的单因素地质因素,可以极大限度地利用现有勘探成果资料,合理地考虑各种因素来评判顶板综合质量,该方法简单、灵活,评判结果较为准确; 夏玉成、樊怀仁 ( 1998) ,朱宝龙、夏玉成 ( 2001) ,凌标灿等 ( 2003) 针对模糊综合评判模型需要确定因素权重集和隶属函数的人为性等缺点,提出运用人工神经网络定量评价矿井构造,通过构造网络,进行学习训练,得到评价模型,然后进一步计算和预测,该方法可避免偶然性引起的误差,在条件比较复杂或应用单因素难以判断时,获得了明显效果; 李增学、刘海燕等 ( 2004) 提出了应用层次分析法评价煤层顶板稳定性,在确定影响因素权值后,对研究区进行综合分区,依据沉积条件、构造发育特点和岩石力学特征,按照基本因素权重大小进行复合叠加,最终完成定量评价。

1.2.2.3 地球物理探测技术研究

( 1) 地球物理勘探方法的应用

从 20 世纪 60 年代以来,矿井地球物理勘探方法受到人们的普遍重视。如岩体原位应力测量、高精度重磁探测、各种波法、直流电场层析成像、放射性红外测量、孔中电视与防爆测井、磁偶源频率探测与地电法等。近几年,随着计算机技术水平的提高,各种测试仪器的现代化水平也不断提高,体积小、灵敏度高、存储信息量大、操作简单而功能强大的声波测试仪的应用,给煤层顶板稳定性监测带来了很大的方便。

对地质构造探测有显著优势的煤田地震勘探在我国起步较晚。在 20 世纪 80 年代中期以后,蓬勃发展并臻成熟的高分辨率数字二维地震勘探技术在煤田勘探中得到广泛应用。魏树满 ( 1998) 利用钻孔声波测试数据,提出了对岩体进行较精确的速度分层的一种数据处理方法,并通过理论模型及实际声波测试资料对层析技术进行了分析论证。王宏图等( 1989) 利用岩体地应力声波测试方法确定了四川某矿岩体内松动圈范围。徐东强等( 1999) 利用声波测试技术在金厂峪金矿难采矿体顶板稳定性研究中成功预测出了顶板松动圈厚度以及破碎带位置和厚度。郭学彬等 ( l999) 应用声波探测技术探测爆破作用对矿柱损伤的程度和影响范围,为研究矿柱的稳定性提供了依据。王辉、黄鼎成 ( 2000) 利用地震层析成像技术,根据岩体结构理论和地震波在软弱结构面的传播特性,利用地震层析成像技术,实现了岩体稳定性的准确探测与软弱结构面的空间定位。吴文金等 ( 2000)运用岩体声波探测技术测定了淮北芦岭煤矿巷迈围岩松动圈,进行了围岩稳定性分类,为芦岭煤矿今后的巷道支护设计提供了依据。

( 2) 地震信息解释技术的应用

进入 20 世纪 90 年代中期,有效探测小构造的三维地震技术得到应用,近年来基于三维地震信息精细解释构造的地震属性技术和相干/方差体技术得到重视和发展。

相干/方差体技术利用相邻道地震信号之间的相似性来描述地层、岩性等的横向非均匀性,特别是在识别断层以及了解与储集层特征密切相关的砂体展布等方面非常有效。利用相干/方差算法对三维地震数据体进行相干处理后就可得到对应的三维相干/方差数据体。应用三维相干/方差时间切片进行构造解释和岩性解释,可以帮助解释人员迅速认识整个工区断层等构造及岩性的整体空间展布特征,从而达到加快解释速度及提高解释精度、缩短勘探周期的目的。

国内对相干技术的讨论相对较晚,基本上是借鉴、吸收消化国外的先进成果。石油行业于 1996 年开始使用相干体技术并取得了较好的效果。佘德平、曹辉 ( 1998) 等发表了相干数据体研究成果,提出了相干数据体的制作方法并论述了三维相干数据体在实际资料解释中的应用,证明了相干体技术有效、快速和无需人工干预等特点; 杜文凤 ( 1998)的研究表明,在断层解释、采空区圈定、巷道检测等方面应用相干体技术能解释落差为3m 左右的小断层,并且比常规解释方法更直观、快捷。

对于方差数据体,目前研究成果较少。林建东 ( 2000) 的研究表明,方差技术能够更好地满足矿井建设的要求,准确解释含煤地层中落差更小的断层,而且可以更加准确地给出断裂带的产状和延伸方向,也可探明更小的地质异常体。常锁亮 ( 2003) 等则在方差体技术应用小断层、陷落柱等地质异常体良好的自动识别能力方面进行了有效的探索。地球物理技术已经成为高产高效煤矿生产中必不可少的手段。近几年来,地震属性技术受到地球物理界的极大关注。地震属性研究已经成为地震数据处理和解释中重要的研究内容之一。地震属性技术在我国的发展,起步于 20 世纪 80 年代中后期,主要的目的是将地震属性应用于油藏描述。郭彦省、孟召平 ( 2006) 等介绍了应用地震属性技术预测煤层顶板岩性的方法,通过应用交会图、相关分析方法,对钻孔处地震属性与煤层岩性关系进行分析,优选地震属性,将得到的地震属性用神经网络来识别,进而进行应用和预测,取得了较好的应用效果。

地震属性 ( seismic attribute) 指的是那些由叠前或叠后的地震数据,经过数学变换而导出的有关地震波的几何形态、运动学特征和统计特征,它是地震资料中可描述的定量化特征,代表了原始地震资料中所包含的总信息的子集。现在广泛应用的地震属性有 20 多种,并且新的地震属性还不断地从地震数据中被挖掘出来。单一的地震属性所提供的信息往往是片面的,需要对众多复杂而又相互关联的地震属性进行更深入、更贴近本质的认识。

地震属性的分类至今没有统一的标准,不同的学者分别提出过不同的属性分类。结合煤田地震勘探的特点,可以根据运动学/动力学特征把地震属性分成 8 个类别: 时间、振幅、频率、相位、波形、相关、吸收衰减、速度。地震属性的类型很多,要根据解决的地质问题来选择相应的地震属性。

( 3) 地震反演技术

自 20 世纪 70 年代以来,地球物理学家提出了多种地震反演方法。地震反演具有明确的物理意义,是预测岩性的确定性方法,在实际应用中取得了显著的地质效果。

地震反演是利用地表观测地震资料,以已知地质规律和钻井、测井资料为约束,对地下岩层空间结构和物理性质进行成像 ( 求解) 的过程,是反演地层波阻抗 ( 或速度) 的地震特殊处理解释技术。

地震反演通常指波阻抗反演。波阻抗反演技术是岩性地震勘探的重要手段之一,根据钻孔测井数据纵向分辨率很高的有利条件,对井旁地震资料进行约束反演,并在此基础上对孔间地震资料进行反演,推断煤系地层岩性在平面上的变化情况,这样就把具有高纵向分辨率的已知测井资料与连续观测的地震资料联系起来了,实行优势互补,大大提高了三维地震资料的纵、横向分辨率和对地下地质情况的勘探研究程度 ( 李庆忠,1993) 。

地震反演方法基于介质模型的假设条件不同,有直接离散反演方法和波动方程连续估计反演方法; 基于研究域的不同,有时域反演方法和频率域反演方法; 从实现方法上可分为 3 类,即递推反演、基于模型反演和地震属性反演; 基于求解方式的不同,有直接反演方法、迭代反演方法和搜索类反演方法。

近年来,随着勘探地球物理学的发展,非线性反演方法突飞猛进。除一些传统的非线性反演方法,如梯度法 ( Gradient method) 、牛顿法 ( Newton method) 和蒙特卡洛法( MonteCarlo method) 外,一些启发式的反演方法,如模拟退火法 ( Simulated Annealing) 、遗传算法 ( Genetic Algorithm) 、人工神经网络法 ( Artificial Neural Networks) 、小波分析法( Wavelet Analysis) 等应运而生。随着并行计算机的出现,需要大量计算时间的非线性的反演方法有了发展的前提。

波阻抗反演是利用实际地震资料,以地质钻井和测井信息为约束条件,对地质构造和储层物性进行求解的过程,是进行储层预测和描述的必要手段。普通的高分辨率地震剖面不能分辨薄储层,而测井约束波阻抗反演技术以测井资料丰富的高频信息和完整的低频成分补充地震有限带宽的不足,综合地质、测井信息作为约束条件,得到高精度的波阻抗资料。

目前地震反演软件主要有: 俄罗斯地矿部的 PARM,法国 CGG 公司的 ROVIM,中国石油大学的 ANNLOG,加拿大 Hampson-Russell 公司的 STRATA,荷兰 JASON 公司的 JA-SON,丹麦的 ISIS。这些软件各有特色,使用最多的反演软件是 STRATA,它使用起来相当方便,无论是地质人员还是物探人员都可以直接做反演工作。

1.2.2.4 多源信息预测方法

1982 年,美国学者 C.D.Elifrits 将地理信息系统 ( GIS) 技术应用于房柱式开采煤矿地面塌陷,开拓了 GIS 在煤矿灾害防治方面应用之先河。从 80 年代后期起,我国学者也引进了 GIS 技术,并且不断拓展它的应用范围,主要包括煤层顶板稳定性预测、煤矿突水预测、岩溶陷落柱的探测等,取得了一定的效果。GIS 技术的引入,为煤层顶板稳定性预测提供了新的思路和手段。

⑵ 成果与认识

在前人研究成果的基础上,结合大量的分析测试资料和数据,按照上述的研究路线和思路,通过对东营箕状断陷湖盆北部陡坡带沙河街组层序地层格架内成岩演化研究,取得了以下成果和认识:

1)在东营箕状断陷湖盆北部陡坡带区域构造特征以及沉积体系研究的基础上,详细研究了东营凹陷北部陡坡带沙河街组层序地层特征。将沙河街组共划分出了2个二级层序和6个三级层序,并建立了东营凹陷北部陡坡带层序地层格架。

2)通过大量岩石铸体薄片分析、扫描电镜分析、粘土矿物分析等测试数据、资料的分析,详细研究了东营箕状断陷湖盆北部陡坡带沙河街组主要成岩作用类型及特征。主要成岩作用包括压实、压溶作用、胶结作用、溶蚀作用、交代作用等类型。其中,不同的层序内以及不同构造部位的成岩作用有所差异。并详细研究了陡坡带沙河街组内5种不同沉积体系内的成岩作用类型及特征。

3)详细研究了箕状断陷湖盆陡坡带层序形成演化与成岩作用的关系。结果表明:层序界面对成岩作用有着控制作用,层序界面之下通常发育碳酸盐胶结和溶蚀作用,界面之上通常发育粘土矿物胶结和石英次生加大,此现象在盆地边缘的二级层序界面表现尤为明显;体系域对成岩作用也有一定的控制作用,例如湖盆扩张体系域通常发育有石英次生加大和铁碳酸盐胶结和黄铁矿胶结。不同层序内的成岩作用组合也存在差异,从SQ1—SQ6层序演变过程中,由于湖盆水体的变化,使成岩作用演化存在差异,导致成岩作用差异。

4)划分了东营箕状断陷湖盆北部陡坡带沙河街组成岩演化阶段。东营凹陷沙河街组主要处于早成岩A期、早成岩B期、中成岩A期和中成岩B期。SQ1—SQ6层序演化阶段对应于中成岩B期—早成岩A期。

5)对沙河街组成岩演化进行了恢复研究。结果表明,一个层序形成之后,后期的成岩作用受到了原始水介质、构造条件、成岩酸性流体的控制。同一层序,由于后期埋藏深度和地温条件的不一样,成岩作用存在差异性。总体来讲,东营凹陷北部陡坡带内带比外带的成岩演化要快。

6)首次系统详细研究了箕状断陷湖盆陡坡带不同层序内的成岩相特征,划分出了5种主要的成岩相和8种成岩亚相类型。5种成岩相分别为早期弱压实成岩相、早期弱胶结成岩相、中期溶蚀成岩相、中期再胶结成岩相、晚期紧密压实成岩相;8种成岩亚相类型分别为塑性组分溶蚀、方解石胶结、(含)铁碳酸盐胶结、石英次生加大、高岭石充填、混层粘土矿物充填、泥青质胶结和硬石膏胶结。最后,详细研究了研究区不同体系域内成岩相的平面展布特征。

7)在上述研究基础上,探讨了成岩演化与储层发育的关系。研究表明,东营凹陷北部陡坡带层序地层格架内储层发育与成岩演化过程中各类成岩作用有着密切的关系。最后,引入成岩综合指数的概念,探讨了陡坡带不同层序内成岩演化强度与储层发育的定量关系,成岩综合指数大小与储层质量优劣有很好的对应关系,成岩综合指数高的地方,储层的储集性好。

⑶ 最大干密度的计算方法

普通计算
a、压实度:振动碾压完两遍后开始检验压实度,每增加碾压两遍后再次检验压实度,直至压实度达到要求,采用灌砂法按随机取样的方法检验压实度试验。压实度检测如果合格即可停止碾压,否则继续碾压,每碾压完一遍后检验压实度,检测频率为2000m2检测8点。
b、高程(厚度、松铺系数):上料前布点,并按照测点位置测量下承层顶面高程;在精平后,测量填料顶部高程;碾压完毕后检测相同点位的高程,计算厚度、松铺系数。
c、宽度:底部通过划边线控制宽度,顶部通过拉钢尺检测压实后中桩至边缘的宽度。
d、轴线:上土前按照设计桩位每20米布设中桩,碾压后通过恢复中桩检测中桩偏位情况。
2)检测控制指标:
压实度:每层不小于规定值;
宽度:每侧宽度不小于设计宽度+30cm;
中线偏位:50mm;
厚度、高程、松铺系数。
3)做好各项检测指标原始记录的收集工作。
7、试验段成果整理及总结报告:
认真做好试验段的成果整理,总结如下内容:
1)确定最佳的压实厚度和松铺系数。
2)确定最佳机械组合。
3)确定不同机械组合下的最经济压实遍数。
4)确定最佳压实厚度和机械组合及压实遍数。
8、四区标示(上土区、平整区、碾压区、检测区)
由于试验路段较短,作业面无法大面积展开,在路基的大面积施工中,采取四区标示法,规范现场,文明施工。
数值分析[span]
[span]在土方工程中,土的最大干密度和最优含水量是确保路基压实质量的两个关键指标。针对目前利用室内标准击实试验确定最大干密度和最优含水量存在的随意性问题,提出利用数值分析方法中的牛顿插值和迭代方法来拟合土样的击实曲线,构建关于干密度与含水量之间的函数关系式,对其求导可以得到最大干密度和最优含水量。并利用Matlab编制牛顿插值和迭代的函数代码,从而简化了求解过程,提高效率和精度。该方法为求解最大干密度和最优含水量提供了理论依据,为处理击实试验数据提供了一种可行的新方法。

⑷ 原位测试与土工试验及其成果分析

原位测试与土工试验及其成果分析,是桂林岩溶区岩土工程勘察的一个重要内容。各类工程的地基基础设计,要求岩土工程勘察提供详细的物理和力学性质指标。这些参数必须通过室内或场地原位测试得到,在加以整理和分析之后,作为岩土工程勘察报告书的一个重要部分。

1.3.1桂林岩溶地区岩土工程勘察中所常用的原位测试方法

根据岩土条件,在桂林岩溶地区岩土工程勘察中,目前所采用的原位测试方法主要列于表1.2。

表1.2 桂林岩溶地区岩土工程勘察中常用的原位测试方法Table 1.2 Situ testing methods used commonly in geotechnical engineering investigation in Guilin karst region

1.3.2圆锥动力触探试验及标准贯入试验

1.3.2.1轻型动力触探(N10)试验

适用于深度小于4 m 的一般粘性土、粘性素填土和砂土层,表层岩溶塌陷地基密实度和地基承载力检测,此外,还常常用来检验地基处理的质量和效果。

1.3.2.1.1试验主要设备

轻型动力触探设备主要由圆锥触探探头、触探杆、穿心落锤三部分组成,落锤升降由人工操纵。

1.3.2.1.2试验主要步骤

(1)探头贯入土层之前,先在触探杆上标出从锥尖起向上每30 cm 的位置。

(2)一人将触探杆垂直扶正,另一人将10 kg穿心锤从锤垫顶面以上50 cm 处自由落体放下,锤击速率15~30击/min为宜。

(3)记录每贯入土层30 cm的锤击数N'10(击/30 cm)。

(4)为避免因土对触探杆的侧壁摩擦而消耗部分锤击能量,应采用分段触探的办法,即贯入一段距离后,将锥尖向上拔,使探孔壁扩径,再将锥尖打入原位置,继续试验。或每贯入10 cm,转动探杆一圈。

(5)当N'10>100或贯入15 cm 锤击数超过50时,可停止试验。

1.3.2.1.3资料整理

(1)轻型动力触探由于贯入深度浅,可不作杆长修正,即N'10 = N 10

(2)绘制轻型动力触探击数N 10与深度h的关系曲线。

1.3.2.1.4试验成果的应用

确定地基承载力特征值fa。目前当地主要还是参考原《建筑地基基础规范》( GBJ 7—89)的有关规定(表1.3),并结合当地经验确定f a值。

表1.3 一般粘性土承载力特征值fa与N 10的关系Table 1.3 Relationship between characteristic value fa of bearing capacity and N10 for general clayey soil

1.3.2.2重型动力触探(N63.5)试验

在桂林岩溶区,主要用于漓江一级阶地的卵石、砾石、砂类土的密实度确定和地基承载力确定,尤其是在一级阶地的塌陷地基中广泛运用。

1.3.2.2.1试验主要设备

重型动力触探试验的设备主要由圆锥触探头、触探杆及穿心落锤三部分组成,落锤升降由钻机操纵。

1.3.2.2.2试验主要步骤

(1)探头贯入土层之前,先测出锥尖到锤垫底面之间长度,即触探杆长度。

(2)待锤尖打入到预测位置时,从触探杆上标出从地面向上每10 cm 的位置。

(3)穿心锤自由落距76 cm,记录每贯入土层10 cm 的锤击数N'63.5。锤击速率宜为15~30击/min。

(4)每加上一根触杆时,需记录所加杆的长度,重新统计触探杆长度。

(5)如N'63.5>50,连续3次,可停止试验。

1.3.2.2.3资料整理

(1)触探杆长度的校正:

当触探杆长度大于2 m 时,需按下式校正:

N 63.5 =α·N'63.5

式中:N63.5——修正后的重型动力触探锤击数;

α——为触探杆长度校正系数,按表1.4选取。

(2)触探杆侧壁摩擦影响的校正:

对于砂土和松散-中密的圆砾、卵石层,触探深度在15 m 内,一般可不考虑侧壁摩擦的影响。

(3)地下水影响的校正:

对于地下水位以下的中、粗、砾砂和圆砾、卵石,锤击数(N 63.5)可按下式修正:

N 63.5 = 1.1N'63.5 +1.0

(4)绘制重型动力触探锤击数N63.5与深度h的关系曲线。

1.3.2.2.4试验成果的应用

(1)根据修正后的重型动力触探锤击数N 63.5,漓江一级阶地的卵石、砾石、砂类土的地基土承载力特征值fa,目前主要是查找表1.5确定,实际上表1.5主要是根据《工程地质手册》第四版所介绍的各种承载力查表综合而来。

表1.4 动力触探杆长度校正系数αTable 1.4 Correction factor α of drill rod length in dynamic penetration test

表1.5 卵石土、砂土地基承载力特征值fa与N63.5的关系Table 1.5 Relationship between characteristic value fa of subgrade bearing capacity of cobble, sand and N63.5

(2)确定漓江一级阶地的卵石、砾石、砂类土的地基土的密实度;主要是参考《岩土工程勘察规范》(GB 50021—2001),见表1.6。

表1.6 卵石土密实度与N63.5平均值的关系Table 1.6 Relationship between the density of cobble and the average value of N63.5

(3)确定地基土的变形模量E0:根据铁道部《动力触探技术规程》(TBJ18—87)中的变形模量E0与N63.5的关系,见表1.7确定。

表1.7 圆砾、卵石土的变形模量E 0与N 63.5平均值的关系Table 1.7 Relationship between the deform ation molus of gravel,cobble and the average value of N63.5

1.3.2.3标准贯入试验

标准贯入是一种特殊的动力触探试验,适用于砂土、粉土、一般粘性土等。该试验用质量为63.5 kg的穿心锤,以76 cm 的自由落距,将一定规格的标准贯入器预先打入土中0.15 cm,然后再打入0.30 cm,记录0.30 cm的锤击数,称为标准贯入击数(N)。

1.3.2.3.1试验设备

标准贯入试验由触探头(又称贯入器、对开式管筒)、锤垫及导向杆、落锤(质量为63.5 kg的穿心锤)三部分组成。落锤距离由自动脱钩装置控制。

1.3.2.3.2试验步骤

(1)先用钻具钻至欲测土以上15 cm,且应确认钻孔通畅无堵塞。

(2)标贯探头入土之前,先测出探头靴口到锤垫底面之间的长度及探杆长度。

(3)将探头压入欲测土表面,然后进行锤击,锤击速率为15~30击/min,锤击落距76 ±2 cm,先记录贯入15 cm 的预打击数,然后记下再贯入30 cm 的标贯实测击数N'。

(4)若需进行下一深度的贯入试验,一般应隔1 m 后再进行。

(5)整个标贯过程中,孔壁不能有垮坍或孔壁上软粘土等不能被挤出,以免造成探杆侧壁摩擦加大。

(6)拔出探入器,分开对开式管筒,取出筒内土样进行描述和试验。

1.3.2.3.3资料整理

探杆长度校正:当探杆长度大于3 m 时,需按下式修正:

N =α N ·N'

式中:N——修正后的标贯击数(击/30 cm);

αN——杆长修正系数,按表1.8确定。

《建筑地基基础设计规范》(GB 50007—2002),《岩土工程勘察规范》(GB 50021—2001)对杆长修正作以下说明:我国一直用经过修正后的N 值确定地基承载力,用不修正的N值判别液化和判别砂土密实度。因此应按具体岩土工程问题,确定是否修正,且需在报告中说明。

表1.8 标贯试验杆长修正系数αNTable 1.8 Correction factor αN of drill rod length in standard penetration test

1.3.2.3.4试验成果的主要应用

(1)确定地基承载力特征值fa。目前主要还是根据《建筑地基基础设计规范》(GBJ 7—89)的规定,见表1.9和表1.10。

(2)确定地基土压缩模量Es及变形模量E0。主要参考《工程地质手册》第四版所介绍成果,见表1.11。

(3)估算砂类土的抗剪强度指标。主要参考《工程地质手册》第四版中的表,见表1.120

表1.9 砂土承载力特征值fak与N 的关系Table 1.9 Relationship between characteristic value fak of bearing capacity of sand soil and N

表1.10 粘性土承载力特征值fak与N的关系Table 1.10 Relationship between characteristic value fak of bearing capacity of clayey soil and N

表1.11 E0(MPa)或Es(MPa)与N的关系Table 1.11 Relationship between E0(MPa) or Es(MPa) and N

表1.12 砂土黏聚力c、内摩擦角φ与N 的关系Table 1.12 Relationship between the cohesion c,friction angle φ of sandy soil and N

(4)判定砂类土的密实度。按《建筑地基基础设计规范》(GB 50007—2002)中规定,见表1.13,标贯击数N值未加修正。

表1.13 标贯击数N 与砂土密实度的关系Table 1.13 Relationship between blow count N of SPT and the density of sand

(5)判定粘性土的稠密度状态。主要参考《工程地质手册》第四版中的成果,见表1.14。

表1.14 粘性土的液性指数IL 与N的关系Table 1.14 Relationship between the liquid index IL of clay and N

(6)预估单桩竖向承载力。主要参考《工程地质手册》第四版中的成果,见表1.15。

表1.15 桩尖阻力P p、桩侧阻力Pf与N的关系Table 1.15 Relationship between the pile tip resistance Pp,pile side resistance Pf and N

(7)判别饱和砂土、粉土的液化。根据《建筑抗震设计规范》( GB 50011 —2001)的规定,桂林市抗震设防烈度为6度;对于重要建筑物,可以提高1度进行抗震设防。《建筑抗震设计规范》(GB 50011 —2001)规定对饱和砂土、粉土液化判定应采用标贯试验,在地面以下15 m 深度范围内,当饱和砂土、粉土实测标贯击数N'(未经杆长修正)小于下式N cr时,应判为可液化土。在桂林岩溶地区,主要是对建设在漓江一级阶地的重要建筑物进行饱和砂土、粉土的液化判别。

桂林岩溶区岩土工程理论与实践

式中:N cr——饱和土液化临界标贯锤击数;

N0— 饱和土液化判别基准标贯锤击数,按《建筑抗震设计规范》(GB 50011 —2001)的规定选用;

ds——标贯试验深度(m);

dw——地下水位深度(m);

ρc——饱和土的粘粒含量百分率(%),当pc<3时,取ρc=3。

(8)检验地基处理质量和加固效果。主要用来检测换土垫层、灌浆加固等地基处理后的地基密实度和地基承载力。

1.3.3岩土室内试验

室内试验包括物理性质试验和力学性质试验两大部分。桂林岩溶地区各类岩土的室内试验项目见表1.16,土的主要力学性质试验项目见表1.17所示。当有其他特殊要求时,应制定专门的试验方案。

表1.16 岩土室内试验项目Table 1.16 The projects on geotechnical test in laboratory

表1.17 土的主要力学性质试验项目Table 1.17 Specific projects for main m echanical test of soil

1.3.4桂林红粘土物理力学参数分析

1.3.4.1桂林市红粘土物理性质的基本特征

(1)桂林市红粘土的孔隙比较大,压缩性较小,强度较高。孔隙比一般介于0.80~1.30之间。硬塑红粘土压缩系数一般在0.3 MPa-1以下,属中—低压缩性土;直接快剪实验的黏聚力值一般在50~100kPa;内摩擦角值为10°~35°。

(2)高液限,高塑性。根据桂林市工程勘察资料分析,液限含水量>60%的约占50%,塑性指数>20的约为70%。桂林市环城东路香山画苑、临桂县四塘乡政府地带的红粘土液限含水量最高分别为82%和86%,塑性指数则达39。

(3)饱和度高,天然密度大。红粘土的饱和度一般可大于90%,天然密度一般在18~20 kN/m 3之间,土颗粒密度2.7 g/cm 3左右。

1.3.4.2物理力学参数在空间分布上的特征

桂林红粘土是一种多种成因的特殊土,广泛分布在不同的岩溶地貌之上,红粘土的这些条件形成了其工程地质性质的各向异性,主要表现在横向分布和垂向分布的变化上。

1.3.4.2.1横向分布特征

受搬运、沉积过程的影响,比较而言,残坡积红粘土的含水量、孔隙比、液限较高,冲洪积的次生红粘土则较小;红粘土抗剪强度、压缩性一般也大于次生红粘土;但次生红粘土的透水性较红粘土大。

反映在地貌单元的分布上,不同地形地貌单元的红粘土的物理力学性质存在较大差异。据有关资料统计,峰林平原之上的红粘土的含水量、孔隙比、液限及压缩系数均较峰丛谷地、洼地大,见表1.18。

表1.18 桂林不同岩溶地貌单元红粘土物理力学性质Table 1.18 Physical and mechanical properties of red clay in different terrain units in Guilin karstregion

1.3.4.2.2垂向分布特征

红粘土工程地质性质在垂直方向的变化比较鲜明,一般地说随深度的增加,红粘土中含水量增加,稠度状态逐渐从坚硬、硬塑、可塑过渡为软塑和流塑,相应的含水率、孔隙比、压缩系数等随深度的增加也变大,塑性状态随深度增加而由硬变软以至流塑,地基强度随深度增加而由高到低,故在纵向上的变化是不均匀的。红粘土在近地表3~5 m 范围内,一般处于坚硬或硬塑状态,其物理力学性质较好。在6 m 以下,土体一般呈软塑状态,物理力学性质较差;在溶沟、溶槽中,由于受地下水的补给或毛细作用,使地下水易在深部储存,故土的天然含水量往往大于液限,呈流塑状态,物理力学性质极差,不宜作为地基持力层。

研究还表明,在液性指数较小的条件下,红粘土的胀缩性具有下层大于上层的变化特点。这主要是由土层的含水量和物质成分所决定的。在剖面上,由于上层红粘土中氧化铁聚集和老化,使土的亲水性相对比下层弱,因而膨胀性能较差,而土的收缩性则主要是由于下层含水量大于上层之故。

次生红粘土在垂向上也具有类似的特征,随着深度的增加,稠度状态也经历坚硬、硬塑、可塑、软塑和流塑的过渡,相应地物理力学性质也逐渐变差。一般次生红粘土并非直接覆盖于基岩之上,而是覆盖于冲洪积形成的含卵砾石土层之上,与其一起形成次生红粘土的二元结构。此二元结构的下面才为基岩。

1.3.5桂林粉土、砂类土和卵石类土

桂林岩溶地区的砂类土和卵石类土,主要分布在漓江一级阶地,其成因为冲、洪积,从粉细砂到卵石,各种粒径范围的砂土在整个区域范围内均有分布,其主要的工程地质特征如下:

(1)粉土:漓江一级阶地区域内普遍分布,厚度一般为数十厘米至数米。为浅褐色,含少量石英砂粒及云母碎片,无光泽反应,韧性低,干强度低,摇振反应中等。湿—稍湿,呈松散—密实状态。

根据已有的室内土工试验及原位标准贯入试验结果,粉土主要物理力学性质指标范围见表1.19。

表1.19 粉土主要物理力学性质指标Table 1.19 Main index of physical and mechanical properties of silt

(2)砂类土:漓江一级阶地区域内普遍分布,厚度一般为数十厘米至数米,多见粉细砂,为浅褐色-黄褐色,主要矿物成分为石英,含少量云母碎片,其颗粒形状呈不规则形—亚圆形,级配往往不良,且有时含有约10%以上的粘粒。湿—饱和,多为松散状态—稍密状态,由于堆积时间较短以及上覆土层厚度不大,受自重压实程度相对较低,因此,区域内较少见中密—密实状态的砂类土。

该层砂土有一个重要的特点是,其原位标准贯入试验N 值往往不大,粉、细砂的标准贯入试验锤击数往往只有3~5击/30 cm。若完全以查表确定其地基承载力特征值,会得出很低的地基承载力特征值,只有40~70 kPa左右,但根据当地的工程经验,该层的地基承载力特征值可以达到100 kPa,主要是考虑了该层在建筑物荷载的作用下,其孔隙迅速减小,沉降能够较快完成,承载能力得以提高的缘故。

(3)卵石:漓江一级阶地区域内普遍分布,厚度一般为数米至数十米不等,且其厚度受下伏基岩面起伏的影响变化较大。卵石成分主要为砂岩,含少量石英岩、花岗岩,呈圆一次圆状,粒径一般为20~80 mm,最大可达100 mm,含量约50%~80%,局部有增减,往往充填物为圆砾、砂及少量粘性土。

以典型的漓江一级阶地桂林市建干路福隆园场地为例[13],从上至下普遍分布松散、稍密、中密、稍密等4种状态的卵石层,该层的重型圆锥动力触探试验结果统计见表1.200

表1.20 桂林市建干路福隆园场地卵石重型圆锥动力触探试验成果Table 1.20 Results of DPT for Fulongyuan Venues in Jian'gan Road,Guilin

⑸ 公路工程质量等级评定 举例说明

⒈公路工程质量检验评定标准
⑴公路工程质量检验评定方法
了解:单位、分部、分项工程的概念及划分方法;关键项目、规定极值等概念。
熟悉:检评程序;分项工程质量检验内容;工程质量评分方法;工程质量等级评定。
掌握:《公路工程质量检验评定标准》的目的和适用范围;分项工程计分规定。
⑵路基土石方工程质量检查项目
了解:土方路基、石方路基、软土地基处治、土工合成材料处治层的基本要求;土方路基、石方路基的外观鉴定;软土地基处治、土工合成材料处治层的实测项目;管节预制、管道基础及管节安装、检查(雨水)井砌筑、土沟、浆砌排水沟、盲沟的基本要求和外观鉴定;挡土墙和砌石工程的基本要求和外观鉴定;其他分项工程的基本要求。
熟悉:一般规定;土方路基、石方路基实测项目;软土地基处治、土工合成材料处治层的实测关键项目;排水工程的一般规定;管节预制、管道基础及管节安装、检查(雨水)井砌筑、土沟、浆砌排水沟、盲沟的实测项目;墙背填土的基本要求;挡土墙和砌石工程的实测项目;其他工程的关键实测项目。
掌握:土方路基、石方路基实测关键项目;管节预制、管道基础及管节安装、检查(雨水)井砌筑、土沟、浆砌排水沟、盲沟的实测关键项目;挡土墙、墙背填土和砌石工程的实测关键项目。
⑶路面面层工程质量检验评定
了解:水泥混凝土面层、沥青混凝土面层的外观鉴定;沥青贯入式面层、沥青表面处治面层的基本要求、实测项目;路缘石、路肩的基本要求、实测项目和外观鉴定。
熟悉:一般规定;水泥混凝土面层、沥青混凝土面层的实测项目和基本要求。
掌握:水泥混凝土面层、沥青混凝土面层的实测关键项目;压实度、厚度、弯沉、抗滑性能等的检查和评定方法。
⒉沥青混合料与水泥混凝土
了解:沥青混合料类型及其特点;沥青混合料高温稳定性、低温抗裂性、水稳定性的概念;沥青混合料各项技术指标概念及所代表的含义。
熟悉:空隙率大小对混合料性能影响;沥青混合料中沥青用量表示方法,沥青含量和油石比的概念及二者之间的换算方法;马歇尔试件不同密度定义,常用密度检测方法;车辙试验的目的及操作步骤;针对不同粒径矿料与沥青的两种黏附性试验方法;水泥混凝土原材料要求;影响水泥混凝土强度和工作性的因素;水泥混凝土凝结时间测试。
掌握:马歇尔试件成型方法,影响试件制备的关键因素;确定一个标准马歇尔试件混合料用量计算方法;马歇尔试件毛体积密度、表观密度及最大相对理论密度试验操作过程;马歇尔稳定度试验操作及注意事项;水煮法和水侵法操作步骤;几种常用沥青含量检测方法;沥青混合料配合比设计内容;水泥混凝土配合比设计要点;水泥混凝土强度试验;水泥混凝土工作性试验。
⒊路面基层与基层材料
⑴路面基层
了解:基层的一般规定、分类、外观鉴定;基层的类型、级配要求、适用范围;石灰工业废碴类材料的石灰、粉煤灰、土等技术要求。
熟悉:基层的基本要求、实测项目;混合料组成设计的目的和要点。
掌握:基层的实测关键项目;压实度、强度等的检查和评定方法。
⑵路面基层材料的试验检测
了解:理论计算法确定半刚性基层材料的最大干密度;顶面法测定室内抗压回弹模量的试件制作与准备。
熟悉:EDTA滴定法的目的和适用范围;石灰或水泥剂量的测定方法;石灰、粉煤灰无机结合料的试验方法;烘干法测定含水量的试验目的、适用范围;无侧限抗压强度试验方法;劈裂试验方法;承载比(CBR)试验方法;确定最大干密度的试验方法;柔性基层材料标准密度试验方法。
掌握:EDTA滴定法的测定方法;烘干法测定无机结合料稳定土含水量试验步骤;无机结合料稳定土的击实试验步骤、要点与计算;无侧限抗压强度试验试件的制备和养生、强度要求;劈裂试验试件的制备与养生;顶面法测定室内抗压回弹模量的试验步骤;有效氧化钙和氧化镁含量测试的操作步骤。
⒋路基路面现场试验检测
⑴路基、路面压实度检测
熟悉:现场密度试验检测方法与适用范围;灌砂法、环刀法试验注意的问题;核子密度仪试验的适用范围与试验要点。
掌握:压实度概念;灌砂法标定筒下部圆锥体内砂的质量的步骤与要点;灌砂法标定量砂的单位质量的测定步骤与要点灌砂法测定现场密度的试验步骤与要点,密度计算;环刀法测定现场密度的试验步骤与要点,密度计算;核子密度仪试验的试验步骤;钻芯法测定沥青面层密度的试验步骤与要点。
⑵弯沉检测方法
了解:弯沉值的概念。
熟悉:贝克曼梁法测试弯沉的目的与适用范围;弯沉测试车轴载的要求;贝克曼梁弯沉仪组成。
掌握:贝克曼梁法测试弯沉的步骤与计算。
⑶回弹模量试验检测方法
了解:贝克曼梁法测试回弹模量的目的、适用范围与试验步骤;承载板法测试回弹模量的目的与适用范围。
熟悉:回弹模量的常用测试方法。
掌握:承载板法测试回弹模量的步骤与要点。
⑷水泥混凝土路面芯样劈裂强度试验方法
熟悉:水泥混凝土路面芯样劈裂强度试验步骤与要点。
掌握:水泥混凝土路面芯样检查内容。
⑸平整度试验检测方法
了解:颠簸累积仪(VBI)与国际平整度指数(IRI)相关关系的建立;车载式颠簸累积仪法的适用范围、仪器设备、试验结果处理及注意事项。
熟悉:平整度的概念、常用检测设备及指标;3m直尺测定法、连续式平整度仪法的适用范围、仪器设备、试验结果处理及注意事项。
掌握:3m直尺测定法、连续式平整度仪法的测试步骤。
⑹路面抗滑性能试验检测方法
了解:路面抗滑性能的概念及其影响因素;路面抗滑性能的测试方法与原理;横向力系数测定车的适用范围、设备要求、测定步骤及其测试数据处理。
熟悉:手工铺砂法、摆式仪法的适用范围;摆式仪测定摆值的温度修正;路面抗滑性能检测中应注意的问题。
掌握:手工铺砂法的试验与计算;摆式仪测试中橡胶片的要求;摆式仪测试的试验步骤与要点。
⑺路面结构层厚度试验检测方法
了解:常用路面结构层厚度检测方法及其适用范围。
熟悉:挖坑法、钻芯取样法检测厚度的要点。
掌握:挖坑、钻孔的填补要点。
⑻沥青路面渗水性能检测方法
了解:沥青路面渗水系数概念。
熟悉:沥青路面渗水试验的目的和适用范围。
掌握:沥青路面渗水试验步骤与要点。
⑼CBR值现场检测技术
了解:路基填料CBR值要求;长杆贯入CBR间接推算法。
熟悉:土基现场CBR值测试方法。
⑽弯沉检测新技术
了解:自动弯沉仪和落锤式弯沉仪的工作原理。
⑾路面平整度、抗滑性能检测新技术与路面雷达测试系统
了解:激光路面平整仪;摩擦系数测定设备;激光构造深度仪;路面雷达测试系统。

⑹ 公路工程工地试验室整改怎么写

缺少规范!去书店买规范规程!

⑺ 地基系数的国内外发展现状

二十世纪三十年代开始美国提出的压实度指标,即压实系数K、相对密度Dr或孔隙率n至今仍然作为世界各国路基设计及施工控制的土的压实质量标准。虽然压实度为参数的路基压实质量标准具有击实试验指导现场施工、现场检测简便等优点,但是,对于高速铁路或其他对强度指标要求严格的情况,仅靠压实度参数来反映填土的压实质量就有其局限性。
为了保证路基填土的强度指标,七、八十年代,许多国家开始用强度及变形指标作为路基填土质量控制参数,即所谓的“抗力检测法”。其中包括美国的CBR(加州承载比值)标准,德国、法国、奥地利和瑞士等国家的静态变形模量Ev2标准,日本的地基系数K30标准等。可见,采用强度及变形参数作为控制指标是路基质量标准的一大进步。
我国铁路系统自1985年大秦线施工引入K30平板载荷试验以来,在铁路建设中已经逐步推广应用。从二十多年K30在我国铁路系统应用的情况来看,无论是仪器设备、试验方法,还是设计标准均已比较成熟。地基系数K30已成为新线铁路控制基床和路堤填料压实质量的主要指标之一,并已正式列入《铁路路基工程质量检验评定标准》(TB10414-98)和《铁路路基设计规范》(TB10001-99)。K30平板载荷试验作为一种强度及变形指标,能够直观地表征路基刚度和承载能力。我国参照日本JISA1215-1995年修订版《公路的平板载荷试验方法》和德国的DIN18134《平板载荷试验》-1993年修订版,并吸收近年来的科研成果和施工经验,同时针对实际应用中存在的问题,制订了“K30平板载荷试验”方法,该方法首次正式纳入2004年4月1日起开始实施的《铁路工程土工试验规程》(TB10102—2004)。

阅读全文

与压实度成果相关的资料

热点内容
医院固定资产折旧年限 浏览:702
商标注册网先咨政岳知识产权放心 浏览:658
公众号版权投诉材料 浏览:841
签订无固定期限合同的好处 浏览:727
油汀发明 浏览:216
论文转让网 浏览:282
通州门面转让最新消息 浏览:165
第二届紫金知识产权国际峰会 浏览:4
2010年4月自考知识产权法答案 浏览:259
3系马年限量版价格 浏览:952
快餐店转让协议 浏览:407
小萝莉和猴神大叔版权 浏览:290
产权年限到期后怎么办 浏览:83
铜川58同城转让 浏览:477
著作权使用许可范本 浏览:846
第三次工业革命的成果 浏览:414
火石创造笔试题 浏览:545
河南医院转让 浏览:798
工商局法制工作总结 浏览:359
贝伦斯发明 浏览:242