❶ 插值法公式
以下是我的个人观点:
首先你得分清楚插值和拟合这两个的区别,
拟合是指你做一条曲线或直线,使得你的数据点跟这条线的“误差”最小。注意,这个要求并不要求所有的数据点在我们的拟合曲线上。
插值是指你做一条曲线或直线完全经过这些点,就是说数据点一定都要在插值曲线上。
插值也有好多种:比如拉格朗日插值,分段插值,样条插值(样条插值要求你还要知道这些数据点的一阶导数)
我们知道两点确定一条直线(一次多项式),三点确定一条抛物线(二次多项式),试想一下有10个点是不是可以确定一个9次多项式(9次多项式里面还有一个常数项,就是10个未知数,我们有10个数据点,刚好可以求解)
(**)拉格朗日插值就是上面的这种插值。但是它就是把这些多项式系数重新表示了一下(就是不用去求上面所说的10个系数)。你求出这些系数后,只要将你想要的x的值往里一代,马上就得到你想要的函数值。但这种插值在头尾附近会出现一些不好的振荡现象(龙格现象)
(**)分段插值,还是按照上面的原则,比如说,我两个点两个点地确定一条直线(比如1,2点连起来,2,3点连起来),最后所有直线的集合(这时应当是一系列的折线)这个分段函数也是经过所有的数据点。当然你也可以三个点三个点地确定一条抛物线。用这一方面时,你要先确定你想要的x值在哪一个区间里,然后用这一区间的表达式来计算出函数值就可以了。本方法不会出现龙格现象
(***)样条插值,上面提到分段插值是一系列折线,折线使得不光滑,样条就是用其导数值,使得它们变光滑。
下面说计算方法吧!至于表达式,你如果理解了上面,你去找本“计算方法”或“数值计算”的书,上面都有表达式。应当不难。
另外你还可以借助于MATLAB这样的软件来计算。
比如你的原始数据是X,Y,你想要求y(x=5)的值
X=[2,6,10,14,18,22,26,30,34,38,41,42,45,49,53,57,61,65,69,73,77,81]; %自变量的值
Y=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]; %自变量相应的函数值
X0=5; %你想要的点的值
N=22; %这个是点的个数
Doc=2; %分段插值中你想用几个点插值
你可以用下面的语句得到y(x=5);
Y1=lagrange(X,Y,X0) %拉格朗日插值
Y2=interp1(X,Y,X0,'linear') %分段两点线性插值
Y2=interp1(X,Y,X0,'spline') %分段两点线性插值
可能说的不好,你如果想系统地学点,可能得看一下相关的书。
❷ 财务管理中插值法怎么计算
求实际利率是要用内插法(又叫插值法)计算的。“内插法”的原理是根据比例关系专建立一个方程,然后属,解方程计算得出所要求的数据。学习之前先来做一个小测试吧点击测试我合不合适学会计❸ 财务管理中插值法怎么计算
财务管理插值法公式为,已知折现率a1的利率为b1,折现率a2的利率为b2,要想求折现率a3的利率b3,公式为:学习之前先来做一个小测试吧点击测试我合不合适学会计❹ 会计的插值法怎么算
插值法又称"内插法",是利用函数f (x)在某区间中插入若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。
举个例子:
年金的现值计算公式为 P=A*(P/A,i,n) 此公式中P,i,n已知两个便可以求出第三个(这里的i便是您问题中的r)
所以,当已知P和n时,求i便需要使用插值法计算。 您提出问题的截图是一般算法,解出以上方程太过复杂,所以需要插值法简化计算。
例: P/A=2.6087=(P/A,i,3)
查年金现值系数表可知
r P/A
8% 2.5771
所求r 2.6087
7% 2.6243
插值法计算: (8%-7%)/(8%-r)=(2.5771-2.6243)/(2.5771-2.6087)
求得 r=7.33%
以上为插值法全部内容举例说明,除此之外复利的终值与现值、年金的终值都可以使用插值法求的利率或报酬率。
❺ 插值法计算问题
例如:假设与A1对应的数据是B1,与A2对应的数据是B2,现在已知与A对应的数据是B,A介于A1和A2之间,即下对应关系:
A1 B1
A(?) B
A2 B2
则可以按照(A1-A)/(A1-A2)=(B1-B)/(B1-B2)计算得出A的数值,其中A1、A2、B1、B2、B都是已知数据。
验证如下:根据:(A1-A)/(A1-A2)=(B1-B)/(B1-B2)可知:
(A1-A)=(B1-B)/(B1-B2)×(A1-A2)
A=A1-(B1-B)/(B1-B2)×(A1-A2)
=A1+(B1-B)/(B1-B2)×(A2-A1)
例如:某人向银行存入5000元,在利率为多少时才能保证在未来10年中每年末收到750元?
5000/750=6.667 或 750*m=5000
查年金现值表,期数为10,利率i=8%时,系数为6.710;i=9%,系数为6.418。说明利率在8-9%之间,设为x%
8% 6.710
x% 6.667
9% 6.418
(x%-8%)/(9%-8%)=(6.667-6.71)/(6.418-6.71) 计算得出 x=8.147。
❻ 插值法计算公式
将你假设的数字代入,得到方程
(69.65-▲Z)/(250-291)=(▲Z-69)/(291-300)
等式变换,化简,得到(▲Z-69)*41=9*(69.65-▲Z)
所以解得▲Z=69.117
❼ 什么是插值法,怎么算
"以下面的例题为例:2008年1月1日甲公司购入乙公司当日发行的面值600 000元、期限3年、票面利率8%、每年年末付息且到期还本的债券作为可供出售金融资产核算,实际支付的购买价款为620 000元。则甲公司2008年12月31日因该可供出售金融资产应确认的投资收益是()元。(已知PVA(7%,3)=2.2463,PVA(6%,3)=2.673,PV(7%,3)=0.8163,PV(6%,3)=0.8396)
题目未给出实际利率,需要先计算出实际利率。600 000×PV(r,3)+600 000×8%×PVA(r,3)=620 000,采用内插法计算,得出r=6.35%。甲公司2008年12月31日因该可供出售金融资产应确认的投资收益=620 000×6.35%=39 370(元)。
插值法计算过程如下:
已知PVA(7%,3)=2.2463,PVA(6%,3)=2.673,PV(7%,3)=0.8163,PV(6%,3)=0.8396)
600 000×PV(r,3)+600 000×8%×PVA(r,3)=620 000
R=6%时
600000*0.8396+600000*8%*2.673=503760+128304=632064
R=7%时
600000*0.8163+600000*8%*2.2463=489780+107823=597603
6% 632064
r 620000
7% 597603
(6%-7%)/(6%-R)=(632064-597603)/(632064-620000)
解得R=6.35%
注意上面的式子的数字顺序可以变的,但一定要对应。如可以为
(R-7%)/(7%-6%)=(620000-597603)/(597603-632064)也是可以的,当然还有其他的顺序"
❽ 会计里的插值法怎么计算
折价发行 票面利率为4% 说明实际利率大于4%。
用5%代入折现率计算出一个价格。看下价格 如果价格高于95用6%再算一个,低于95 那就4% 算出来100。
本题应该是高于95,那你用6%代入折现率,计算出一个价格。
两个利率 5,6,两个价格,以及目标价格95,用插值法就可以计算出目标折现率。
插值法的原理类似平均。即两个价格的差是利率的差的某个倍数。
❾ 插值法怎么算
要查表,我手边没有表,而且已经学过很多年了,只随便说个数字,举例说明:先假定r=4%,查表计算出数值=900
再假定r=5%,查表计算出数值=1100
然后计算(1100-900)/(5%-4%)=(1000-900)/(r-4%)
200(r-4%)=1
r=4.5%
如果你第一次选取是数值是3%,计算出数值=800,第二次选取4%,计算=900,都低于1000,那么就要继续试5%,6%……直到计算结果一个小于1000,另一个大于1000,而且与1000越接近,差值法计算出r越准确,如果选项一个1%,一个20%,查表后得出数值,确实也能计算,但不会很准
❿ 插值法如何计算,请详解
将你假设的数字代入,得到方程
(69.65-▲Z)/(250-291)=(▲Z-69)/(291-300)
等式变换,化简,得到(▲Z-69)*41=9*(69.65-▲Z)
所以解得▲Z=69.117