A. 请问利率期限结构(term structure of interest rates)和收益率曲线(yield curve)有区别吗
利率期限结构是指即期利率与到期期限的关系及变化规律。收益率曲线是显示金融工具收益率的图表。大多数情况下收益率等于利率,但也会发生收益率与利率的背离。
利率期限结构(Term Structure of Interest Rates) 是指在在某一时点上,不同期限资金的收益率(Yield)与到期期限(Maturity)之间的关系。利率的期限结构反映了不同期限的资金供求关系,揭示了市场利率的总体水平和变化方向,为投资者从事债券投资和政府有关部门加强债券管理提供可参考的依据。
利率期限结构是指某个时点不同期限的即期利率与到期期限的关系及变化规律。 由于零息债券的到期收益率等于相同期限的市场即期利率,从对应关系上来说,任何时刻的利率期限结构是利率水平和期限相联系的函数。因此利率的期限结构即零息债券的到期收益率与期限的关系可以用一条曲线来表示,如水平线、向上倾斜和向下倾斜的曲线。甚至还可能出现更复杂的收益率曲线,即债券收益率曲线是上述部分或全部收益率曲线的组合。收益率曲线的变化本质上体现了债券的到期收益率与期限之间的关系,即债券的短期利率和长期利率表现的差异性。
收益率曲线(Yield Curve)是显示一组货币和信贷风险均相同,但期限不同的债券或其他金融工具收益率的图表。纵轴代表收益率,横轴则是距离到期的时间。 收益率是指个别项目的投资收益率,利率是所有投资收益的一般水平,在大多数情况下,收益率等于利率,但也往往会发生收益率与利率的背离,这就导致资本流入或流出某个领域或某个时间,从而使收益率向利率靠拢。债券收益率在时期中的走势未必均匀,这就有可能形成向上倾斜、水平以及向下倾斜的三种收益曲线。
收益率曲线是分析利率走势和进行市场定价的基本工具,也是进行投资的重要依据。国债在市场上自由交易时,不同期限及其对应的不同收益率,形成了债券市场的“基准利率曲线”。市场因此而有了合理定价的基础,其他债券和各种金融资产均在这个曲线基础上,考虑风险溢价后确定适宜的价格。
B. 影响债券利率期限结构形状的因素有哪些
您好,影响债券利率期限结构形状的因素主要有:对未来利率变动方向的预期;债券预期收益中可能存在的流动性溢价;市场效率低下。
C. 什么是利率期限结构我国国债市场上利率期限结构的计算方法是什么
债券的利率期限结构是指债券的到期收益率与到期期限之间的关系。该结构可以通过利率期限结构图表示,图中的曲线即为收益率曲线。或者说,收益率曲线表示的就是债券的利率期限结构。
计算方法:http://www.chinabond.com.cn/chinabond/yjck/content.jsp?sId=771
如果我们可以在市场上找到足够的即期利率,再加上其相应的期限就可以得到一系列的实数对,在给定一个模型形式之后就可以用统计的方法把这个期限结构模型估计出来。但是,实际上我们很难找到足够的即期利率,因为市场上零息债券的数量很少。我们只能转向对固定利率债券进行息票剥离的方法。此时又一个问题出现了-在关键的期限上(例如1年)未必有现金流,无法求得该即期利率,致使我们不能进行后续期限的息票剥离。为了解决这个问题,我们有必要预先设定利率期限结构的模型形式,
,其中y代表即期利率,θ代表期限。
根据债券的定价方法,对于某只固定利率债券,我们可以先把它拆分成若干付息和还本的现金流,用上面假设的利率函数进行折现得到该债券的理论价格 ,当然理论价格 和市场价格P是有差别的,一般不会相等。用公式表示就是:
上式中, 表示债券i 的理论价格, 表示债券i 所包含的在未来时间t 发生的现金流, 表示与时间t对应的贴现函数值,可以通过上面的利率函数换算出来,Ф表示贴现函数的参数向量(或矩阵), 是随机误差。
根据最小二乘法估计的要求,我们当然希望参数向量(矩阵)Ф应满足使样本券的定价误差(理论价和实际价格的差别)最小。若以n只样本债券得的总定价方差作为目标函数,Ф应满足使 成立。其中n为样本债券容量。这里,误差的权重均为1/n,相当于我们认为各个样本券的定价误差都同等重要。我们也可以根据自己的理解为样本券选择合适的权重,如流动性、期限、风险权重。
接下来我们来看看如何设定利率期限结构的模型形式。
部分学者认为在不同的期限内,即期利率曲线形态不同,因此把整个利率期限结构分为几段,每段的函数是不同的,此即为样条(spline)法。根据函数形式的不同,利率期限结构的函数形态可分为多项式、指数等。综合上面两方面的考虑,期限结构的模型可以分为多项式样条、指数样条、B样条、NS、NSS(NS的改进版)等。
对于采用多项式样条和指数样条的期限结构,远端利率会随着期限的增长呈迅速增长态势,不太符合远端利率相对平稳的实际情况,我认为不可取。我比较倾向于采用NS或NSS模型来描述中国的利率期限结构。当然,采用这两种方法的时候,估计的过程需要用到非线性规划,计算起来略嫌麻烦。
附:NS、NSS模型的具体形式
等号左边为即期利率,右边的 和 均为待估参数, 为待偿期限。
D. 债券的期限结构的计算方法
目前流行的来期限结构计算方法大源都以附息债券的到期收益率作为计算的基础,这并不是一个精确的算法。本文提供了一种用固定利率债券收益率推导精确期限结构的方法,并说明了在当前环境下使用该方法的局限性。
【关键词】:收益率;期限结构
【分类号】:F810.5
【DOI】:CNKI:SUN:ZGHC.0.2002-01-012
【正文快照】:
收益率期限结构(Term Structure of Yleld)是指在某一时点上,不同期限资金的收益率(Yield)与到期期限(Maturity)之间的关系。目前国内不少投资和研究机构大都以人民银行和财政部统一的国债收益率计算公式为计算的基础(见公式1)。该公式实际上是一个附息债券的到期收益率(Yield
E. 债券的利率期限结构是指债券的持有期收益率与到期期限之间的关系。( )
这个说法是错误的。
债券的利率期限结构
是指债券的
到期收益率
与到期期限之间的关系。
那些具有相同风险、流动性和
税收特征
的债券,由于其期限存在差异,导致其具有不同的利率。该结构可以通过利率期限结构图表示,图中的曲线即为
收益率曲线
。或者说,收益率曲线表示的就是债券的利率期限结构。
到期收益率相当于投资者按照当前市场价格购买并且一直持有到满期时可以获得的年
平均收益率
,其中隐含了每期的
投资收入
现金流均可以按照到期收益率进行再投资。
(5)国债的利率期限结构图扩展阅读:
社会效应
股票、基金这类投资产品的收益率计算方法,1元净值买入的基金,2年后以2元净值抛出,
年化收益率
就是2开2次方再减一,即41.4%左右。但是
保险产品
却很复杂。
分红险
或者年金险之类,很多会要求投资者在前10年内每年固定缴纳一笔费用,然后从某一年开始又会每年或者每几年返还一笔资金,要再复杂些,就在投资者缴费的几年里时不时返还一笔资金,由于时而支出时而收入,因此很多投资者看得是晕头转向,更不知收益率如何计算了。
分红险的这种收益方式虽然复杂,但是和债券极为类似。在计算其收益率时,同样可以以
内部报酬率
(IRR,InternalRateofReturn)来计算到期收益率。
内部报酬率是一个利用
折现
概念计算而得的收益率,其具体含义以及与年化收益率区别等问题普通投资者无需关注,只需要知道这是一个可以衡量分红险、债券等有一连串收入支出的投资产品收益高低的指标即可。
F. 债券的利率期限结构是指债券的持有期收益率与到期期限之间的关系。( )
这个说法是错误的。债券的利率期限结构是指债券的到期收益率与到期期限之间的关系。
那些具有相同风险、流动性和税收特征的债券,由于其期限存在差异,导致其具有不同的利率。该结构可以通过利率期限结构图表示,图中的曲线即为收益率曲线。或者说,收益率曲线表示的就是债券的利率期限结构。
到期收益率相当于投资者按照当前市场价格购买并且一直持有到满期时可以获得的年平均收益率,其中隐含了每期的投资收入现金流均可以按照到期收益率进行再投资。
(6)国债的利率期限结构图扩展阅读:
社会效应
股票、基金这类投资产品的收益率计算方法,1元净值买入的基金,2年后以2元净值抛出,年化收益率就是2开2次方再减一,即41.4%左右。但是保险产品却很复杂。
分红险或者年金险之类,很多会要求投资者在前10年内每年固定缴纳一笔费用,然后从某一年开始又会每年或者每几年返还一笔资金,要再复杂些,就在投资者缴费的几年里时不时返还一笔资金,由于时而支出时而收入,因此很多投资者看得是晕头转向,更不知收益率如何计算了。
分红险的这种收益方式虽然复杂,但是和债券极为类似。在计算其收益率时,同样可以以内部报酬率(IRR,InternalRateofReturn)来计算到期收益率。
内部报酬率是一个利用折现概念计算而得的收益率,其具体含义以及与年化收益率区别等问题普通投资者无需关注,只需要知道这是一个可以衡量分红险、债券等有一连串收入支出的投资产品收益高低的指标即可。
G. 利率期限结构理论的主要内容是什么
1、预期理论:预期理论提出了以下命题:长期债券的利率等于在其有效期内人们所预期的短期利率的几何平均值。这一理论关键的假定是,债券投资者对于不同到期期限的债券没有特别的偏好,因此如果某债券的预期回报率低于到期期限不同的其他债券,投资者就不会持有这种债券。
2、分割市场理论:分割市场理论将不同到期期限的债券市场看做完全独立和相互分割的。到期期限不同的每种债券的利率取决于该债券的供给与需求,其他到期期限的债券的预期回报率对此毫无影响。关键假定:不同到期期限的债券根本无法相互替代。
3、流动性溢价理论:流动性溢价理论是预期理论与分割市场理论结合的产物。它认为长期债权的利率应当等于 长期债权到期之前预期短期利率的平均值 与 随债券供求状况变动而变动的流动性溢价之和。不同期限债券的偏好。换句话讲,不同到期期限的债券可以相互替代,但并非完全替代品。
4、期限优先理论:采取了较为间接地方法来修正预期理论,但得到的结论是相同的。它假定投资者对某种到期期限的债券有着特别的偏好,即更愿意投资于这种期限的债券。
利率期限结构 由于零息债券的到期收益率等于相同期限的市场即期利率,从对应关系上来说,任何时刻的利率期限结构是利率水平和期限相联系的函数。因此,利率的期限结构,即零息债券的到期收益率与期限的关系可以用一条曲线来表示,如水平线、向上倾斜和向下倾斜的曲线。
甚至还可能出现更复杂的收益率曲线,即债券收益率曲线是上述部分或全部收益率曲线的组合。收益率曲线的变化本质上体现了债券的到期收益率与期限之间的关系,即债券的短期利率和长期利率表现的差异性。
H. 什么叫债券的期限结构
就是债券的期限啊
短期长期
I. 国债收益率的曲线
收益率曲线对于国债分析,就如同K-线图对于股票分析一样,看似简单直观,但是其中却又包含着无穷的奥妙。随着70年代以来国际上金融创新的不断发展,收益率曲线的重要性已经远远超出了国债分析领域,而成了整个金融分析的基石之一。
那么什么是收益率曲线呢?我们首先回顾一下收益率的概念。为了判别一个投资是否值得进行,人们想出了很多种办法。一个最常用的办法就是计算收益率,也就是在一定时间内,投资的回报占全部投入的百分比。
在现实生活中,人们最常见的收益率的例子就是储蓄利率,以2006年8月19日起执行的人民币存款整存整取利率为例: 三个月 半年 一年 两年 三年 五年 1.80 2.25 2.52 3.06 3.69 4.14 可以看出,1年储蓄的收益率为2.52%,2年储蓄的收益率为3.06%。储蓄的收益率(即储蓄利率)与到期时间有着明显的相关关系,年限越长,利率越高。所以如果不考虑资金占用问题的话,就应该选择期限更长的储蓄品种,以获得更高的回报。
为了便于显示收益率与到期年限之间的关系,可以用到期年限为横坐标,以收益率为纵坐标,将不同时期的收益率画在一张图里,并用一条光滑曲线将这些点连接起来。这就是银行储蓄的收益率曲线。
同样的,国债作为一种投资工具,它的收益率与到期年限同样也存在着类似的相互关系。一般来说,期限越长,收益率越高。为了准确地把握这种变化关系,从而在短期、中期、长期国债中,正确地选择投资品种,人们发明了国债收益率曲线这个重要的分析工具。
国债收益率曲线是描述国债投资收益率与期限之间关系的曲线。