导航:首页 > 商标专利 > 专利权的密钥

专利权的密钥

发布时间:2022-02-14 06:27:32

Ⅰ 软件著作权的申请流程及资料

到www.cponline.gov.cn,不用登录,可以下载开户用的协议书、申请表及其他文件的要求等,填好后带上证件,送到国家专利局开户,他们会给你一个登录用的用户代码及对应的密钥文件。你回到自己的电脑上,安装专利文件生成系统,就像一个office一样,用它写好专利申请文件后,凭借用户代码和密钥文件通过专用的软件上传给专利局,上传日即为申请日。以后与专利局所有的往来文件都通过这个软件传递,不接收纸件。

Ⅱ 密钥管理的管理技术

1、对称密钥管理。对称加密是基于共同保守秘密来实现的。采用对称加密技术的贸易双方必须要保证采用的是相同的密钥,要保证彼此密钥的交换是安全可靠的,同时还要设定防止密钥泄密和更改密钥的程序。这样,对称密钥的管理和分发工作将变成一件潜在危险的和繁琐的过程。通过公开密钥加密技术实现对称密钥的管理使相应的管理变得简单和更加安全,同时还解决了纯对称密钥模式中存在的可靠性问题和鉴别问题。 贸易方可以为每次交换的信息(如每次的EDI交换)生成唯一一把对称密钥并用公开密钥对该密钥进行加密,然后再将加密后的密钥和用该密钥加密的信息(如EDI交换)一起发送给相应的贸易方。由于对每次信息交换都对应生成了唯一一把密钥,因此各贸易方就不再需要对密钥进行维护和担心密钥的泄露或过期。这种方式的另一优点是,即使泄露了一把密钥也只将影响一笔交易,而不会影响到贸易双方之间所有的交易关系。这种方式还提供了贸易伙伴间发布对称密钥的一种安全途径。
2、公开密钥管理/数字证书。贸易伙伴间可以使用数字证书(公开密钥证书)来交换公开密钥。国际电信联盟(ITU)制定的标准X.509,对数字证书进行了定义该标准等同于国际标准化组织(ISO)与国际电工委员会(IEC)联合发布的ISO/IEC 9594-8:195标准。数字证书通常包含有唯一标识证书所有者(即贸易方)的名称、唯一标识证书发布者的名称、证书所有者的公开密钥、证书发布者的数字签名、证书的有效期及证书的序列号等。证书发布者一般称为证书管理机构(CA),它是贸易各方都信赖的机构。数字证书能够起到标识贸易方的作用,是目前电子商务广泛采用的技术之一。
3、密钥管理相关的标准规范。目前国际有关的标准化机构都着手制定关于密钥管理的技术标准规范。ISO与IEC下属的信息技术委员会(JTC1)已起草了关于密钥管理的国际标准规范。该规范主要由三部分组成:一是密钥管理框架;二是采用对称技术的机制;三是采用非对称技术的机制。该规范现已进入到国际标准草案表决阶段,并将很快成为正式的国际标准。
数字签名
数字签名是公开密钥加密技术的另一类应用。它的主要方式是:报文的发送方从报文文本中生成一个128位的散列值(或报文摘要)。发送方用自己的专用密钥对这个散列值进行加密来形成发送方的数字签名。然后,这个数字签名将作为报文的附件和报文一起发送给报文的接收方。报文的接收方首先从接收到的原始报文中计算出128位的散列值(或报文摘要),接着再用发送方的公开密钥来对报文附加的数字签名进行解密。如果两个散列值相同,那么接收方就能确认该数字签名是发送方的。通过数字签名能够实现对原始报文的鉴别和不可抵赖性。
ISO/IEC JTC1已在起草有关的国际标准规范。该标准的初步题目是“信息技术安全技术带附件的数字签名方案”,它由概述和基于身份的机制两部分构成。 密码学简介 据记载,公元前400年,古希腊人发明了置换密码。1881年世界上的第一个电话保密专利出现。在第二次世界大战期间,德国军方启用“恩尼格玛”密码机,密码学在战争中起着非常重要的作用。
随着信息化和数字化社会的发展,人们对信息安全和保密的重要性认识不断提高,于是在1997年,美国国家标准局公布实施了“美国数据加密标准(DES)”,民间力量开始全面介入密码学的研究和应用中,采用的加密算法有DES、RSA、SHA等。随着对加密强度需求的不断提高,近期又出现了AES、ECC等。
使用密码学可以达到以下目的:
保密性:防止用户的标识或数据被读取。
数据完整性:防止数据被更改。
身份验证:确保数据发自特定的一方。
二. 加密算法介绍根据密钥类型不同将现代密码技术分为两类:对称加密算法(秘密钥匙加密)和非对称加密算法(公开密钥加密)。
对称钥匙加密系统是加密和解密均采用同一把秘密钥匙,而且通信双方都必须获得这把钥匙,并保持钥匙的秘密。
非对称密钥加密系统采用的加密钥匙(公钥)和解密钥匙(私钥)是不同的。 在对称加密算法中,只有一个密钥用来加密和解密信息,即加密和解密采用相同的密钥。常用的算法包括:DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合。
3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高。
AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高;
2000年10月,NIST(美国国家标准和技术协会)宣布通过从15种侯选算法中选出的一项新的密匙加密标准。Rijndael被选中成为将来的AES。Rijndael是在 1999 年下半年,由研究员Joan Daemen 和 Vincent Rijmen 创建的。AES 正日益成为加密各种形式的电子数据的实际标准。
美国标准与技术研究院 (NIST) 于 2002 年 5 月 26 日制定了新的高级加密标准(AES) 规范。
算法原理 AES 算法基于排列和置换运算。排列是对数据重新进行安排,置换是将一个数据单元替换为另一个。AES 使用几种不同的方法来执行排列和置换运算。
AES 是一个迭代的、对称密钥分组的密码,它可以使用128、192 和 256 位密钥,并且用 128 位(16字节)分组加密和解密数据。与公共密钥密码使用密钥对不同,对称密钥密码使用相同的密钥加密和解密数据。通过分组密码返回的加密数据的位数与输入数据相同。迭代加密使用一个循环结构,在该循环中重复置换和替换输入数据。
AES与3DES的比较 算法名称 算法类型 密钥长度 速度 解密时间(建设机器每秒尝试255个密钥) 资源消耗 AES 对称block密码 128、192、256位 高 1490000亿年 低 3DES 对称feistel密码 112位或168位 低 46亿年 中 常见的非对称加密算法如下:
RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的;
DSA(Digital Signature Algorithm):数字签名算法,是一种标准的 DSS(数字签名标准);
ECC(Elliptic Curves Cryptography):椭圆曲线密码编码学。
在1976年,由于对称加密算法已经不能满足需要,Diffie 和Hellman发表了一篇叫《密码学新动向》的文章,介绍了公匙加密的概念,由Rivet、Shamir、Adelman提出了RSA算法。
随着分解大整数方法的进步及完善、计算机速度的提高以及计算机网络的发展,为了保障数据的安全,RSA的密钥需要不断增加,但是,密钥长度的增加导致了其加解密的速度大为降低,硬件实现也变得越来越难以忍受,这对使用RSA的应用带来了很重的负担,因此需要一种新的算法来代替RSA。
1985年N.Koblitz和Miller提出将椭圆曲线用于密码算法,根据是有限域上的椭圆曲线上的点群中的离散对数问题ECDLP。ECDLP是比因子分解问题更难的问题,它是指数级的难度。
原理——椭圆曲线上的难题 椭圆曲线上离散对数问题ECDLP定义如下:给定素数p和椭圆曲线E,对Q=kP,在已知P,Q 的情况下求出小于p的正整数k。可以证明由k和P计算Q比较容易,而由Q和P计算k则比较困难。
将椭圆曲线中的加法运算与离散对数中的模乘运算相对应,将椭圆曲线中的乘法运算与离散对数中的模幂运算相对应,我们就可以建立基于椭圆曲线的对应的密码体制。
例如,对应Diffie-Hellman公钥系统,我们可以通过如下方式在椭圆曲线上予以实现:在E上选取生成元P,要求由P产生的群元素足够多,通信双方A和B分别选取a和b,a和b 予以保密,但将aP和bP公开,A和B间通信用的密钥为abP,这是第三者无法得知的。
对应ELGamal密码系统可以采用如下的方式在椭圆曲线上予以实现:
将明文m嵌入到E上Pm点,选一点B∈E,每一用户都选一整数a,0<a<N,N为阶数已知,a保密,aB公开。欲向A送m,可送去下面一对数偶:[kB,Pm+k(aAB)],k是随机产生的整数。A可以从kB求得k(aAB)。通过:Pm+k(aAB)- k(aAB)=Pm恢复Pm。同样对应DSA,考虑如下等式:
K=kG [其中 K,G为Ep(a,b)上的点,k为小于n(n是点G的阶)的整数]
不难发现,给定k和G,根据加法法则,计算K很容易;但给定K和G,求k就相对困难了。
这就是椭圆曲线加密算法采用的难题。我们把点G称为基点(base point),k(k<n,n为基点G的阶)称为私有密钥(privte key),K称为公开密钥(public key)。
ECC与RSA的比较 ECC和RSA相比,在许多方面都有对绝对的优势,主要体现在以下方面:
抗攻击性强。相同的密钥长度,其抗攻击性要强很多倍。
计算量小,处理速度快。ECC总的速度比RSA、DSA要快得多。
存储空间占用小。ECC的密钥尺寸和系统参数与RSA、DSA相比要小得多,意味着它所占的存贮空间要小得多。这对于加密算法在IC卡上的应用具有特别重要的意义。
带宽要求低。当对长消息进行加解密时,三类密码系统有相同的带宽要求,但应用于短消息时ECC带宽要求却低得多。带宽要求低使ECC在无线网络领域具有广泛的应用前景。
ECC的这些特点使它必将取代RSA,成为通用的公钥加密算法。比如SET协议的制定者已把它作为下一代SET协议中缺省的公钥密码算法。
下面两张表示是RSA和ECC的安全性和速度的比较。 攻破时间(MIPS年) RSA/DSA(密钥长度) ECC密钥长度 RSA/ECC密钥长度比 10 512 106 5:1 10 768 132 6:1 10 1024 160 7:1 10 2048 210 10:1 10 21000 600 35:1 RSA和ECC安全模长得比较 功能 Security Builder 1.2 BSAFE 3.0 163位ECC(ms) 1,023位RSA(ms) 密钥对生成 3.8 4,708.3 签名 2.1(ECNRA) 228.4 3.0(ECDSA) 认证 9.9(ECNRA) 12.7 10.7(ECDSA) Diffie—Hellman密钥交换 7.3 1,654.0 RSA和ECC速度比较 散列算法也叫哈希算法,英文是Hash ,就是把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,而不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
HASH主要用于信息安全领域中加密算法,它把一些不同长度的信息转化成杂乱的128位的编码,这些编码值叫做HASH值. 也可以说,hash就是找到一种数据内容和数据存放地址之间的映射关系散列是信息的提炼,通常其长度要比信息小得多,且为一个固定长度。加密性强的散列一定是不可逆的,这就意味着通过散列结果,无法推出任何部分的原始信息。任何输入信息的变化,哪怕仅一位,都将导致散列结果的明显变化,这称之为雪崩效应。散列还应该是防冲突的,即找不出具有相同散列结果的两条信息。具有这些特性的散列结果就可以用于验证信息是否被修改。
单向散列函数一般用于产生消息摘要,密钥加密等,常见的有:
MD5(Message Digest Algorithm 5):是RSA数据安全公司开发的一种单向散列算法。
SHA(Secure Hash Algorithm):可以对任意长度的数据运算生成一个160位的数值;
在1993年,安全散列算法(SHA)由美国国家标准和技术协会(NIST)提出,并作为联邦信息处理标准(FIPS PUB 180)公布;1995年又发布了一个修订版FIPS PUB 180-1,通常称之为SHA-1。SHA-1是基于MD4算法的,并且它的设计在很大程度上是模仿MD4的。现在已成为公认的最安全的散列算法之一,并被广泛使用。
原理 SHA-1是一种数据加密算法,该算法的思想是接收一段明文,然后以一种不可逆的方式将它转换成一段(通常更小)密文,也可以简单的理解为取一串输入码(称为预映射或信息),并把它们转化为长度较短、位数固定的输出序列即散列值(也称为信息摘要或信息认证代码)的过程。
单向散列函数的安全性在于其产生散列值的操作过程具有较强的单向性。如果在输入序列中嵌入密码,那么任何人在不知道密码的情况下都不能产生正确的散列值,从而保证了其安全性。SHA将输入流按照每块512位(64个字节)进行分块,并产生20个字节的被称为信息认证代码或信息摘要的输出。
该算法输入报文的最大长度不超过264位,产生的输出是一个160位的报文摘要。输入是按512 位的分组进行处理的。SHA-1是不可逆的、防冲突,并具有良好的雪崩效应。
通过散列算法可实现数字签名实现,数字签名的原理是将要传送的明文通过一种函数运算(Hash)转换成报文摘要(不同的明文对应不同的报文摘要),报文摘要加密后与明文一起传送给接受方,接受方将接受的明文产生新的报文摘要与发送方的发来报文摘要解密比较,比较结果一致表示明文未被改动,如果不一致表示明文已被篡改。
MAC (信息认证代码)就是一个散列结果,其中部分输入信息是密码,只有知道这个密码的参与者才能再次计算和验证MAC码的合法性。MAC的产生参见下图。 输入信息 密码 散列函数 信息认证代码 SHA-1与MD5的比较 因为二者均由MD4导出,SHA-1和MD5彼此很相似。相应的,他们的强度和其他特性也是相似,但还有以下几点不同:
对强行供给的安全性:最显著和最重要的区别是SHA-1摘要比MD5摘要长32 位。使用强行技术,产生任何一个报文使其摘要等于给定报摘要的难度对MD5是2数量级的操作,而对SHA-1则是2数量级的操作。这样,SHA-1对强行攻击有更大的强度。
对密码分析的安全性:由于MD5的设计,易受密码分析的攻击,SHA-1显得不易受这样的攻击。
速度:在相同的硬件上,SHA-1的运行速度比MD5慢。 对称与非对称算法比较
以上综述了两种加密方法的原理,总体来说主要有下面几个方面的不同:
一、 在管理方面:公钥密码算法只需要较少的资源就可以实现目的,在密钥的分配上,两者之间相差一个指数级别(一个是n一个是n)。所以私钥密码算法不适应广域网的使用,而且更重要的一点是它不支持数字签名。
二、 在安全方面:由于公钥密码算法基于未解决的数学难题,在破解上几乎不可能。对于私钥密码算法,到了AES虽说从理论来说是不可能破解的,但从计算机的发展角度来看。公钥更具有优越性。
三、 从速度上来看:AES的软件实现速度已经达到了每秒数兆或数十兆比特。是公钥的100倍,如果用硬件来实现的话这个比值将扩大到1000倍。
加密算法的选择 前面的章节已经介绍了对称解密算法和非对称加密算法,有很多人疑惑:那我们在实际使用的过程中究竟该使用哪一种比较好呢?
我们应该根据自己的使用特点来确定,由于非对称加密算法的运行速度比对称加密算法的速度慢很多,当我们需要加密大量的数据时,建议采用对称加密算法,提高加解密速度。
对称加密算法不能实现签名,因此签名只能非对称算法。
由于对称加密算法的密钥管理是一个复杂的过程,密钥的管理直接决定着他的安全性,因此当数据量很小时,我们可以考虑采用非对称加密算法。
在实际的操作过程中,我们通常采用的方式是:采用非对称加密算法管理对称算法的密钥,然后用对称加密算法加密数据,这样我们就集成了两类加密算法的优点,既实现了加密速度快的优点,又实现了安全方便管理密钥的优点。
如果在选定了加密算法后,那采用多少位的密钥呢?一般来说,密钥越长,运行的速度就越慢,应该根据的我们实际需要的安全级别来选择,一般来说,RSA建议采用1024位的数字,ECC建议采用160位,AES采用128为即可。
密码学在现代的应用, 随着密码学商业应用的普及,公钥密码学受到前所未有的重视。除传统的密码应用系统外,PKI系统以公钥密码技术为主,提供加密、签名、认证、密钥管理、分配等功能。
保密通信:保密通信是密码学产生的动因。使用公私钥密码体制进行保密通信时,信息接收者只有知道对应的密钥才可以解密该信息。
数字签名:数字签名技术可以代替传统的手写签名,而且从安全的角度考虑,数字签名具有很好的防伪造功能。在政府机关、军事领域、商业领域有广泛的应用环境。
秘密共享:秘密共享技术是指将一个秘密信息利用密码技术分拆成n个称为共享因子的信息,分发给n个成员,只有k(k≤n)个合法成员的共享因子才可以恢复该秘密信息,其中任何一个或m(m≤k)个成员合作都不知道该秘密信息。利用秘密共享技术可以控制任何需要多个人共同控制的秘密信息、命令等。
认证功能:在公开的信道上进行敏感信息的传输,采用签名技术实现对消息的真实性、完整性进行验证,通过验证公钥证书实现对通信主体的身份验证。
密钥管理:密钥是保密系统中更为脆弱而重要的环节,公钥密码体制是解决密钥管理工作的有力工具;利用公钥密码体制进行密钥协商和产生,保密通信双方不需要事先共享秘密信息;利用公钥密码体制进行密钥分发、保护、密钥托管、密钥恢复等。
基于公钥密码体制可以实现以上通用功能以外,还可以设计实现以下的系统:安全电子商务系统、电子现金系统、电子选举系统、电子招投标系统、电子彩票系统等。
公钥密码体制的产生是密码学由传统的政府、军事等应用领域走向商用、民用的基础,同时互联网、电子商务的发展为密码学的发展开辟了更为广阔的前景。
加密算法的未来 随着计算方法的改进,计算机运行速度的加快,网络的发展,越来越多的算法被破解。
在2004年国际密码学会议(Crypto’2004)上,来自中国山东大学的王小云教授做的破译MD5、HAVAL-128、MD4和RIPEMD算法的报告,令在场的国际顶尖密码学专家都为之震惊,意味着这些算法将从应用中淘汰。随后,SHA-1也被宣告被破解。
历史上有三次对DES有影响的攻击实验。1997年,利用当时各国 7万台计算机,历时96天破解了DES的密钥。1998年,电子边境基金会(EFF)用25万美元制造的专用计算机,用56小时破解了DES的密钥。1999年,EFF用22小时15分完成了破解工作。因此。曾经有过卓越贡献的DES也不能满足我们日益增长的需求了。
最近,一组研究人员成功的把一个512位的整数分解因子,宣告了RSA的破解。
我们说数据的安全是相对的,可以说在一定时期一定条件下是安全的,随着硬件和网络的发展,或者是另一个王小云的出现,目前的常用加密算法都有可能在短时间内被破解,那时我们不得不使用更长的密钥或更加先进的算法,才能保证数据的安全,因此加密算法依然需要不断发展和完善,提供更高的加密安全强度和运算速度。
纵观这两种算法一个从DES到3DES再到AES,一个从RSA到ECC。其发展角度无不是从密钥的简单性,成本的低廉性,管理的简易性,算法的复杂性,保密的安全性以及计算的快速性这几个方面去考虑。因此,未来算法的发展也必定是从这几个角度出发的,而且在实际操作中往往把这两种算法结合起来,也需将来一种集两种算法优点于一身的新型算法将会出现,到那个时候,电子商务的实现必将更加的快捷和安全。

Ⅲ 专利zl2012102116118.9

云存储与聚合架构及其数据存储与聚合方法
有权

一种云存储与聚合架构及其数据存储与聚合方法,包括:用于对数据进行分割或者通过聚合服务器对数据进行加密的用户、用于对数据进行存储和本地聚合的互相独立的存储云、用于对存储云进行密钥分配的第三方可信服务器和用于对接收到的数据进行总聚合并对结果进行解密的数据聚合服务器及其数据存储与聚合方法。本发明保证用户在存储云的数据安全的同时,又可以保证在聚合服务器对数据进行聚合的时候无法得知存储云端的数据情况。

Ⅳ SSL中,公钥,私钥,证书的后缀名都是些啥

SSL证书后缀
CSR – Certificate Signing Request,即证书签名请求,这个并不是证书,而是向权威证书颁发机构获得签名证书的申请,其核心内容是一个公钥(当然还附带了一些别的信息),在生成这个申请的时候,同时也会生成一个私钥,私钥要自己保管好.做过iOS APP的朋友都应该知道是怎么向苹果申请开发者证书的吧.
KEY– 通常用来存放一个RSA 公钥或者私钥,并非X.509证书,编码同样的,可能是PEM,也可能是DER.
CRT– CRT应该是certificate的三个字母,其实还是证书的意思,常见于*NIX系统,有可能是PEM编码,也有可能是DER编码,大多数应该是PEM编码。本站提供的CRT格式等同于CER,等同于PEM。
PEM – Privacy Enhanced Mail的缩写,以文本的方式进行存储。打开看文本格式,以”—–BEGIN…”开头, “—–END…”结尾,内容是编码. 查看PEM格式证书的信息:openssl x509 -in certificate.pem -text -noout Apache和*NIX服务器偏向于使用这种编码格式.
CER– 还是certificate,还是证书,常见于Windows系统,同样的,可能是PEM编码,也可能是DER编码,大多数应该是DER编码.
DER – Distinguished Encoding Rules的缩写,以二进制方式进行存储,文件结构无法直接预览,查看DER格式证书的信息:openssl x509 -in certificate.der -inform der -text -noout Java和Windows服务器偏向于使用这种编码格式.
PFX/P12 – predecessor of PKCS#12,对*nix服务器来说,一般CRT和KEY是分开存放在不同文件中的,但Windows的IIS则将它们存在一个PFX文件中,(因此这个文件包含了证书及私钥)这样会不会不安全?应该不会,PFX通常会有一个”提取密码”,你想把里面的东西读取出来的话,它就要求你提供提取密码,PFX使用的时DER编码,如何把PFX转换为PEM编码?
JKS – 即Java Key Storage,这是Java的专利,跟OpenSSL关系不大,利用Java的一个叫”keytool”的工具,可以将PFX转为JKS,当然了,keytool也能直接生成JKS。

Ⅳ 联想笔记本电脑windows7的产品密钥是什么

如果您的电脑出厂配置有正版WINDOWS 7操作系统。在笔记本的C面有微软正版授权标志,背面有密钥标签,输入密钥标签上的密钥(25位)就可以激活电脑(家庭版的号只能用于激活家庭版的系统)
如果没有,可能您安装的是盗版系统。建议去联想服务中心安装操作系统。

Ⅵ 域名密钥

DOMAINKEY是利用EMAIL的邮件头来实现附着签名信息的,而公钥,则是利用该域名的服务器来公布的。例如,UPS对应的IP是某某,则收信服务器会去请求该IP去验证一个声称来自[email protected]是否真正符合UPS的签名政策。。

因为熟悉电子签名法的人都知道,公钥可以通过各种方式去分发,只要它的私钥严格保密就行了。

that's a little summary of domainkey

Ⅶ 密码学中的公钥和密钥是怎么联系在一起的

公钥基础设施PKI

一、 PKI概述
企业生意成功与否在很大程度上取决于该企业是否拥有一个安全可靠的网络系统。目前大多数企业的IT管理人员都为其企业的网络系统采取了某种形式的加密和认证方案。许多企业的网络管理人员正在利用Web向企业提供安全的Internet商务、虚拟专用网络(VPN)以及远程认证服务,以使其远地雇员拥有对企业网络的存取能力。然而,当前的大多数安全技术(例如用户名和口令、一次性口令以及双向鉴别)并不适合企业的安全需求,而且这些传统的技术通常需要互不相同的维护与管理措施。
目前,越来越多的企业需要利用网络与其分布在世界各地的分支机构及远地雇员相连,因此它们需要采取最有效的安全手段以保护企业资源。然而安全防范措施的加强同时也引发了更多额外的管理工作。值得庆幸的是,公共密钥基础设施(PKI)可帮助企业解决这一难题,它可帮助企业建立一个安全可靠的网络管理系统。PKI是一种易于管理的、集中化的网络安全方案。它可支持多种形式的数字认证: 数据加密、数字签字、不可否认、身份鉴别、密钥管理以及交叉认证等。PKI可通过一个基于认证的框架处理所有的数据加密和数字签字工作。PKI标准与协议的开发迄今已有15年的历史,目前的PKI已完全可以向企业网络提供有效的安全保障。

在运行机理上,有近50种有关PKI的标准在过去的15年中得以统一,供应商们的不懈努力较好地解决了其后端数据库的互操作能力。一个PKI由众多部件组成,这些部件共同完成两个主要功能:为数据加密和创建数字认证。服务器(即后端)产品是这一系统的核心,这些数据库管理着数字认证、公共密钥及专用密钥(分别用于数据的加密和解密)。CA(Certificate Authority,认证权威)数据库负责发布、废除和修改X.509数字认证信息,它装有用户的公共密钥、证书有效期以及认证功能(例如对数据的加密或对数字签字的验证)。为了防止对数据签字的篡改,CA在把每一数字签字发送给发出请求的客户机之前,需对每一个数字签字进行认证。一旦数字认证得以创建,它将会被自动存储于X.500目录中,X.500目录为树形结构。LDAP(Lightweight Directory Access Protocol)协议将响应那些要求提交所存储的公共密钥认证的请求。CA为每一用户或服务器生成两对独立的公共和专用密钥。其中一对用于信息的加密和解密, 另一对由客户机应用程序使用,用于文档或信息传输中数字签字的创建。

大多数PKI均支持证书分布,这是一个把已发布过的或续延生命期的证书加以存储的过程。这一过程使用了一个公共查询机制,X.500目录可自动完成这一存储过程。影响企业普遍接受PKI的一大障碍是不同CA之间的交叉认证。假设有两家公司,每一家企业分别使用来自不同供应商的CA,现在它们希望相互托管一段时间。如果其后援数据库支持交叉认证,则这两家企业显然可以互相托管它们的CA,因而它们所托管的所有用户均可由两家企业的CA所托管。

二、 PKI体系的基本组成

PKI是一种遵循标准的密钥管理平台,它能够为所有网络应用透明地提供采用加密和数字签名等密码服务所必需的密钥和证书管理。PKI必须具有认证机关( CA)、证书库、密钥备份及恢复系统、证书作废处理系统、客户端证书处理系统等基本成分,构建PKI也将围绕着这五大系统来构建。
* 认证机关

CA是证书的签发机构,它是PKI的核心。众所周知,构建密码服务系统的核心内容是如何实现密钥管理,公钥体制涉及到一对密钥,即私钥和公钥, 私钥只由持有者秘密掌握,无须在网上传送,而公钥是公开的,需要在网上传送,故公钥体制的密钥管理主要是公钥的管理问题,目前较好的解决方案是引进证书(certificate)机制。

证书是公开密钥体制的一种密钥管理媒介。它是一种权威性的电子文档,形同网络计算环境中的一种身份证,用于证明某一主体(如人、服务器等)的身份以及其公开密钥的合法性。在使用公钥体制的网络环境中, 必须向公钥的使用者证明公钥的真实合法性。因此,在公钥体制环境中,必须有一个可信的机构来对任何一个主体的公钥进行公证,证明主体的身份以及他与公钥的匹配关系。CA正是这样的机构,它的职责归纳起来有:

1、验证并标识证书申请者的身份;

2、确保CA用于签名证书的非对称密钥的质量;

3、确保整个签证过程的安全性,确保签名私钥的安全性;

4、证书材料信息(包括公钥证书序列号、CA标识等)的管理;

5、确定并检查证书的有效期限

6、确保证书主体标识的唯一性,防止重名;

7、发布并维护作废证书表;

8、对整个证书签发过程做日志记录;

9、向申请人发通知。

其中最为重要的是CA自己的一对密钥的管理,它必须确保其高度的机密性,防止他方伪造证书。CA的公钥在网上公开,整个网络系统必须保证完整性。

* 证书库

证书库是证书的集中存放地,它与网上"白页”类似,是网上的一种公共信息库,用户可以从此处获得其他用户的证书和公钥。

构造证书库的最佳方法是采用支持LDAP协议的目录系统,用户或相关的应用通过LDAP来访问证书库。系统必须确保证书库的完整性,防止伪造、篡改证书。

* 密钥备份及恢复系统

如果用户丢失了用于解密数据的密钥,则密文数据将无法被解密,造成数据丢失。为避免这种情况的出现,PKI应该提供备份与恢复解密密钥的机制。密钥的备份与恢复应该由可信的机构来完成,例如CA可以充当这一角色。值得强调的是,密钥备份与恢复只能针对脱密密钥,签名私钥不能够作备份。

* 证书作废处理系统

证书作废处理系统是PKI的一个重要组件。同日常生活中的各种证件一样,证书在CA为其签署的有效期以内也可能需要作废,例如,A公司的职员a辞职离开公司,这就需要终止a证书的生命期。为实现这一,PKI必须提供作废证书的一系列机制。作废证书有如下三种策略:

1、作废一个或多个主体的证书;

2、作废由某一对密钥签发的所有证书;

3、作废由某CA签发的所有证书。

作废证书一般通过将证书列入作废证书表(CRL)来完成。通常,系统中由CA负责创建并维护一张及时更新的CRL,而由用户在验证证书时负责检查该证书是否在CRL之列。CRL一般存放在目录系统中。证书的作废处理必须在安全及可验证的情况下进行,系统还必须保证CRL的完整性。

* PKI应用接口系统

PKI的价值在于使用户能够方便地使用加密、数字签名等安全服务,因此一个完整的PKI必须提供良好的应用接口系统,使得各种各样的应用能够以安全、一致、可信的方式与PKI交互,确保所建立起来的网络环境的可信性,同时降低管理维护成本。最后,PKI应用接口系统应该是跨平台的。

三、 PKI的功能 归纳起来,PKI应该为应用提供如下的安全支持 :

* 证书与CA,PKI应实现CA以及证书库、CRL等基本的证书管理功能。

* 密钥备份及恢复证书。

* 密钥对的自动更换证书、密钥都有一定的生命期限。当用户的私钥泄露时,必须更换密钥对;另外,随着计算机速度日益提高,密钥长度也必须相应地长。因此,PKI应该提供完全自动(无须用户干预)的密钥更换以及新的分发工作。

* 交叉验证

每个CA只可能覆盖一定的作用范围,即CA的域,例如,不同的企业往往有各自的CA,它们颁发的证书都只在企业范围内有效。当隶属于不同CA的用户需要交换信息时,就需要引入交叉证书和交叉验证,这也是PKI必须完成的工作。

* 加密密钥和签名密钥的分隔

如前所述,加密和签名密钥的密钥管理需求是相互抵触的,因此PKI应该支持加密和签名密钥的分隔使用。

* 支持对数字签名的不可抵赖

任何类型的电子商务都离不开数字签名,因此PKI必须支持数字签名的不可抵赖性,而数字签名的不可抵赖性依赖于签名私钥的唯一性和机密性,为确保这一点,PKI必须保证签名密钥与加密密钥的分隔使用。

* 密钥历史的管理

每次更新加密密钥后,相应的解密密钥都应该存档,以便将来恢复用旧密钥加密的数据。每次更新签名密钥后,旧的签名私钥应该妥善销毁,防止破坏其唯一性;相应的旧验证公钥应该进行存档,以便将来用于验证旧的签名。这些工作都应该是PKI自动完成的。

四、 PKI体系的发展前景

如上所述,PKI对企业生意的成功与否至关重要,它可使企业拥有一个公共的安全基础结构——一个所有安全的应用赖以存在的基础结构。企业中的许多安全电子邮件、Internet商务应用、VPN以及单签字功能的安全都将依赖于X.509的认证。PKI对数据加密、数字签字、反否认、数字完整性以及甄别所需的密钥和认证实施了统一的集中化管理。

每一企业均可受益于PKI结构化的管理方案。然而令人遗憾的是,迄今为止,仅有少数行业(包括银行业、金融、健康保险)采用了这一系统。一些敢于尝试新生事物的企业, 例如Automotive Network Exchange(由美国几家最大的汽车制造商组成)已开始受益于这一安全技术。

预计,当企业的生意变得更依赖于Web时,为了确保它们对客户信息的安全处理,更多的企业将会不断转向PKI。然而,迄今为止,采用PKI的企业仍寥寥无几。PKI本身存在的问题是限制用户广泛采用它的主要原因。统一标准的缺乏,将许多美国企业拒之于PKI方案的大门之外。事实上,对于开发PKI产品来说,目前已有相当成熟的标准可依。缺乏良好的互操作性,也是PKI广泛被采用的主要障碍之一。在PKI供应商能够支持所有标准之前,许多企业需要使用其客户机上的专利工具包,这也会在很大程度上限制PKI的迅速流行。

然而,限制PKI被广泛采用的最主要的障碍依然是其设计与实现上的复杂性。但据预计,随着PKI供应商的逐步统一与合并,实现PKI的过程将会变得越来越简单。如果复杂的实现令你望而却步, 则可以把企业的系统外包给某个第三方供应商。

许多权威的认证方案供应商(例如VeriSign、Thawte以及GTE)目前都在提供外包的PKI。外包PKI最大的问题是,用户必须把企业托管给某一服务提供商, 即让出对网络安全的控制权。如果不愿这样做,则可建造一个专用的PKI。专用方案通常需把来自Entrust、Baltimore Technologies以及Xcert的多种服务器产品与来自主流应用程序供应商(如Microsoft、Netscape以及Qualcomm)的产品组合在一起。专用PKI还要求企业在准备其基础设施的过程中投入大量的财力与物力。

对那些高风险行业(如银行、金融及保险)来说,今后10年,PKI对它们长期的安全需求将至关重要。随着PKI技术的广泛流行,PKI的实现将会更趋简单, 成本也会逐步降低。由于PKI仅于最近才开始变成一种可行的安全方案,因此这一技术仍有待进一步完善。如果你的企业不能等待这一技术的成熟,那么现在就采用它,因为其目前的功能已足可以满足一般企业的大多数安全需求。

Ⅷ 华为公开“量子密钥”相关专利,华为是国内最具权威的民营科技公司吗

有一些企业能够通过对自己的企业的管理,来让自己的企业有一个更好的发展,并且也能够通过这样的行为让自己有一个更好的机会,从而让自己获得更多的人才,并且让自己获得更多的市场份额,提高他们自己的市场竞争力。华为公司就是一个十分有前途的公司,而且也是有很多人都想要进入华为公司去工作的,因为很多人都认为华为公司真的是一个很有发展潜力的公司,而且也是一个很有实力的公司,能够让我们有个比较好的待遇。华为公开“量子密钥”相关专利,华为是国内最具权威的民营科技公司吗?我认为的确是,之所以这么说,主要有三个原因:

第一个原因就是华为公司是有科技实力的。华为公司的科技实力的确是很强,而且他们也能够不断地去提高对于科技的投入,而且也是在不断地增加投资的。因为公司知道只有科技强才能够让自己获得更大的竞争力,而且也只有去让自己有一个比较好的科技能力才能够去提高自己的市场份额,这样的话就能够让自己有个比较好的市场竞争力。

总而言之,我认为华为的确是国内最具权威的民营科技公司。

阅读全文

与专利权的密钥相关的资料

热点内容
商标注册被骗怎么办 浏览:160
朗太书体版权 浏览:268
大学无形资产管理制度 浏览:680
马鞍山向山镇党委书记 浏览:934
服务创造价值疏风 浏览:788
工商登记代名协议 浏览:866
2015年基本公共卫生服务项目试卷 浏览:985
创造营陈卓璇 浏览:905
安徽职称计算机证书查询 浏览:680
卫生院公共卫生服务会议记录 浏览:104
泉州文博知识产权 浏览:348
公共卫生服务培训会议小结 浏览:159
马鞍山揽山别院价格 浏览:56
施工索赔有效期 浏览:153
矛盾纠纷交办单 浏览:447
2010年公需课知识产权法基础与实务答案 浏览:391
侵权责任法第5556条 浏览:369
创造者对吉阿赫利直播 浏览:786
中小企业公共服务平台网络 浏览:846
深圳市润之行商标制作有限公司 浏览:62