导航:首页 > 证书转让 > 细胞生物学成果

细胞生物学成果

发布时间:2022-09-18 00:25:32

『壹』 细胞生物学发展史上四个主要的事件

细胞生物学发展简史
人类第一次发现细胞到现在已有三百多年的历史.随着科学技术和实验手段的进步,人们对细胞的认识由浅入深、由表及里,导致了当今细胞生物学的兴起与发展.根据其发展过程,可分为四个时期,即细胞学说的创立、细胞学的经典时期、实验细胞学的发展和细胞生物学的兴起.
(一) 细胞学说的创立
1665 年,英国的物理学家胡克 (R. Hooke) 用自制的显微镜观察了软木 ( 栎树皮 ) 和其他植物组织,发表了《显微图谱》 (micrographia) 一书,描述了软木是由许多小室组成,状如蜂窝,称之为“细胞” (cell 原意为小室 ) .实际上,胡克在软木组织中所看到的仅是植物死细胞的细胞壁.这是人类第一次看到细胞轮廓,人们对生物体形态的认识首次进入了细胞这个微观世界. 1675 年 (A.V.Leeuwenhoekia) 用自制的高倍放大镜先后观察了池塘水中的原生动物、动物的精子,在蛙鱼的血液中发现了红细胞; 1683 年,他又在牙垢中看到了细菌. 1831 年,布朗 (R. Brown) 在兰科植物的叶片表皮细胞中发现了细胞核. 1835 年,迪雅尔丹 (E.Dujardin) 在低等动物根足虫和多孔虫的细胞内首次发现了透明的胶状物质的内含物,称之为“肉样质” (sarcoide) . 1836 年,瓦朗丁 (Valentin) 在结缔组织细胞核内发现了核仁.至此,细胞的基本结构都被发现了.
在 19 世纪以前,许多学者的工作,都着眼于细胞的显微结构方面,主要从事于形态上的描述,而对各种有机体中出现细胞的意义,均未作出理论上的阐述和概括. 1838-1839 年,德国植物学家施莱登 (M.J.Schleiden) 和动物学家施旺 (T · Schwann) 根据自己研究和总结前人的工作,首次提也了细胞学说 (cell theory) .他们认为“一切生物从单细胞到高等动、植物都是由细胞组成的;细胞是生物形态结构和功能活动的基本单位”.由此论证了生物界的统一性和共同起源.恩格斯曾对细胞学说的建立给予了高度的评价,认为它是 19 世纪自然科学上的三大发现之一 ( 细胞学说、达尔文进化论、能量转化与守恒定律 ) .他指出,首先是三大发现,使我们对自然过程的相互联系的认识大踏步地前进了:第一次发现了细胞,发现细胞是这样一个单位,整个植物体和动物体都是从它的繁殖和分化中发育起来的.由于这一发现,我们不仅知道一切高等有机体都是按照一个共同规律发育和生长的,而且通过细胞的变异能力指出有有机体能改变自己物种并从而能实现一个比个体发育更高的发育道路.由此可见,只有在细胞学说建立之后,才能明确提出细胞是生物有机体的结构和生命活动的单位,又是生物个体发育和系统发育的基础.显然,细胞学说的创立是细胞学发展史上的一个重要里程碑,此后细胞学很快发展成为一门新的独立学科,并成为细胞生物学发展的起点.
细胞学说一经创立,很快深入到各个领域中去.在 1885 年,德国病理学家魏尔啸 (R.Virchow) 把细胞理论应用于病理学,证明病理过程在细胞和组织中进行,提出了“疾病为外力引起细胞间内战”的著名论断,发展了细胞病理学,支持与丰富了细胞学说.
(二) 细胞学的经典时期
从 19 世纪中叶到 20 世纪初叶,这一时期细胞学得到蓬勃发展,研究方法主要是显微镜一的形态描述,称为细胞学的经典时期.
这一时期,首先是实验技术的革新.研究的主要特点是应用固定和染色技术,在光学显微镜下观察细胞的形态结构和细胞的分裂活动. Corti(1851 年 ) 和 Hartig(1854 年 ) 等使用洋红、 B ō hm(1865 年 ) 使用苏木精,对细胞进行染色; Oschatz 设计出第一台切片机,而 Ernest Abbe ' (1887 年 ) 设计出一台复式显微镜并具有消色差物镜、载物台下聚光器和照明,这些技术和仪器观察细胞形态和微观结构都起到了重要的推动作用.
1841 年,雷马克 (Remak) 在观察鸡胚的血球细胞时,发现了细胞的直接分裂.其后,费勒明 (Flemming) 在动物细胞中以及施特拉斯布格 (Strasburger) 在植物细胞中发现了间接分裂. 1882 年,费勒明又把直接分裂称为无丝分裂 (amitosis) ,间接分裂称为有丝分裂 (mitosis) . 1883 年范·贝内登 (Van Beneden) 、 1886 年,施特拉斯布格又分别在动、植物细胞中发现了减数分裂 (meiosis) .此外,赫特维希 (O · Hertwig) 发现卵的受精和精卵两亲本核的融合. 1888 年,沃尔德耶 (Waldeyer) 把分裂细胞核内的染色小体命名为染色体 (chromosome) .
19 世纪末叶,人们对细胞质的形态观察也较注意,相继观察到几种重要的细胞器. 1883 年范·贝内登和博费里 (Boveri) 发现了中心体, 1897 年,斑达 (Banda) 发现了线粒体, 1898 年,高尔基 (Golgi) 发现了高尔基体.由于诸多发现,使大家对细胞结构的复杂性有了较为深入的理解.
(三) 实验细胞学的发展
从 20 世纪初叶到中叶,为实验细胞学的发展时期.此期间,细胞学的研究从形态结构的观察深入到生理功能、生物化学、遗传发育机制的研究.利用 20 世纪的新技术、新方法,在相邻学科的渗透下采用了实验手段,使细胞学与有关学科相互渗透,从而逐渐形成一些分支学科.特别是这一阶段后期,由于体外培养技术的应用,使实验细胞学得到迅速发展.
1887 年,赫特维希克弟 (O.Hertwig 和 R.H) 用实验方法研究海胆卵的受精作用和蛔虫卵发育中核质关系,将细胞学与实验胚胎学紧密结合起来,发展了实验细胞学.此后,人们广泛应用实验手段与分析的方法来研究细胞学中的一些基本问题,为细胞学的研究开拓了一条新途径.从 1900 年孟德尔 (Mendel) 遗传法则被重新发现, 1902 年博韦里 (T.Boveri) 和萨顿 (W.S.Sutton) 提出“染色体遗传理论”,到 1926 年摩尔根 (Morgan) 的《基因论》一书的出版,使细胞学与遗传学相结合,形成了细胞遗传学. 1943 年, Cloude 应用高速离心机从活细胞中把细胞核和各种细胞器 ( 如线粒体、叶绿体、微粒体等 ) 分离出来,分别研究它们的生理活性,这对了解各种细胞器的生理功能和酶的分布,起了很大作用.在细胞化学方面, 1924 年,孚尔根 (Feulgen) 首创核染色反应,即 Feulgen 染色法,测定了细胞核内的 DNA .其后, 1940 年,布勒歇 (Brachet) 应用昂纳 (Unna) 染液染色,测定了细胞中的 RNA .与此同时,卡斯柏尔森 (Casperson) 用紫外光显微分光光度法测定细胞中 DNA 的含量.还有实验说明,蛋白质的合成可能与 RNA 有关.
从 20 世纪 40 年代开始,电子显微镜的应用,使细胞形态学的研究深入到亚显微水平. 1933 年, Ruska 设计制造了第一台电子显微镜,其性能远远超过了光学显微镜.电子显微镜的分辨率由最初的 500nm 改进到现在的几个 ? 魡,放大倍数可达到几十万倍以上. 1949 年, Soverdlow 发明了异丁烯酸定理, 1952 年, Palade 使用锇酸固定法, 1953 年,设计了超薄切片用的切片用的切片机.由此,许多学者用电镜技术观察了细胞内各种细胞器的亚微结构,如内质网、高尔基体、线粒体、溶酶体等.因而,对细胞质的结构和功能的认 ? 览识又深入了一步,使细胞学的研究得到全面的发展.
(四) 细胞生物学的兴起
从 20 世纪 50 年代开始,逐步开展了在分子水平上研究细胞的结构和功能,这方面的研究成果以及分子生物学取得的巨大成就,大大促进了细胞生物学的兴起和发展.
20 世纪 40 年代,随着生物化学、微生物学与遗传学的相互渗透和结合,分子生物学开始萌芽. 1941 年,比德尔 (Beadle) 和塔特姆 (Tatum) 提出了“一个基因一个酶”的理论. 1944 年,艾弗里 (Avery) 等在生物的转化实验中证明了 DNA 是遗传物质, 1948 年,博伊文 (Boivin) 等从测定生殖细胞和各种体细胞中 DNA 的含量,提出了 DNA 含量恒定理论. 1953 年沃森 (Watson) 和克里克 (Crick) 用 X 射线衍射法得出了 DNA 双螺旋分子结构模型,这一划时代的成就,奠定了分子生物学的基础. 1956 年科恩伯格 (Kornberg) 从大肠杆菌提取液中获得了 DNA 聚合酶,并以该菌的 DNA 单链片段为引物,在离体条件下第一次成功地合成了 DNA 片段的互补链. 1958 年,梅塞尔森 (Meselson) 等利用放射性同位素与梯度离心法,分析了 DNA 的复制过程,证明了 DNA 复制是“半保留复制”.同年,克里克又创立了遗传信息传递的“中心法则”. 1961 年,尼伦堡 (Nirenberg) 和马泰 (Matthaei) 等通过对核糖核酸的研究,确定了每一种氨基酸的“密码”.同年,雅各布 (Jacob) 和莫诺 (Monod) 又提出了操纵子学说.由于这些分子生物学的新成就、新概念、新技术渗入到细胞学各个领域,于是从分子水平、亚细胞水平和细胞整体水平来研究细胞各种生命活动,如生长、发育、遗传、变异、代谢、免疫、起源与进化,就形成了生物学的一门新的分支学科——细胞生物学,即细胞学发展到细胞生物学阶段.自 1965 年 E.D.P.Derobetis 将原著《普通细胞学》更名为《细胞生物学》,到 1976 年,在美国波士顿召开的第一次国际细胞生物学会议为界标,至今细胞生物学在分子水平上的研究工作又取得了迅速的发展,细胞生物学则进步发展为细胞分子生物学 (cell and molecular biology) .

『贰』 近10年来细胞生物学领域的重大技术突破或发明、发现。

在技术上有重大突破的,那是极难的事情,因为现在很多基本的技术都很成熟了!
我去年看到一种技术的重大突破。是细胞转换技术,讲的是哈佛大学的研究者在
患糖尿病小鼠的体内,将小鼠的胰腺细胞转换成能够产生胰岛素的细胞。最后成果
发表在Nature上。

『叁』 生物工程细胞的近代成就

1、相对论 1905年,20世纪最伟大的科学天才爱因斯坦在他26岁时创立了狭义相对论,在理论上为原子能的应用开辟了道路. 1915年,爱因斯坦又创立了广义相对论,深刻揭示了时间、空间和物质、运动之间的内在联系.它成为现代物理学的基础理论之一 2、量子力学 1900年,普朗克创立了量子论,提出能量并非无限可分、能量的变化是不连续的新观念. 20年代末量子力学的建立,是继1905年—1915年相对论建立后对经典物理学的又一次革命性突破,它成功地揭示了微观物质世界的基本规律,加速了原子物理学和固态物理学的发展,为核物理学和粒子物理学准备了理论基础.因此,量子力学可以说是20世纪最多产的科学理论,迄今仍具有强大的生命力.20世纪中后期5大科学成就 30年代以来,物质基本结构、规范场、宇宙大爆炸、遗传物质分子双螺旋结构、大地构造板块学说以及信息论、控制论、系统论等理论的创建,使人类的视野进一步拓展到更为宇观、宏观和微观的领域,成为人类文明进步的巨大推动力. 3、DNA分子双螺旋模型 1953年4月25日,英国《自然》杂志刊登了25岁的沃森和37岁的克里克合作研究的成果————DNA 双螺旋结构的分子模型,这一成就后来被誉为20世纪生物学方面最伟大的发现,也被认为是分子生物学诞生的标志. 4、大地板块构造学说 1912年,魏格纳提出大陆漂移说.大陆漂移说经过半个多世纪的发展,1968年,勒比雄等提出了全球大地板块构造学说,建造了全球被分为欧亚、美洲、非洲、太平洋、澳洲、南极六大板块和若干小板块的结构模型,得到了越来越多的科学验证,特别是海洋地质学的有力支持. 5核能与核技术 原子核的裂变和聚变反应将产生和释放出远大于机械能、化学能等产生的能量.核能的和平利用,为人类提供了一个既安全又清洁、取之不尽而用之不竭的能源宝库. 1942年,美国建成了世界上第一座原子反应堆.60年代以后,核电站进入实用阶段,发展至今已成为一种重要能源,约占全球发电总量的1/5. 核技术还广泛应用于农业、医疗、材料、考古和环保等领域. 6航天和空间技术 1903—1914年,齐奥尔科夫斯基提出以火箭为动力的航行理论,奠定了航天学的基础.1926年,戈达德成功发射了世界上第一枚液体燃料的火箭. 1957年,苏联用洲际导弹的火箭装置发射了世界上第一颗人造地球卫星,“空间时代”从此开始.1969年,美国“阿波罗”11号飞船登月,人类在月球上留下了第一个脚印.1971年,苏联建造空间站,人类首次在太空中有了活动基地.1981年,美国发射航天飞机成功,从此人类可以自由进出太空. 自50年代后期起,人类开始对月球和太阳系各大行星,以及遥远的行星际空间进行探测,至今已发射了100多颗空间探测器. 7信息技术 信息技术是20世纪发展最快的技术领域.它对人类社会、经济、政治、文化等产生了全方位的巨大而深远的影响. 1906年,三极电子管的发明使远程无线电通信成为可能.1947年,第一只晶体管的诞生为电子电路集成化和数字化提供了重要的基础.1945年电子计算机问世. 随着大规模集成电路的出现,计算机向巨型化和微型化两极发展. 8激光技术 1917年,爱因斯坦在研究光辐射的过程中,提出了“受激辐射”的概念,奠定了激光的理论基础.1958年激光被发现.1960年美国制成了世界上第一台红宝石激光器. 1977年原子激光器问世 9生物技术 基因重组技术(又称基因工程)是20世纪下半叶蓬勃兴起和发展的现代生物技术的最前沿领域.DNA的重组能创造性地利用生物资源,实现人类改造生物的遗传特征、产生人类所需要的生物类型的意愿.80年代以来,已获得上百种转基因动植物,对农业发展具有重要意义.转基因药物的研制和生产则将为人类的健康带来新的福音. 除基因工程外,生物技术(即生物工程)还包括细胞工程、酶工程、发酵工程和蛋白质工程等领域.1978年首例试管婴儿路易斯诞生、1996年克隆羊多莉的出现都是细胞工程的杰作;加酶洗衣粉和嫩肉粉等则是酶工程的产品;现代发酵工业始于青霉素的生产,现已大规模利用发酵工程生产抗生素等.至于根据需要对天然蛋白质的基因进行改造,生产出新的、自然界原本不存在的优质蛋白质,更是日益受到重视,被誉为第二代基因工程. 10互联网 互联网在亿万网民的学习、研究、交流、贸易,娱乐等方面创造了崭新的工作和生活方式. 数学 抽象代数学的兴起 泛函分析的诞生 自然科学 物理学 x射线、放射性和电子的发现 原子可变性和同位素的发现 狭义相对论和广义相对论 量子论的建立和发展 光量子论和光的波粒二象性 量子力学的建立 核物理学和粒子物理学的产生和发展 原子核组成的理论探索和中子的发现 热核聚变的发现和受控热核反应的探索 粒子加速器的发展 凝聚态物理学的发展 非晶态与准晶态 晶体管的发明与半导体技术 化学 同位素化学 化合价的电子理论 络合物化学键理论的建立和发展 X射线衍射分析法的成就 化学反应的理论 电子转移理论的建立和发展 分析化学 光谱学分析法 色谱分析法的建立和发展 生物学 生物化学 新陈代谢途径的基本阐明 生物能的探讨和ATP的发现 遗传学的产生和发展 DNA是遗传物质 基因工程的出现 分子生物学和细胞生物学的诞生和发展 DNA双螺旋结构的建立 蛋白质和核酸的测序和人工合成 中心法则的建立和发展 半乳糖操纵子理论的建立 重组DNA技术的建立 人类基因组计划的制定和实施 糖类的细胞识别作用的发现 核酸三螺旋的发现 神经生物学 神经元理论的建立 脑电活动的发现和进展 医学 免疫疗法和免疫学的发展 器官移植和人工器官 地球科学 自然地理综合体研究的兴起 环境科学的产生 天文学 大爆炸理论 工程技术 真空微电子器件的兴起 电话、卫星通信等先进通信手段的出现 广播与电视 雷达 计算机的发明和发展 微处理器的诞生 软件工程概念的形成 因特网的出现 自动化技术的形成和发展 人工智能的发展 激光技术 激光器的诞生 受激辐射概念的提出 微波波谱学的创立 微波激射器的问世 全息照相 信息论、控制论和系统论的产生 材料科学 新型能源的开发和利用 机器人 军事技术的发展 化学武器与基因武器 核武器的新发展 电力系统的建设 汽车的广泛使用 航空航天的兴起 飞机的发明 火箭、航天飞机、卫星、空间站 遥感技术 自来水的使用 农业机械化 空调制冷技术的应用 高速公路 家用电器的出现 人工假肢、心脏起搏器、人工瓣膜、隐形眼镜等保健设施的出现 石油化工的迅速发展

『肆』 细胞生物学在生产实践中的应用

主要应用于医学 药学
经历了近两年的艰苦努力,《药学细胞生物学》一书终于完稿待印。在欣慰之余,编写组的
全体人员期待着借此书同读者进行学术的交流与沟通。
细胞生物学是最活跃的生物学科之一,其知识结构更新迅速,而药学版细胞生物学书籍国内
外尚无先例可借鉴。为适应学科发展的实际需要,改变国内药学院校细胞生物学课程一直只
能选用《细胞生物学》或《医学细胞生物学》教材而与药学专业有一定偏离的被动局面,我
们竭尽所能,编写了此书。
鉴于本书主要为药学本科专业的生物学基础教材,在编写过程中,既着重考虑了教材所要求
的基础性与系统性,又充分注意到将内容的新颖性与知识结构的合理性相结合。本书的主线
是根据当前细胞生物学与药学两门学科交叉发展的特点与趋势,从细胞、超微结构和分子水
平的不同层次,阐述细胞在生命活动中的规律和本质,特别强调细胞生物学与药学学科的紧
密联系,并提供了一定篇幅的药学示例,以有助于药学专业读者对细胞生物学学科的理解与
把握。本书力求使读者既掌握细胞生物学的基本理论与知识,又增强对药学知识的理解和应
用。
本书虽是应实际所需而编写,但毕竟是初次尝试,编者深感自己的知识水平与能力有限,在
取材范围和编写深度上难免有不当、疏漏甚至错误之处,恳请读者批评指正,以便再版时努
力完善与修正。

编者

2005年9月
作者简介:目录:第一章绪论(1)

内容提要(1)

第一节细胞生物学概述(1)

一、细胞生物学的研究内容(1)

二、细胞生物学发展简史(5)

三、细胞生物学与诺贝尔奖(9)

第二节细胞生物学与现代药学(11)

一、细胞生物学是现代药学的基础理论(11)

二、细胞生物学研究成果与技术在药学领域中的应用(12

)

三、药学细胞生物学的涵义(19)

思考题(20)

参考文献(20)

第二章细胞概述(22)

内容提要(22)

第一节细胞的基本生物学意义(22)

一、细胞是生物有机体的基本结构单位(22)

二、细胞是生物有机体代谢与功能的基本单位(23)

三、细胞是生物有机体生长与发育的基本单位(23)

四、细胞是遗传的基本单位(23)

第二节细胞的化学组成(23)

第三节细胞的形态与大小(24)

一、细胞的形态(24)

二、细胞的大小(25)

三、细胞的计量单位(25)

第四节原核细胞与真核细胞(26)

一、原核细胞的结构特点(26)

二、真核细胞的结构特点(27)

三、原核细胞与真核细胞基本特征的比较(29

)

第五节细胞与药物作用靶标(31)

一、药物作用靶标的概念(31)

二、细胞的药物作用靶标(31)

三、靶标药物在抗肿瘤研究中的应用现状(33)

参考文献(480)详细介绍:
《药学细胞生物学》为国内第一部将细胞生物学与药学学科有机结合,面向全国高等药学院

校各专业本科生的生物学基础教材。本书以细胞生物学理论、原理和技术为基础,

研究其在新药研发、药学研究以及药品生产等方面的应用。全书共12章,涵盖药学细胞生物

学所涉及的基本理论和一些研究热点,包括绪论、细胞概述、研究方法、细胞膜、细胞内膜

系统、线粒体、细胞核、核糖体、细胞骨架,细胞增殖、细胞分化、细胞衰老与凋亡,并在

各章中融入了相关的药学知识与应用。相信本书的出版将对读者有所启迪,使其更加易于理

解细胞生物学与药学学科的相关知识和技术。

『伍』 最近几年细胞生物学诺贝尔奖

2008年:
生理学或医学奖:德国科学家哈拉尔德•楚尔•豪森(Harald zur
Hausen)发现人乳突淋瘤病毒引发子宫颈癌;两位法国科学家弗朗索瓦丝•巴尔-西诺西(Françoise Barré-Sinoussi)、吕克•蒙塔尼(Luc
Montagnier)发现人类免疫缺陷病毒。
化学奖:美国科学家Osamu Shimomura 和Martin
Chalfie,以及美国华裔化学家钱永健。发明多色莹光蛋白标记技术,为细胞生物学和神经生物学发展带来一场革命。
2007年:
生理学或医学奖:美国Mario
R. Capecchi 、Oliver Smithies 与英国Martin J. Evans因干细胞研究获得此奖项。
2006年:

生理学或医学奖: 美国科学家安德鲁•法尔和克雷格•梅洛。他们发现了核糖核酸(RNA)干扰机制,这一机制已被广泛用作研究基因功能的一种手段。

化学奖:
美国罗杰•科恩伯格因在“真核转录的分子基础”研究领域所作出的贡献而获奖。科恩伯格揭示了真核生物体内的细胞如何利用基因内存储的信息生产蛋白质,而理解这一点具有医学上的“基础性”作用,因为人类的多种疾病如癌症、心脏病等都与这一过程发生紊乱有关。
2005年:

生理学或医学奖:
澳大利亚巴里•马歇尔和罗宾•沃伦。他们发现了导致人类罹患胃炎、胃溃疡和十二指肠溃疡的罪魁——幽门螺杆菌,革命性地改变了世人对这些疾病的认识。

2004年:
生理学或医学奖:
美国理查德•阿克塞尔和琳达•巴克。他们在气味受体和嗅觉系统组织方式研究中做出贡献,揭示了人类嗅觉系统的奥秘。
化学奖:
以色列阿龙•切哈诺沃、阿夫拉姆•赫什科和美国欧文•罗斯发现了泛素调节的蛋白质降解。其实他们的成果就是发现了一种蛋白质“死亡”的重要机理。
2003年:
生理学或医学奖:
美国科学家保罗•劳特布尔和英国科学家彼得•曼斯菲尔德。他们在核磁共振成像技术上获得关键性发现,这些发现最终导致核磁共振成像仪的出现。
化学奖:
美国科学家彼得•阿格雷和罗德里克•麦金农,分别表彰他们发现细胞膜水通道,以及对离子通道结构和机理研究作出的开创性贡献。
2002年:
生理学或医学奖:
英国科学家悉尼•布雷内、约翰•苏尔斯顿和美国科学家罗伯特•霍维茨。他们为研究器官发育和程序性细胞死亡过程中的基因调节作用做出了重大贡献。
化学奖:
美国科学家约翰•芬恩日本科学家与田中耕一“发明了对生物大分子进行确认和结构分析的方法”和“发明了对生物大分子的质谱分析法”;瑞士科学家库尔特•维特里希“发明了利用核磁共振技术测定溶液中生物大分子三维结构的方法”,在生物大分子研究领域做出杰出贡献。
2001年:
生理学或医学奖:美国科学家利兰•哈特韦尔、英国科学家保罗•纳斯和蒂莫西•亨特。他们发现了导致细胞分裂的关键性调节机制,这一发现为研究治疗癌症的新方法开辟了途径。

2000年:
生理学或医学奖:瑞典科学家阿尔维德•卡尔松、美国科学家保罗•格林加德和埃里克•坎德尔。他们在研究脑细胞间信号的相互传递方面获得了重要发现。

1999年:
生理学或医学奖:美国纽约洛克菲勒大学的Gunter
Blobel。他的贡献是发现蛋白质具有控制其运输和定位的内在信号。
1998年:
生理学或医学奖:Rolert
F.Furchgott(美国),Louis J.Ignarro(美国)和 Ferid Murad(美国),发现NO(一氧化氮)是心血管系统的信号分子。

『陆』 科学家度丝瓜细胞学的研究取得了什么成果

近年来,利用现代技术开展了丝瓜种质资源的研究,尤其在利用细胞学和生物技术方法研究有棱丝瓜和普通丝瓜的亲缘关系等方面,为丝瓜种质资源的分类及其深入研究打下了基础。

张赞平等(1996)对两种栽培丝瓜的核型进行了分析研究。结果表明,普通丝瓜品种棒槌丝瓜的核型公式为2n=2x=26=20m+6sm(2SAT),长沙肉丝瓜的核型公式为2n=2x=26=20m(2SAT)+6sm;有棱丝瓜品种青皮丝瓜的核型公式为2n=2x=26=22m(2SAT)+4sm。从核型分析的结果来看,普通丝瓜和有棱丝瓜的随体数目、位置及核型组成、平均臂比等主要要素都是相当一致的,这充分表明两者之间的亲缘关系很近。两者的主要差别是染色体长度变异范围及sm染色体数目。普通丝瓜(长沙肉丝瓜)具3对sm染色体,最长与最短染色体的比值为1.789;而有棱丝瓜具2对sm染色体,最长与最短染色体的比值为1.462。按Stebbins的核型标准,前者属于2A型,后者属于是1A型,两者都属于比较原始的对称核型,但前者的进化程度要高于后者。核型图见图19-3。

图19-3 丝瓜的核型模式图

1.青皮丝瓜(有棱丝瓜)2.棒槌丝瓜(普通丝瓜)3.长沙肉丝瓜(普通丝瓜)(张赞平等,1996)

但张长顺(1998)对普通丝瓜的研究结果与张赞平等并不完全一致。研究发现,根据各染色体的形态可分为两种类型,除第3、4、7、9、13号染色体是近中部着丝点染色体外,其余的均为中部着丝点染色体,有一对随体在第二对染色体上,但不明显、很难观察到,核型公式为2n=2x=26=16m(2SAT)+10sm,染色体长度比为2.23,无臂比大于2:1的染色体,属于Stebbins的1B型。具体结果见表19-1。

表19-1 丝瓜的核型数据

注:随体长度不计算。

『柒』 《细胞生物学和医学遗传学》这本书主要讲的什么内容

主要从微观方面讲解生物结构,如DNA、遗传方面.

『捌』 跪求近两年生物科学的新成就

2006年诺贝尔生理学或医学奖由两个美国科学家,安德鲁·法尔和克雷格·梅洛获得,以表彰他们发现了RNA(核糖核酸)干扰机制。虽然奖项名目既涉及生理学,也涉及医学,但针对本年度两位获奖者及其成果,欧美媒体无不把今年这一奖项称为诺贝尔医学奖
对生物体内RNA的研究,是近年来生物学界和医学界无可争议的热点。曾有科学家形容:这是一个RNA时代的到来。而这样一个热门领域的产生,源于1998年美国人安德鲁·法尔和克雷格·梅洛在《自然》杂志上发表的一项研究成果:他们首次将双链RNA导入线虫基因中,并发现双链RNA较单链RNA更能高效地特异性阻断相应基因的表达,他们称这种现象为RNA干扰。他们的这一发现也促使后来的科学家认识到,生物体的基因转化的最终产物不仅仅是蛋白质,还包括相当一部分RNA。
“幕后使者”左右基因沉默.有人这样比喻:DNA是电影胶卷,RNA是放映机,蛋白质是在银幕上播放的电影。那么,放映的过程就是“基因表达”。

20世纪70年代以来,生物科学的新进展,新成就如雨后春笋,层出不穷。从总体上看,当代生物科学主要朝着微观和宏观两个方面发展:在微观方面,生物学已经从细胞水平进入到分子水平去探索生命的本质;在宏观方面,生态学的发展正在为解决全球性的资源和环境等问题发挥着重要作用。下面仅通过生物工程和生态学方面的几个实例来说明。

生物工程方面 生物工程(也叫生物技术)是生物科学与工程技术有机结合而兴起的一门综合性的科学技术。也就是说,它是以生物科学为基础,运用先进的科学原理和工程技术手段来加工或改造生物材料,如DNA、蛋白质、染色体、细胞等,从而生产出人类所需要的生物或生物制品。生物工程在近些年来迅猛发展,硕果累累。

生物工程在医药方面有着广泛的应用。例如,长期以来,预防乙型肝炎的疫苗是从乙肝病毒携带者的血液中提取和研制的,这样的疫苗生产周期长,产量低,价格昂贵。现在,采用生物工程的方法,将乙肝病毒中的有关基因分离出来,引人细菌的细胞中,再采用发酵的方法,或者引人哺乳动物的细胞中,再采用细胞培养的方法,就能让细菌或哺乳动物的细胞生产出大量的疫苗。我国研制的生物工程乙肝疫苗已经在1992年投放市场,在预防乙型肝炎中发挥了重要作用。除乙肝疫苗以外,还有抑制病毒在细胞内增殖的干扰素等多种生物工程药物已经问世。我们知道,人类的许多疾病都与基因有关。在基因水平上对人类的疾病进行诊断和治疗,是科学家们正在探求的另一个重大课题。为了弄清人类约10万个基因的结构和功能,美国从1988年开始实施“人类基因组计划”,目前这项研究已经成为国际间合作的一项重大科研课题。

生物工程在农业生产上的应用前景更为诱人,1988年,我国科学家人工合成了抗黄瓜花叶病毒的基因,并且将这种基因导人烟草等作物的细胞中,得到了抵抗病毒能力很强的作物新系,1989年,我国科学家成功地将人的生长激素基因导人鲤鱼的受精卵中,培育成转基因鲤鱼。与非转基因鲤鱼相比,转基因鲤鱼的生长速度明显加快,1993年,我国研制的两系法杂交水稻开始大面积试种,与原来普遍种植的三系法杂交水稻相比,平均每公顷增产15%,1995年,我国科学家将某种细菌的抗虫基因导人棉花,培育出了抗棉铃虫效果明显的棉花新品种。

生物工程在开发能源和环境保护等方面同样有着广泛的应用。我们知道,煤炭、石油等能源终将枯竭,目前全世界已经面临着能源危机。使用煤炭、石油等能源,还造成严重的环境污染。因此,科学家们正在努力探索开发新的能源,其中很重要的一个方面就是用生物工程开发生物能源。美国科学家在1978年成功地培育出能直接生产能源物质的植物新品种——“石油草”,这种植物的茎秆被割开后,就会流出白色乳状的液体,经提炼就得到石油。在利用细菌治理石油污染方面,由于石油中的不同组成成分往往需要用不同的细菌来分解,科学家就将不同细菌的基因分离出来,集中到一种细菌内,从而得到了“超级菌”。这种“超级菌”分解石油的速度比普通细菌快得多,净化石油污染的能力得到明显的提高。

生态学方面 生态学是研究生物与其生存环境之间相互关系的科学。20世纪60年代以来,人类社会面临的人口爆炸、环境污染、资源匮乏、能源短缺和粮食危机等问题日益突出。要解决这些问题,都离不开生态学。因此,生态学的研究受到高度重视,并且取得了显著的进展。生态系统的能量流动和物质循环的基本原理,已经成为人类谋求与大自然和谐共处、实现社会和经济可持续发展的理论基础;运用生态学原理,我国推行生态农业的建设,已经取得了令人瞩目的成就,涌现了一批生态村、生态农场和生态林场,为实现农业的可持续发展积累了经验。例如,安徽省颖上县小张庄,从前是个穷地方,生态环境恶劣,旱涝灾害频繁,农业结构单一,粮食产量很低。70年代中期,小张庄开始进行生态农业的建设,整治土地,兴修水利,大力营造防护林,使当地生态环境得到了明显改善。小张庄在大力发展种植业和林业的同时,还利用当地的饲草资源和鱼塘,大力发展养殖业。养殖业为农田提供了大量的有机肥,从而改良了土壤。这个村还利用人畜粪便生产沼气,发展沼气能源。沼气池的渣液用来喂养鱼,塘泥肥田,从而建立起了良性循环的农业生态系统。

上面举例说明了20世纪70年代以来生物科学的新进展。当然,生物科学的新进展远不止这些。除了在生物工程和生态学领域以外,生物科学在其他许多领域也取得了令人鼓舞的进展,向人们展示出美好的前景。例如,脑科学的研究已经深入到分子水平,这不仅对脑病的防治和智力的开发有重要意义,而且将为研究生物计算机提供理论基础。光合作用和生物固氮的研究,细胞生物学的研究,等等,也都获得一系列的成就,在21世纪将会有更大的发展。由于生物科学的迅猛发展和它对人类社会所产生的巨大影响,许多科学家都认为,生物科学将是21世纪领先的学科之一。

『玖』 生命科学方面近年来取得的成就有哪些

21世纪生命科学的研究进展和发展趋势 20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。很多科学家认为,在未来的自然科学中,生命科学将要成为带头学科,甚至预言21世纪是生物学世纪,虽然目前对这些论断还有不同看法,但勿庸置疑,在21世纪生命科学将继续蓬勃发展,生命科学对自然科学所起的巨大推动作用,决不亚于19世纪与20世纪上半叶的物理学。假如过去生命科学曾得益于引入物理学、化学和数学等学科的概念、方法与技术而得到长足的发展,那么,未来生命科学将以特有的方式向自然科学的其他学科进行积极的反馈与回报。当21世纪来临的时候,一些有远见的科学家、思想家与政治家将日益严重的诸多人类社会问题,如人口、地球环境、食物、资源与健康等重大问题的解决,莫不寄希望于生命科学与生物技术的进步。 2· 08·生命科学将成为21世纪自然科学的带头学科 20世纪50年代DNA双螺旋结构模型的发现,随后遗传信息传递“中心法则”的确立与DNA重组技术的建立使生命科学的面貌起了根本性的变化。分子生物学与遗传学的结合将用10一15年测定出人类基因组30亿个碱基对(遗传密码)的全序列,人体细胞约有10万个基因。人类基因组的“工作草图”迄今20%的测序已达99.99%的准确率和完成率,今后将要继续发现与阐明大量新的重要基因,诸如控制记忆与行为的基因,控制细胞衰老与程序性死亡的基因,新的癌基因与抑癌基因,以及与大量疾病有关的基因。将利用这些成果去为人类健康服务。 70年代后,分子生物学的发展,以基因工程为代表的生物工程的出现,生物技术通过对DNA链的精确切割与有目的地重组,使有目的地改良生物的性状与品质成为可能。迄今生物工程所取得的成就已在生产上显示出诱人的前景,尽管还存在有不少争议的问题,但很有可能成为21世纪的新兴产业。 发育生物学将要快速地兴起,它将要回答无数科学家100多年来孜孜以求而未解决的重大课题,一个受精卵通过细胞分裂与分化如何发育成为结构与功能无比复杂的个体,阐明在个体发育中时空上有条不紊的程序控制机理,从而为人类彻底控制动植物生长、发育创造条件。 RNA分子既有遗传信息功能又有酶功能的发现,为数十年踏步不前的难题“生命如何起源”的解决提供了新的契机。在21世纪,人们还要试图在实验室人工合成生命体。人们己有可能利用生物技术将保存在特殊环境中的古生物或冻干的尸体的DNA扩增,揭示其遗传密码,建立已绝灭生物的基因库,研究生物的进化与分类问题。 神经科学的崛起,预示着生命科学又一个高峰的来临。脑是含有1011细胞的无比复杂的高级结构体系,21世纪初从分子到行为水平的各个层次对脑功能的研究都将有重大突破,在阐明学习。记忆。思维。行为与感情机理等方面也将有重大进展。脑机能在理论上的进展将会促进新一代智能计算机的研制,这可能成为未来生命科学对自然科学与技术科学回报的最好例子。 生态学可能是最直接为人类生存环境服务并对国民经济持续与协调发展起重要作用的科学。生态学的理论与实践为中国三峡水库建设提供的决策依据就是一个例证。保护生物的多样性是当前生命科学最紧迫的任务之一。据可靠的数据说明每天约有100多种生物在地球上绝灭,很多生物在没有被人类认识以前就已消亡,这对人类无疑是一种灾难。生态学与生物多样性保护与利用的研究成果将指导人类遵循自然规律积极保护自己生存环境,否则人类的物质文明与精神文明都要受到灾难性影响。 顺应生命科学迅速发展的形势,发达国家政府及一些国际组织先后提出了《国际地圈及生物圈计划》、《人类基因组作图与测序计划》、《人类前沿科学计划》、《脑的十年》及《生物多样性利用与保护研究》等投资巨大的生命科学研究计划。其中仅《人类基因组作图与测序计划》,一项预算就高达30亿美元。 由于生命科学的发展,人才的需求量激增,近年除越来越多的物理学家,化学家与技术科学家被吸引到生物学研究领域外,以美国为例,近年统计48万博士学位获得者中从事生命科学的占51%。优秀青年科学家流向生命科学前沿,这是21世纪生命科学欣欣向荣的动力与源泉。 2. 08. 2 21世纪初生命科学的重大分支学科和发展趋势 80年代有远见的生物学家把分子生物学(包括分子遗传学)、细胞生物学、神经生

『拾』 在细胞生物学上,都有哪些著名的成果

学习对我们每一个人来讲都非常的重要,因为我们只有通过学习才能够使自己变得更加的优秀,而我们从出生开始就一直在不断的学习,当我们去到学校学习一些理论知识了之后,我们会发现这个世界充满了无限的奥妙,而这些奥妙只有通过各种各样的研究以及通过各种各样的学习,才能够让我们去了解到它其中的一些真谛,以及通过学习我们才能明白这个世界为什么会存在着这样的现象。所以说为了不让自己变得更加的愚钝,那么一定要更加努力的去学习更多的知识,让自己的生活变得更加的有趣。

1.遗传物质是DNA。

当然细胞生物学也会有非常多重要研究成果,现在在我们的生活当中仍然在被沿用,如果想要了解的更加的清楚,那么可以去购买这一本书来进行仔细的研究,也可以多去看一些相关的知识报道,能够明白更多的道理。

与细胞生物学成果相关的资料

热点内容
马鞍山揽山别院价格 浏览:56
施工索赔有效期 浏览:153
矛盾纠纷交办单 浏览:447
2010年公需课知识产权法基础与实务答案 浏览:391
侵权责任法第5556条 浏览:369
创造者对吉阿赫利直播 浏览:786
中小企业公共服务平台网络 浏览:846
深圳市润之行商标制作有限公司 浏览:62
江莉马鞍山 浏览:417
马鞍山大事件 浏览:759
机动车销售统一发票抵扣期限 浏览:451
马鞍山防汛抗旱指挥部通告 浏览:811
公司间商标授权书模板 浏览:115
上海市医患纠纷预防与调解办法 浏览:970
转让翻转犁 浏览:705
门头广告牌使用费合同 浏览:835
厂转让样本 浏览:8
摊销土地有残值吗 浏览:529
永久煤柱摊销系数是多少 浏览:421
工商局的权力 浏览:637