『壹』 如何培养小学生的数学创造性思维能力
一、培养学生思维的灵活性
迁移是一种学习对另一种学习的影响。在小学数学教学中内,要科学运用迁移规容律,加强对学生基础知识和基础技能的训练,培养学生思维的灵活性。
二、培养学生思维的求异性
求异思维指思维的路径朝着各种可能的方向扩散,并引出更多的信息,使思维者能从各种设想出发,不拘泥于一个途径,布局限于既定的理解,尽可能作出合乎条件的多种解答。
三、培养学生思维的独创性
小学低年级学生不可能去创造新的知识,培养学生思维是要求学生能在一般解题方法的基础上另辟蹊径,寻求独创解法。
『贰』 如何培养小学数学创造性思维
小学数学教学如何培养学生的创造性思维
世纪之交,千年更迭,历史进入了以信息时代和经济为重要标志的新时代。我们面临全球经济一体化、产业结构调整。加入WTO,实现第三部战略目标等诸多机遇和挑战。《数学课程标准》明确指出:“数学教育在这种国内国际背景下,要求我们更新教育观念,培养学生创新能力,创造能力和实践能力,要求我们在继续搞好基础知识和基本技能教学的基础上,数学教学要着重培养学生高层次数学思考的能力和创新精神。”目前相当一部分学生解决常规问题比较熟练,而解决非常规问题的能力相对比较薄弱,数学创造性思维能力不足。这种现状表明了培养学生创造性思维等高层次数学思维能力的迫切性。贯彻《数学课程标准》,培养学生的创造性思维能力,要求数学教师转变教育观念,更多地关注学生在学习过程中思维的发展,培养学生的思维品质,特别是创造性思维。
何谓创造性思维?多湖辉哲学创作中对创造性思维这样定义:“创造性思维,是一种具有开创意义的思维活动,即开拓人类认识新领域、开创人类认识新成果的思维活动。创造性思维是以感知、记忆、思考、联想、理解等能力为基础,以综合性、探索性和求新性为特征的高级心理活动,需要人们付出艰苦的脑力劳动。一项创造性思维成果往往要经过长期的探索、刻苦的钻研、甚至多次的挫折方能取得,而创造性思维能力也要经过长期的知识积累、素质磨砺才能具备,至于创造性思维的过程,则离不开繁多的推理、想象、联想、直觉等思维活动。”这大概是对创造性思维的一种广义的解释。如果说能从这个定义中找到什么是数学的创造思维的话,则可以抓住“它是一种感知、记忆、思考、联想、理解等能力为基础的高级心理活动,”和“它离不开推理、想象、联想、直觉等思维活动”。所以说数学的创造思维首先是一种新的思维活动,是一种综合性很强的思维活动。
可见,在数学教学中培养小学生的创造性思维,必须以数学学习活动为载体,将学生自我因素与教师因素和环境因素有机协调,这样才能形成“感知、记忆、思考,联想,理解”等行为一体的综合心理活动,培养学生的创造性数学思维。
一、引导探索学习,促进学生创新思维的自主建构。
创造离不开思维,创造能力的核心是创造性思维。在教学中学生是主体,教师是学生的引导者、合作者,教师的作用要更多的在于点拨,“润物细无声”地引导学生探究、获取知识,学会思维,培养学生的创新意识。
例如,在教学“数的奇偶性”时,教材创设了船在北岸,由北岸驶向南岸,再由南岸驶向北岸,问摆渡第101次后船在北岸还是南岸?学生往往在初次遇到这个问题时,基本上找不到思维的原点,更找不到思维的方向。这时,老师就可以引导学生首先确定船的初始状态的位置(北岸),再使学生明确摆渡第1次时,船的位置(南岸),然后引导学生思考第2次,船在哪岸?引导到这儿,学生便能主动探索,最终发现规律,获取感知和联想,最终开发了学生的创新意识,培养了学生的创新思维能力。
二、让学生想象参与,保持积极的思维状态
创造性思维有创造想象的参与。因为创造性思维的成果都是前所未有的,而个体在进行思维时借助于想象,特别是创造想象来进行探索。创造性思维只有创造想象参与,才能从最高水平上对现有知识经验进行改造、组合,构筑出最完整、最理想的新形象。例如,牛顿的万有引力定律的提出就是以地球绕太阳运转、月亮绕地球运转、大海潮汐现象、苹果落地等事实为前提,先在头脑中进行创造想象,然后进行推理而产生的。世界著名的物理学家爱因斯坦在高度抽象的理论物理领域中有许多杰出的创造性成果,他大多是运用创造想象来进行研究的。他对想象力的评价是:“想象力比知识更重要,因为知识是有限的,而想象力概括着世界的一切,推动着进步,并且是知识进化的源泉。严格地说,想象力是科学研究的根本因素。”
(一) 培养学生猜想的思维习惯
猜想是数学上的合理“想象”,是一种重要的思维方法,是创新、创造的前奏。“数学事实首先是被猜想,然后才是被证实”正如有了著名的哥德巴赫猜想后,才吸引了一批像陈景润那样的数学家孜孜不倦地去研究,去探索。在数学发展史上这样的例子还有很多,如摩根的关于地图着色的“四色猜想”,“笛卡尔欧拉公式”正是这些独具魅力的猜想,深深吸引了无数数学家投身其中去研究,去攻克,成为推动数学发展的强大动力。美国G.波利亚所说:“在你证明一个数学定理之前,你必须猜想到这个定理,在你搞清楚证明细节之前,你必须猜想出证明的主导思想”。所以在数学教学上更要重视猜想,在课堂上运用猜想培养学生的探索创新能力。
在五年级“鸡兔同笼”的教学中,我在导课时这样说 “老师今天带来了5位尊贵的客人,你们猜猜他们是谁?”学生们猜测到是“鸡和兔”,我说“你们猜得很对,但是老师也只看到这五位个客人的头,你们能猜一猜这五位客人中鸡和兔各有多少只吗?”于是在猜测中,学生就得出了一对一对的数据,接下来,我问“要知道鸡和兔,到底有多少只,还需要知道什么条件?”学生于是想到了腿,在猜测的过程中,学生思维的泉水被激起,接下来再尝试调整,发现规律,学生思维的体系得到很好的联通。
(二)培养学生提出问题的能力
提出问题是思维活动的出发点,爱因斯坦和英乐尔德曾说:“提出一个问题往往比解决一个问题更重要,因为解决一个问题也许仅仅是一个数学的或实验的技能而已,而提出新的问题,新的可能性,从新的角度去看待旧的问题,却需要创造性的想象力,而且标志着科学的真正进步。”教师在数学教学中,也要像语文课程那样,给学生示范提出问题的多种思路,这不仅是对学生发散思维能力的培养,也是发展学生创造性思维能力的重要途径。例如:我们可以多让学生做一些给出已知条件的应用题,让学生提出问题;也可以通过错例,让学生质疑错误发生的原因;还可以提出问题,让学生做变换条件的练习。在实践教学中,我们知道,从一年级到六年级,各年级都在检测学生开放性提出问题的能力。但是,令我们教师不满意的结果是,学生在提出问题时,要么脱离题意,要么过于简单,比如:六年级的数学统计图分析,常有根据图意提出问题的检测,学生按说应该提出与本年级程度相关的数学问题,可是学生往往提出的是一年级水平的数学问题(一般都是哪个项目最多,哪个项目最少的问题)。虽然检测中问题的提出具有开放性,学生提出了一年级水平的问题也能得分,但是学生提出的问题质量性就不高。这就像别人正在吃米饭,你到跟前问:“你吃的是米饭吗?”这虽然也是一个问题,如果这个问题是幼儿在问,人们还会觉得可爱,如果是相对大得多的孩子在问,被问到的人又会怎么想你呢?作为教师,我们不能只把学生的分数看到重要的程度上去,而要躬身教学,确确实实的培养学生的实践能力、思维能力,这样我们的教育才能够创新,我们的学生才能够成才,我们的国家才能够发展。
三、开发教材资源,给学生寻找创造性思维的契机
学生在义务教育阶段要学习的东西很多,他们不可能在有限宝贵的时间内学完所有的知识,教师要在开发教材资源上,提供给学生有价值的数学资源。所谓有价值的数学资源,这里主要指那些对提高思维品质有潜在作用的数学知识。例如:数学中隐含条件,数学中的各种思想,具有智能价值的数学思维能力(如主要用于分析问题的模型化能力,主要用于解决问题的应用能力和一般意义上的推理能力等)以及具有人格建构作用的各种数学品质。教师要善于开发教材资源,利用新教材对数学综合领域的开发和重视,积极培养学生利用已有经验探索新知识的能力,用有效提问的方式,引发学生思考,给学生寻找创造性思维的契机,培养学生的创造性思维。
新教材六年级数学教学“扇形统计图”的教学中,教材要求的是学生能够认识并学会分析扇形统计图,了解其特点,能根据扇形统计图的相关知识解决简单的实际问题。在教学中,学生能够通过数学阅读,掌握扇形统计图的特点,并能在老师的引导下学会分析扇形统计图,本节教学知识的掌握对学生来说是相对容易的。学生在学习的过程中,很少遇到思维的障碍,也不易引起思维的碰撞,表面上看来,培养学生的创造思维没有契机。在教学中,我要求学生,结合自己的家庭收入,绘制成扇形统计图在班级展示。学生就走进了收集数据,整理数据,计算百分比的过程,可以说,在这一过程中,学生的思维系统性得到了锻炼,但是并没有创造思维的渗透。但时,当学生进行了一系列的上述活动后,在如何把各项收入的百分比准确的绘制在圆中表示扇面的大小时,学生的问题就出现了。这时,学生就要思考,扇面的大小如何绘制?于是,学生就开始想办法,最终,学生联想到周角360度的知识,又联想到“求一个数的百分之几用乘法”的数学知识,还用到了画角的方法,才准确的绘制出自己家庭各项收入分布情况统计图。学生在完成统计图后,还把各项收入的扇面涂上不同的颜色,即直观又美观。学生的创造思维能力不但在此得到发展,而且还欣赏了数学的美。
四、 营造宽松环境,鼓励学生创造性思维的诞生
罗杰斯提出:“有利于创造活动的一般条件是心理的安全和心理的自由”。首先,要使学生积极主动地探索知识,发挥创造性,必须转换教师角色,使学生成为课堂合作、交流、表达、展示的主人。随着新课改的深入,虽然专家们呼吁还学生一个生命灵动的主动课堂,但是不少教师还是沉醉在自己满堂灌,齐声喊的整齐划一的课堂之中,限制了学生创造性思维的发展。教师应以训练学生创造性思维为目的,保留学生自己的空间,给学生的精彩留白,激发学生的展示与表达。哪怕是一个错误的表达,它也可能是学生创造性思维萌芽的火花,而这种表达,也可能启发其他学生或老师思维灵感的滋生。创造性思维的特点之一就是它的灵活性。在创造性思维的过程中,新的解决问题的思路,方案的产生往往带有突然性,这种突然性产生新思路,新方案的状态,成为灵感。所以,如果教师能给学生营造一个宽松无忧的教学环境,学生便不会因为惧怕出错,惧怕嘲笑,惧怕责罚而不敢表达。没有积极主动表达的渴望,思维可能停滞,更何谈创造思维能力的培养。压抑的环境,严格的责备,致使多少美妙的想法,奇特的思维夭折在恐惧之中,摧残在开口之先。教师的教鞭下没有了瓦特,教师的课堂上没有了爱迪生,教师的认为无可救药中赶走了三毛,这些后来成功的人,反而因为离开了学校课堂的束缚,成就了自己的天才梦想。孔子《论语》的自由谈,成就了门徒72贤。但是,我们现实的生活中,不是每个学生都有爱迪生,三毛那样的家庭环境,那样的父母引导,他们可能因为求学环境的压抑,老师的怠慢,夭折了思维,从一个极端走向另一个极端,淹没了生命的精彩。所以,只有在宽松和谐的教育环境之中,学生才能充分发挥自己的聪明才智和创造性思维的能力。
五、根据学生的年龄特点,组织适合学生需要的数学活动
新课标指出:“数学教学是数学活动的教学。”’“数学活动是师生积极参与,交往互动,共同发展的过程。”“数学教学应根据具体的教学内容,注意使学生在获得间接经验的同时能够获得直接经验。”数学活动经验的积累是提高学生数学素养的重要标志,是学生不断经历、体验各种数学活动过程的结果。创造性思维是在不断积累数学活动经验的过程中积淀和发展的。数学活动经验和学生创造性思维的培养需要在“做”的过程和“思考”的过程中积淀,是在数学学习过程中逐步积累的。可见,数学活动是数学课程目标体系的支点。有了这个支点,学生的主体地位才能得以真正实现,学生的创造性思维才能得到激发,这就像劳动产生了智慧一样,数学课程目标的全面实施才有了可能。
(一) 做卡片的启示
女儿7岁,老师要求做10个相同的心形卡片。她开始把做好的第一个卡片放在硬纸板上用手拿着剪,卡片滑动,她剪得很艰难。两张过后,她把剪好的卡片按着画在硬纸板上,克服了滑动,画出来再剪,剪得快了一些。四张过后,她把剩下的硬纸板两张两张重叠在一起,画好后再剪,成功的完成了任务。我问女儿,怎么想到的后来这两种剪法,女儿随意说:“做着做着就想到的呗!”
女儿的话,启示了我,做中学,做中思,创造性思维的培养离不开做中学的数学活动。
(二) “做中学”是培养创造性思维的不竭动力。
著名教育家陶行知,曾倡导学生“做中学”的教学思想,在数学问题的探究中,在数学创造性思维的培养中,尤以“做中学”最为有效。学生在“做中”才能发展探究,开阔思路,经历体验,产生联想,获得感悟,积累智慧,创造性思维得到激发。
小学数学教材,为学生提供了丰富的教学活动素材,学生在具体的操作活动中,能达到对新知识的真正建构。例如,在“教学长方体和正方体”,“圆柱与圆锥”表面积的计算时,我让学生自己动手做学具模型,学生在做中,理解并推出了这些立体图形表面积的计算方法,也为后续图形的展开与折叠做好铺垫,培养了学生的空间想象能力。在做中,学生掌握了这些立体图形中所隐藏的隐含条件,而这些隐含条件,恰好是解决实际问题培养学生创造性思维的思维基础。
(三)数学活动要适合学生的年龄特点
《数学课程标准》指出,数学课程“不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验触发……数学教学活动必须建立在学生的认知发展水平和已有经验基础之上。”小学数学教材,编排的数学活动,尤以综合实践领域为多。教师在组织学生进行数学教学活动时,要根据学生的年龄特点及教材编写者的意图,安排适合的教学活动,切记揠苗助长,扼杀了学生的创造性思维。也就是说,在数学活动的设置中,教师要在学生的最近发展区,让他们有“跳一跳”就能“摘到桃子”的感觉和渴望。
总之,在小学数学教学中培养学生的创造性思维十分重要。小学教育是学生受教育的启蒙阶段,它对于成就一个人的生命才华有重要的意义。我们要感悟并实践新课程,认真开发教材资源,充分重视种种思维能力间的联系和渗透,有效的进行思维训练。在引导学生开展各种丰富多彩的探索活动中,培养学生的创造性思维,为学生的可持续发展创造条件,使他们能适应发展中的社会,并且使自己能成为成长中不断更新的人。
参考文献
[1] 徐巧英. 基础教育课程改革通览[M]. 北京:新华出版社 2003.
[2] 刘清平 李聪睿.小学数学课程标准[S]. 北京:北京理工大学出版社,2012.
[3] 多湖辉. 创造性思维[M]. 中国青年出版社,2002.
『叁』 数学创造性思维的培养应注重哪几个方面的问题
一、营造有利于学生创新的氛围。
在课堂教学中,营造有利于学生创新的氛围,是培养学生创新意识的前提。
1、充分相信学生的创新潜能与意识。
在数学教学中,我努力为学生设置悬念,不断激发和增添学生的学习兴趣,使学生产生神秘感、追求感、探索感、创造感。例如:在教能被2、3、5整除的数的特征这一节时,能被2、5整除的数的特征学生顺利掌握,能被3整除的数的特征,是本节的教学难点,因为能被3整除的数没有明显的规律性,不易被发现,而且很容易产生负迁移。所以,在学习能被3整除的数的特征时,我先要求学生试除黑板上大小不等的数,找出能被3整除的数。当学生试除感到困难时,我对学生说:“老师不用计算就能知道哪些数能被3整除,而且能马上说出他能否被3整除。”“真的吗?”学生好奇心马上来了。一个个争着起来说:“48”。能。“78”能。“1934”不能。“2313”能……学生说有速度越来越快,数也越来越大,一边说一边在下面演算,结果验证老师的答案完全正确。老师怎么能这么快做出判断呢?——这就为学生设置了悬念,激发了学生的好奇心,他们迫切想知道其中的奥秘。这时,老师要满足学生流露出来的探索欲望,借助学生探索热情,把握这个有利时机,揭示学习目标:能被3整除的数的特征。于是,整节课,便在学生的自学、观察、探讨中有声有色地进行着,学生的思维潜能得到了进一步的开发和拓展。
2、热情鼓励学生的创新精神。
小学生在学习中表现出来的创新精神和创造力是十分难能可贵的,我们一定要及时鼓励,绝不能漠然视之,吝啬褒奖。对学生发表的不同见解,采用的简捷算法,提出的新颖思路,教师要以欣赏者的角色,用满腔的热情,赞扬的语气,采用不同的形式予以鼓励。当某位同学提出创造性的解法时,就以他的姓氏命名为“×氏解法”;当某位学生的创造性解法不够完善时,教师下课后和他一起探讨;当学生的创造性解法明显不对时,教师首先肯定他的创新意识。这样,通过鼓励,使学生产生积极的情绪体验,维系创新的热情。
3、建立民主平等的师生关系。
民主平等的师生关系是学生大胆探索、勇于创新的催化剂。心理不研究表明,民主平等的师生关系,能使学生思维活跃,求知欲旺盛,敢想、敢说、敢问,乐于发表意见,勇于大胆创新。教师要尊重学生的任何发现,认真对待学生提出的各种各样的问题,即使是看起来十分幼稚可笑的问题,也绝不能求全责备,更不能指责挖苦。不能抑制、抹杀他们的发现,而应尽量找出其闪光点,并给予肯定,小心呵护学生的创新萌芽。
二、提供有利于学生创新的机会。
培养学生的创新能力是实施素质教育的核心,而课堂教学又是实施素质的主渠道。因此,教师应紧紧围绕课堂教学来培养学生的创新能力。
1、让学生积极主动地参与知识的形成过程。
学生积极主动参与知识的形成过程时,行为的动机是自愿的,行为的过程是自由的,行为的结果是独创的。因此,我们在课堂教学中,就应引导学生积极主动参与知识的形成过程,给学生提供创造的机会,使课堂教学成为培养学生创新能力的主阵地。
2、让学生大胆质疑,讨论争辩。
学起于思,思源于疑,疑则诱发探索,从而发现真理。爱因斯坦曾说过:提出一个问题往往比解决一个问题更重要。没有问题就没有紧张的思维活动,更谈不上创造性思维活动。因此,在教学中,教师要注意引导学生发现问题、提出问题,并适时组织学生讨论争辩,激发学生的探索欲望。
3、让学生共享他人的创造成果。
欣赏别人的创造成果,可以刺激学生产生新的设想。因此,在教学中,教师应重视引导学生“共享”他人的创造成果,激发学生创造热情。
三、不断发展学生的创造性思维。
创造性思维是应用独创的新颖的方法解决问题,它是一切发明和创造所必需的。我们应当结合教学内容,充分发挥教材中的思维因素,强化思维训练,不断发展学生的创造性思维,培养学生的创新能力。
1、注重发散性思维的训练。
发散性思维反映了创造性思维的“尽快联想,多作假设和提出多种解决问题的方案”的特点,是创造性思维的主要形式。我们应彻底改变那种对每道题都事先人为的确定一个“标准答案”的做法,代之以允许学生有自己的思想,选择自己喜欢的解法。这样,不仅可以纠正学生惟书惟上的观念,而且可以培养学生的创造性思维。
2、重视非逻辑思维的训练。
加强逻辑思维训练,是培养学生创造性思维的基本途径。在培养学生逻辑思维能力的同时,我们还必须注意加强以猜想、联想、类比、模拟、不完全归纳推理等主要方式的非逻辑思维训练。小学数学中用得较多的是不完全归纳法,不完全归纳推理是人类发现真理、认识客观世界、探索未知领域的一种重要方法。在小学数学教学中,我们应有目的地进行不完全归纳推理的训练。
3、注意直觉思维的训练。
直觉思维是一种整体的粗线条的简缩式的思维。它具有跳跃性、试探性和一定的偶然性,加强直觉思维训练,可以使学生思维敏捷性、灵活性、创造性得到有效发展。
『肆』 如何有效发展数学创新思维
创新思维已成为新课程改革中教与学的灵魂,是实施素质教育的核心;数学领域蕴含着丰富的创新教育素材,数学教师要根据数学的规律和特点,认真研究,善于利用,积极探索培养和训练学生创造性思维的能力。
小学生正处于思维最活跃的年龄阶段,所以小学六年是打好学生创新思维的基础阶段。因此,数学教师在教学过程中应充分运用各种有效的教学手段和方法,来培养小学生的创造思维能力。本人联系多年教学实际,对如何培养小学生的创新思维能力谈几点粗浅的想法:
一、设疑激趣,拓宽思维时空
古人早有“行成于思毁于随”的戒言,也有“学而不思则惘,思而不学则殆”的训导,如果缺乏必要的深思熟虑,就不会促使思维从量变到质变的瞬间飞跃,迸放出创新的火花。“打开一切科学的钥匙都毫无疑义的是问号,而生活的智慧大概就在于逢事都问个为什么”。
在教学实践中,教师要给学生创造充分的思维时空,既要张弛有度,遵循小学生生理和心理周期性起伏变化的规律,还要“处处留心搜求,把进行的其它活动或接触到的其它事物有意无意地和自己思考的问题联系在一起。这样一遇到适当的剌激,就会触发灵感的产生”。因此教师要灵活布设问题悬念,努力创设问题情境,以此激启学生积极思考。特别是要脚踏实地,充分利用课堂教学的空间和时间,把握教材的内容特点,开拓创新思维的培养途径。
以教学“10的分与合”一课时为例,我预先准备了一个盒子,盒子里装了10支铅笔。一上课,我请一名学生上台摸铅笔,然后老师根据学生摸到的支数猜盒子里剩下的支数,经过几次猜都猜对了,学生感到很好奇,然后老师趁热打铁,说:“因为老师知道了盒子里总共有10支,然后根据10的分成就能猜着了,你们想学会这个本领吗?”数学知识的神奇力量激起了学生强烈的求知兴趣,使学生趣味盎然地参与学习,积极思考。
又如:在教学小学数学第三册《可能性》一课时,课伊始,我让一名男生代表和一名女生代表上台进行摸球比赛,比赛规则是蒙上眼睛摸五次,摸到红球次数多者为胜。结果女生代表每次都是红球,这时男生有的生气,有的责怪,有的打抱不平,说老师有“阴谋”。这样的情境创设,激发了学生的兴趣,形成知识之间的悬念,引导学生尝试改变固定的、传统的思维方式,拓宽数学思考的思维时空。
二、大胆猜想,培养求异心智
心智是一种直觉,它是非常灵活迅捷而复杂的心理活动现象,是在原有知识的基础上,通过对事物的表象感知,借回忆、想象、猜测等心理活动,闪电般跳跃式地对事物本质进行判断,它是创造思维的灵魂。牛顿认为“没有大胆的猜想,就做不出伟大的发现。”在训练学生直觉思维方面,应鼓励学生大胆猜想,敢于创新,冲破思维定势,摆脱常规约束,允许学生突发奇想,甚至异想天开。对学生回答问题不要苛求过于严谨全面,让它们发现什么说什么,想到多少说多少,说出表象的理解或猜想也可以,不一定要说个所以然;教师对学生独到的见解或奇异的想法要因势利导,引上思维的轨道,让他们想出点门道来。
例如,在教学“能被3整除的数”时,我先让学生猜一猜:“能被3整除的数”会有什么特征?有些学生可能受到“能被2、5整除的数”的特征影响,都在猜测特征是“个位数是3、6、9的数”。老师顺势出示一组个位是3、6、9的数,如13、16、19、23、26、29……结果学生发现这些数都不能被3整除,学生的思维因为猜想的落空陷入了困惑状态,由此引发了他们解决疑惑的心理趋势;而教师乘机再列出另一组数,如12、15、18、21、24、27……学生发现,这些数反而都是能被3整除。这样,通过一系列的猜想与困惑,造成学生认知上不平衡,从而激发起学生继续探索的欲望:为什么后面这一组数都能被3整除呢?学生又带着对这个问题的好奇心进行猜测探索,最后发现原来能被3整除的数的特征是:一个数各个数位上的数的和能被3整除,这个数就能被3整除。
这种探索方法的基本程序就是:提出问题,学生猜想,探索规律,验证结论。它就是要让学生先敢于对数学问题进行大胆猜测,再通过探究寻找规律,这样得到的知识对学生来说是有效的,得到的也不仅仅是一种知识,更多的是数学思维能力的训练。
所以,在学习数学时,教师要鼓励每个学生应有一点敢于猜想的意识,多进行“猜一猜”的活动。猜想是不受现成事实的束缚,它包含着可贵的大胆想象和推测的成分。教师要敢于通过“尝试”、“猜想”等问题情景的创设,大胆暴露学生的思维过程,引导学生沿着合理的解题思路去思考。
当然,在猜想中,要提醒学生仔细观察,分析已知,发现规律,以此类推;或者提醒学生利用结果,进行猜测,推而广之。总之,猜想锻炼的是学生发现规律,利用规律解决问题的能力,能让学生活跃的思维在迸发、碰撞中激发出创新的火花。
三、开拓思路,诱发思维的发散性
徐利治教授曾指出:创造能力=知识量×发散思维能力。思维的发散性,表现在思维过程中,就是思维不受一定解题模式的束缚,从问题个性中探求共性,寻求变异,多角度、多层次去猜想、延伸、开拓,是一种不定势的思维形式。发散思维具有多变性、开放性的特点,是创造性思维的核心。在教学中,可采用多种变式练习来进行训练:
(一)填空答案多样化
教师要擅长改变教材和教纲的有限性,把唯一性的填空改编成一空多填式,以此对学生进行发散思维的培养。如在教完了20以内的进位加法后,为使学生更熟练计算进位加法,安排一组填空,要求其尽量多填,使等式成立:8+5=□+□,□+3=6+□,□+□=6+5,9+□=□+7。
(二)问题解答多向化
从知道的条件进行多角度、全方位的审视,是产生思维多向性的关键,只要善于引导学生联想以前学过的或从生活中具备的知识和方法,准确深入挖掘问题中具备的已知条件,努力探索,那么学生就会在发现问题和解题方法上独树一帜。
例如,我在教学小学数学第四册《统计》一课时,安排学生进行想想做做的练习:先出示一些杯子,师问:“你想按照什么来进行分类并统计?”
学生1:有的杯子有把柄,有的杯子没有把柄。
师:对,可以分成有把杯和无把杯。
学生2:有的杯子2元,有的杯子3元,有的杯子4元。
师:对,可以按照价格来分类统计。
学生3:有的杯子有颜色,有的杯子没有颜色。
师:对,可以分成有色杯和无色杯。
学生4:有的杯子高,有的杯子矮。
师:对,也可以根据高矮来分类统计。……
我们可以看到,由于每个学生对事物的观察和思考都具有自己的个性特点,假如只局限于自己个人的思考范畴内,学生只能认识到极为有限的事物统计标准,但是在教师有意的引导下,学生纷纷回答,让不同的智慧火花在课堂上闪现,每个学生都在享受着集体的共同智慧结晶,打开了思维之大门。
(三)问题设计自主化
此类方式是指习题只给出已知条件,至于要求求解什么、怎样求解是需要学生自主设置的。训练的目的是让学生沿着尝试多种方向设计问题,并能用相应方法解决问题。如:“由已知黄花9朵,红花3朵”,师问:“你能提出哪些问题?”学生提出了求和、求差、求倍数关系的好多问题,此类训练可以让每个学生都会有机会发现自己数学智慧的一面,激起创新思维的主动性。
(四)解题思路发散化
在数学教学中培养学生创新的思维能力,“一题多解”是最切实可行切实有效的方法,是培养学生发散思维的一种好方法。教师要重视引导学生在解好一题后,不要满足于结论,不要拘泥于常规,不束缚于定势,而是通过有针对性的,有数学依据地开展积极思维,大胆设想,合理分析,探索和开发题目的“潜在价值”,在沿着不同的方向思考后,比较了多种解决问题的方法后,找出最佳方案,锻炼学生敏捷的解题能力。具体来说,可以通过纵横发散、知识串联、综合沟通等方法,达到举一反三、融会贯通的效果。
1、在应用题解题中培养思维发散性
应用题解题方法多样化,主要有利于培养学生思维的深刻性,针对具体题目让学生寻找不同方法,换个角度思考、分析,可能得到意想不到的收获。
如:小学数学第四册有这样一个应用题:“一辆公共汽车原有35个人,下车了9人,又上来了12人,现在车上有几人?”大部分学生列式:35-9+12=38(人),这毫无疑问是对的,不过,我没有满足,继续问:“还有不同的想法吗?”这时,一个小朋友举起了他的小手:“我是这样做的:12-9=3(人),35+3=38(人)。”好多小朋友瞠目结舌,然后就说:“不对吧”。另外有几个小朋友发出了不同的声音:“对的”,我让这位小朋友说理由,他说:“12-9=3(人)求出的是上来的比下去的多的,多的加上原来的就是现在有的人数。”多么精炼的回答呀!
以上两种方法各具特色,妙趣横生,我似乎看见学生的思维正自由驰骋于数学领域。
2、在计算题解题中培养思维发散性
在数学解题学习中,学生的主要任务并不是解题,而是学习解题,因此教师教的重点和学生学的重点,不在于“解”,而在于“学解”。所以教师要在尽可能不提供现成结论的前提下,让学生亲身独立地进行数学解题活动,这就要求我们在教学预设时,不能仅仅满足于预设解题过程和方法,更要预设教学过程和方法,倡导学生个体之间、群体之间的多向互动的格局,使学生与学生之间不断交流解题信息。在此过程中,教师和学生分享彼此的解题经验和认识,交流彼此的解题情感和体验,真正为促进解题的思维创新提供可能性,这种理念,哪怕是在计算题的解题训练中也一样要得到落实。
例如:小学数学第四册的笔算加法,这部分内容是在学习了口算加法的基础上进行的。我出示了例题(352+234=?)之后就让学生自己进行尝试练习,然后巡视,让我没想到的是,学生在思考探索和交流之后,提供的解答方法竟然会这么异彩纷呈,我就赶紧让他们上台板演。
这第三种方法尤令我惊异,惊异于学生居然有如此让人出乎意料的数感。这也证明,计算中的多种解题方法练习,同样非常利于达到诱导学生进行创新性发散思维的目的。
四、运用类比,训练灵活多变的思维
类比是根据两个对象或两类事物间存在着的相同或不同属性,联想到另一类事物也可能具有某种属性的思维方法,是发现问题、探索解决问题途径常用的数学思维方法,是创造性思维的精髓。利用类比思维可使学生加深对基础知识的理解,举一反三,融会贯通,发现新的数学知识;可培养学生的发散思维、创造思维及合情推理能力,即遇到新的问题,从形式结构的表象联想似曾相识的旧知识,进一步从感性认识深化到它们的内在联系,以旧喻新,类比新的知识,发现新的理论。
如六年级有这样一道题目:“甲乙两地相距240千米。快车从甲地开往乙地要4小时,慢车从乙地开往甲地要6小时,两车同时从两地出发相向而行。多少小时相遇?”老师要求学生解答,并说出思路。
生1:240÷(240÷4+240÷6),先求出甲和乙的速度和,路程除以速度等于时间。
这时,老师问:“还有其他解法吗?”一个平时不太爱发言的学生举手了,他说:“我是这样想的,把两地相距的路程看作单位‘1’,可列式为1÷(1÷4+1÷6)”。
很明显,这个同学利用的是类比思维方式。在解决问题过程中,他从要解决的问题出发,受“题型特点”的启示,联想与它类似的一个熟悉的问题即工程问题,想到曾做过类似题目,并以这个类似题目作为中介,又想到了某种解题方法和技巧,而后进行分析,用熟悉的解法来思考解答所要解决的问题,这种创造思维的火花可以感染全班的每一位同学。
五、实践是创造思维能力的练兵场
(一)充分利用游戏,创新思维在实践中触发
杨振宁博士曾作过这样的对比,中国学生学习成绩比一起学习的美国学生好得多,然而十年后,科研成果却比人家少得多,原因何在?其实就在于美国的学生思维活跃,动手能力和创新能力强。针对小学生在平时学习中缺乏参与性活动这一现状,新教材为学生设计了大量的、具有思考价值的游戏、比赛,(如:对口令、猜数、青蛙过河等等),我很重视这些形式的题目,在课堂上总是多给学生一些自由的时间,让学生多进行一些创造性的活动,使每个学生都能积极地参与到课堂中来,开动脑筋、拓宽思维。
如在教学进位加法的练习课时,这节课的主要目的是使学生熟练口算20以内的进位加法。于是我用了三个游戏把整节课贯穿起来。首先是个人抢答赛。老师出题学生抢答或学生互相出题,这个游戏的设计主要是培养学生思维的敏捷性。接着是小组合作争优赛。4人一组,用三个数组成4个算式,比比哪个组想的算式最多。这个游戏不仅使学生对整体与部分的关系有了深刻的认识,还培养了学生思维的整体性和合作竞争的意识。最后“吃鱼”这个游戏把整个课堂气氛烘托起来,学生们个个跃跃欲试,学习情绪高涨。游戏是这样的,每人一条鱼,每条鱼的上面都有一道题,只要能大声地读题说得数,这条鱼就送给你。学生们不仅要把自己的题说对,还要对其他同学的题进行判断,大大提高了练习的强度。游戏是以“开火车”的形式进行的,又提高了练习的时效性。这节练习课,虽然没有让学生动笔去写,但它的练习强度和效率是显而易见的,在练习课中学生的思维异常活跃。
由此可见,丰富多彩、富有创造性的活动和练习不但能够收到意想不到的效果,还能够使每一个学生从中体验到学习给他们带来的快乐。
(二)捕捉生活素材,创新思维在实践中提升
任何知识都来源于生活,形成于实践,又指导实践,推动科学技术的发展,而学习掌握它,如果脱离实践就成为无源之水。富勒说过:“理论是一种宝库,而实践是它的金钥匙。”我们要力求引导学生,通过阅读、练习、观察、实验、讨论等多种形式,使学生动脑动口动手,在亲自参与下获取知识,熟练技能,领悟理论的本质。组织学生互相讨论,发挥学生各自思维个性差异的优势,使他们相互间的思维“推波助澜”,形成多维立体交叉的思维信息网,教师随时点拨指导,使思维产生跃变。
比如一年级的小朋友刚接触减法,学校里正好组织秋游,游览的路上,我就有意地问:“沈望,你带了几个橘子?”“5个。”“已经吃了几个?”“2个。”“还剩几个?”“3个。”“你能用一个算式表示吗?”“5-2=3”,其余小朋友也争先恐后地喊道。
在回家的路上,我问小朋友:“今天玩得开心吗?”
生:“开心。”
师:“都玩了哪些项目呀?”
生:“射箭、打气球、野炊、爬山……”
师:“今天的秋游活动中,你发现了数学问题吗?”
思考片刻。
生1:“叔叔给了我5支箭,我一支一支地射,一会儿全射光了。”
师:“你能用算式表示吗?”
生1:“5-5=0。”
师:“真好。”
生2:“妈妈给我4元钱,我用掉了2元,还剩2元,4-2=2。”
生3:“我带了2个面包,被我吃光了,2-2=0”
生4:“墙上有10个气球,我打破了一个,还剩9个,10-1=9”
……
在这样的问题解决情景中,由于是从学生的生活入手进行数学知识的训练和巩固的,学生更愿意交流,更愿意表达自己的想法,迸发出了学生思维的火花,创新思维在实践中得到了提升。
又如:我在教学《元角分的认识》一课,在课堂上创设了一个在商店内买卖物品的模拟场景,让学生经历“买卖物品”,然后延伸到家庭生活中,布置了一个特殊的课外作业,让学生星期天跟妈妈上菜场买菜或上商场购物,试着帮妈妈付钱、算帐,回学校后相互交流自己购物、付钱和算帐的经过,说说自己懂得了什么,还有什么困难。针对学生的交流再作小结。
如:有位同学说自己的购物经历:“我用一元钱去买了两枝铅笔、一块橡皮,铅笔2角钱一枝,共4角钱,橡皮5角钱一块,还找回一角钱。”
单凭课堂上的讲解、练习是很难达到这种效果的,学生在亲身实践中发散了思维。
美国教育学家第斯多惠说过:“教学的艺术不在于传授的本领,而在于激励、唤醒、鼓舞。”因此,教学实质上就是设法激启学生自觉学习的兴趣,让他们亲自参与学习,只有多参加实践,多体验生活,积累生活的第一经验,储备直觉思维的感性素材,才有可能升华为抽象思维的理性认识,产生广阔的思维联想,进而进行归纳、类比、推猜,发现新的事物,建构新的理论。
总之,虽然数学具有严谨的逻辑性,但这只是对于理论的完成形式推演论证而言,而理论的学习掌握,解题思路的形成或数学知识的应用,特别是数学知识的发展完善,新理论的发明建构,都离不开灵活自由的创造性思维,它推动人类的进步,创造人类文明,是人类发展进步的巨大财富。我们每一个教育工作者,一定要重视学生创新思维能力的培养,为学生提供思考、探索和创新的具有开放性和选择性的最大空间,我们就能引导学生自己发现问题,进行创造性学习,培养创新思维,为成为适应二十一世纪科技发展所需要的人才奠定基础
『伍』 如何培养数学创新思维能力
1、用“求异”的思维去看待和思考事物
也就是,在我们的学习工作和生活中,多去有意识的关注客观事物的不同性与特殊性。不拘泥于常规,不轻信权威,以怀疑和批判的态度对待一切事物和现象。
2、有意识从常规思维的反方向去思考问题
如果把传统观念、常规经验、权威言论当作金科玉律,常常会阻碍我们创新思维活动的展开。因此,面对新的问题或长期解决不了的问题,不要习惯于沿着前辈或自己长久形成的、固有的思路去思考问题,而应从相反的方向寻找解决问题的办法。
3、用发散性的思维看待和分析问题
发散性思维是创新思维的核心,其过程是从某一点出发,任意发散,既无一定方向,也无一定范围。
发散性思维能够产生众多的可供选择的方案、办法及建议,能提出一些独出心裁、出乎意料的见解,使一些似乎无法解决的问题迎刃而解。
4、主动地、有效地运用联想
联想是在创新思考时经常使用的方法,也比较容易见到成效。我们常说的“由此及彼、举一反三、触类旁通”就是联想中的“经验联想”。
任何事物之间都存在着一定的联系,这是人们能够采用联想的客观基础,因此联想的最主要方法是积极寻找事物之间的关系,主动的、积极地、有意识的去思考他们之间联系。
5、学会整合,宏观的去看待
我们很多人擅长的是“就事论事”,或者说看到什么就是什么,思维往往会被局限在某个片区内。整合就是把对事物各个侧面、部分和属性的认识统一为一个整体,从而把握事物的本质和规律的一种思维方法。
『陆』 如何培养学生数学的创造性思维
首先要多方面的让孩子看问题,多角度的看问题。其次对于孩子的回答不要用常有的思维去定对错打消孩子的积极性。
『柒』 如何培养中学生数学创造性思维能力
.........
数学知识源于创新,又能促使人们进行新的创新。创新思维寓于数学教学之中,数学教学能够且应该着力培养学生的创新思维。在教学过程中,教师怎样发挥主导作用,启发引导学生积极思维有所发现与创新,是一个很重要的问题。结合自身的数学教学实践与体会,特对学生创新思维能力的培养提几点建议。
一、创设情景,激发兴趣,培养学生的创新意识
教育学家乌申斯基说:“没有丝毫兴趣的强制学习,将会扼杀学生探求真理的欲望”。创新的过程需要兴趣来维持。兴趣是学生创造思维活动成功的先导,想象力是涌现创造性思维的源泉,观察力是激发学生创造思维性活动的关键,灵活多变的教学是培养学生创造性思维能力的崭新途径。
1、利用“学生渴求他们未知的、力所能及的问题”的心理,培养学生的创新兴趣。
兴趣产生于思维,而思维又需要一定的知识基础。在教学中出示恰如其分的问题,问题是学生想知道的,这样问题会吸引学生,可以激发学生的认知矛盾,引起认知冲突,引发强烈的兴趣和求知欲,学生因兴趣而学,而思维,并提出新质疑,自觉的去解决,去创新。
2、合理满足学生好胜的心理,培养创新的兴趣。
学生都有强烈的好胜心理,如果在学习中屡屡失败,会对从事的学习失去信心,教师创造合适的机会使学生感受成功的喜悦,对培养他们的创新能力是有必要的。比如:针对不同的群体开展几何图形设计大赛、逻辑推理故事演说等等,展开想象的翅膀,发挥它们不同的特长,在活动中充分展示自我,找到生活与数学的结合点,感受自己胜利的心理,体会数学给他们带来的成功机会和快乐,培养创新的兴趣。
3、利用数学中图形的美,培养学生的兴趣。
生活中大量的图形有的是几何图形本身,有的是依据数学中的重要理论产生的,也有的是几何图形组合,它们具有很强的审美价值,在教学中充分利用图形的线条美、色彩美,给学生最大的感知,充分体会数学图形给生活带来的美。在教学中尽量把生活实际中美的图形联系到课堂教学中,再把图形运用到美术创作、生活空间的设计中,产生共鸣,使他们产生创造图形美的欲望,驱使他们创新,维持长久的创新兴趣。
4、利用数学中的历史人物、典故、数学家的童年趣事、某个结论的产生等等激发学生的创新兴趣。
二、质疑问难,培养学生的创新思维
古人云:“学贵有疑,疑是思之始,学之端。”疑问是思维的开始,疑问是创造的动力。教师应该多为学生创设问题的情境,并且加以引导、点拨、启发,为学生的质疑打下基础,做好铺垫。会质疑,善质疑并不是一蹴而就的,是长期培养的结果。刚开始的时,学生可能会无从下手,甚至所提的问题也可能与教学内容风马牛不相及,做为教师要给予尊重、信任,一旦发现闪光点,就及时表扬,让学生感受质疑的乐趣。长此以往,学生会渐入佳境,敢问、会问、善问了。
三、巧设练习,培养学生的创新思维
数学课中,当一种新的方法,新的概念被我们掌握之后,就需要我们去巩固,去应用,所以数学教学的练习题设计就显得尤为重要了。成功的课堂教学必须有较高的练习质量做基础,练习题既要关注学生的学习需要,又要重视学生能力的培养。练习设计要遵循学生的认知规律,做到由浅入深,有层次有坡度,环环相扣,逐步递进,体现生活,注重趣味,突出实践性,使学生切实体验数学在我们生活中,从而对数学产生亲切感,增强学生对熟数学知识的应用意识。
四、积极参与,灵活多变,培养学生的创造能力
课堂教学是师生情感交往的场所,教师要给予学生参与的时间和权利。在教学要创设民主型、探索性的课堂气氛,因势利导,反映学生多种思路解题的创造性,注重创新思维能力的培养。热情表彰、鼓励学生的新作,最好由老师板书学生作业的全过程,分析学生的思路,指出其新颖之处和思维闪光点,激励全班同学积极进取,发展创新思维。结合教学内容指导学生研究性学习,发挥知识的智力因素,大胆探索解题思路,勇敢地提出新解法。鼓励学生讨论、质疑、发表各种见解,形成师生间的能动交流。
五、建立新型的师生关系,营造创造性思维的环境,让学生具备创新思维、创新个性、创新能力。
教师应当充分地鼓励学生发现问题,提出问题,讨论问题、解决问题,运用有深度的语言,创设情境,激励学生打破自己的思维定势,从独特的角度提出疑问。鼓励学生进行批判性质疑。批判性质疑是创新思维的集中体现,科学的发明与创造正是通过批判性质质疑开始。让学生敢于对教材上的内容质疑,敢于对教师的讲解质疑,特别是同学的观点,由于商榷余地较大,更要敢于质疑。能够打破常规,进行批判性质疑,并且勇于实践、验证,寻求解决的途径,是具有创新意识的学生必备的素质。
科学知识的创新充满勇于进取的人文精神,记载着人类发明、创造的光辉历史,凝聚着人类思索与奋斗的成功经验。它既有巧夺天工的构思,传承着人类的聪明与机智,又深刻地反映了人们对社会和自然规律的认识,闪耀着真理的光芒。总之,知识蕴藏着丰富的智力因素,是我们知识经济时代的财富,也是人类社会发展不可或缺的精神食粮!.
.............................................................
『捌』 什么是数学创新思维
众所周知,在数学活动乃至一般的实践活动中,谁都希望自己具有较强的思维能力。这主要取决于一个人的思维品质。思维的发生和发展,既服从于一般的、普遍的规律性,又表现出个性差异,这种个性差异体现在个体思维活动中的智力特征方面就是思维品质,有时也称思维的智力品质。就数学思维来说较为重要的思维品质有深刻性、广阔性、灵活性、创新性、目的性、敏捷性以及批判性。下面就数学思维的创新性谈一谈自己的认识。
思维的创新性与思维活动的独创性、创造性或创造性思维具有相同的含意,只不过创新性强调“新颖”而已,也就是说,创新性是指独立思考创造出有社会(或个人)价值的具有新颖性成分的成果的智力品质。它的特点是主体对知识经验和思维材料进行新颖的组合分析、抽象概括以致达到人类思维的高级形态;它的结果,不论是概念、理论、假设、方案,或是结论,都包括着新的因素,它是一种探新的思维活动。当然,这种新颖不是脱离实际的荒唐,而是具有社会价值的新颖。它可能被人们所忽视或误解,但它的见解或产物,最终会被社会所承认。
在数学教学中,思维的创新性主要表现在学习数学的过程中善于独立地思索、分析和解答问题,提倡探讨与创新精神,当然也包括小发明创造。做为教师,要自觉地启发学生多提问题,提问题是思维的结果,也是创新的开始,不要给学生立下很多规矩,更不要打棍子,即学生在学习过程中常会提出许多不同的看法或新见解,它往往蕴藏着智慧的萌芽,哪怕只有一点点新意,也应充分肯定和大力鼓励。
在中学,思维的创新性更多地表现在发现矛盾以后,把知识融汇贯通,以进攻的姿态,突破矛盾,最终解决问题。例如:
求证:
分析:该题纯从三角去考虑,是较繁琐的。如果想到单位圆上的点,而点,那么欲证命题成立,只须证即可。又数列,故成立。
(方法二),想到单位圆上的点 ,而点 又对应着向量那么欲证命题成立,只须证即可。又向量可看作力,进而想到大小一样,终端分布在正n边形的n个顶点上的共点于正n边形中心的力系,其合力为零。故成立。证明(略)。
用数学方法解决物理问题似乎理所当然,但反过来用物理方法去解决数学问题却不太被人们重视,但对有些问题这样去做不仅解法新颖,具有创新性,而且强化了各科之间的相互联系、互相渗透。
思维的创新性的反面是思维的保守性,它的主要表现是在数学学习中受到各种条条框框的限制,思维受束缚,不愿多想问题,只求现成的“法规”,而产生思维的惰性。消除思维保守性的有效方法是提倡学生多思和多问几个为什么,在加强基础知识和基本训练的前提下,提倡学生独立思考。
21世纪人才竞争的焦点在于培养具有创新思维的一流人才上。只有具有创新思维的人,才能领导和把握科技发展的潮流。作为教师,对学生创新思维的培养是我们义不容辞的责任,也是我们不断探索的课题。
『玖』 如何培养小学生数学创造性思维
一、激发兴趣,营造良好的创新氛围。
思维是创新的力量和动机,为了激发学生的创新思维动机。在教学中,教师首先要挖掘教材中的创新思维因素,要善于点燃创新思维之火,激发学生的热情。美国心理学家布鲁纳曾说过:“学习最好的刺激乃是对所学学科的兴趣。”的确,浓厚的学习兴趣,可以使学生产生强烈的求知欲,从而具有敏锐的思维力、丰富的想象力和牢固的记忆力。学生的主动参与是一种自觉行动,如果没有兴趣,就谈不上主动,参与更是一句空话。因而教师要努力创设教学情境,让学生在教师提供的背景中积极思维,以激发学生的求知欲,充分调动其学习的积极性,让他们主动参与学习的全过程,做到课伊始趣即生,课展开趣溢浓,课结束趣未尽。
二、启发想象,培养学生的创新精神。
想象是创造的翅膀,它是教学中培养学生发散思维的基础,是培养能力,发展创造力不可缺少的基本思维方法,爱因斯坦说过:“想象力比知识更重要,因为知识是有限的,而想象力概括着世界上的一切,推动着进步,并且是知识进步的源泉。”的确如此,想象可以说是思维的体操,是拓展思维空间的内动力。所以,在课堂上教师应让学生展开联想的翅膀,这样有利于学生创造思维能力的培养。
教育家乌申斯基曾经说过:“强烈的活跃的想象是伟大的智慧不可缺少的属性。”是啊,有了丰富的想象力就能在脑海中再现各种事物的形象,就能在记忆表象的基础上创造出种种新形象,小学生思维活跃,富于想象,但是他们丰富的想象力不是天生的。想象力的形成依赖于社会生活实践,依赖于教师的启发诱导。
联合国教科文组织所撰的《学会生存》一书所指出的:在创造艺术形式和美的感觉的过程中,我们获得了美感经验。这种美感经验和科学经验是我们感知这个万古长青的世界的两条道路,如同清晰思考的能力一样,一个人的想象力也必须得到发展,因为:“想象力既是艺术创造的源泉,也是科学发明的源泉。”想象是人脑中对已有表象进行加工创新形象的心理过程,它具有形象性、概括性、整体性、自由性、灵活性。创造性形象对于创造能力的产生和发展,有着较大的促进作用。因此任何创造活动都离不开想象,想象能力是衡量人创造能力的重要标志。在课堂教学中引导学生展开想象能有效地培养学生的创新意识。
三、巧设疑问,开拓学生的创新思维。
古人云“学贵有疑”,创新思维的培养可以从质疑开始。因为,质疑是人类思维的精华,质疑的过程实质是积极思维的过程,是提出问题、发现问题的过程,因而问题就是创新起点,教师要指导学生在学习中善于发现问题,启发学生积极思考,进而提出一些创造性问题,指导学生自行解决,使学生在解决问题的同时,既获得知识,又能提高能力。古人亦云:“学起于思,思源于疑。”没有“疑”就没有学生的探索。“疑”是打开知识大门的钥匙。学生在学习的过程中难免会遇到一些疑难问题。鼓励学生质疑问难,是调动学生学习积极性和主动性的重要手段,是培养学生创新知识的重要途径。在教学中,教师应认真分析学生的层次,对不同类型的学生应善于有针对性地设计疑难,恰当地提高设问,开拓学生的思维,使全体学生都积极思考共同参与教学。在教学中,让学生产生疑问,不是为了难倒学生,而是希望学生积极参与,激发学生探索知识的兴趣和热情,成为学生进行自主、探索学习的动力。因此,教师要营造一个民主、和谐、宽松的氛围,鼓励学生质疑问难,以培养他们的创新意识。
课堂上无论学生提出的问题正确与否,教师都应从正面引导,鼓励他们敢于发表自己的见解,尊重他们的自尊心,同时教师也要把握住学生提出思维含量较高的问题,促使学生深入地探究。这样,就能不断激发学生的创新意识。
四、鼓励求异,引发学生的创新思维。
在实行素质教育的今天,越来越多的教育有识之士普遍认为,教学其实并不需要那么多的统一,而要鼓励求异。求异思维是创造性思维的核心,它要求学生凭借自己的智慧和能力,独立地思考问题,主动探索知识,创造性地解决问题,而创造性思维是一种发散的求异思维,发散求异的目的在于创新。“百花齐放,百家争鸣”,春天不更艳丽?学习也是同样的道理。只要积极鼓励求异,不“死读书”,学生的学习才会不断闪现创造的亮点。
求异思维可谓是标新立异,是对思维定势的否定。作为创造思维的核心,它更体现出其固有的独创性和新颖性。求异是儿童的天赋,他们乐于表现得与众不同。因此,教学是要鼓励学生发表自己的独我在上面吧,那样我能掌握了分寸立见解,迸发求异的火花。学生的思维激活后,必须众说纷纭,创新的火花定会不断闪烁。
五、多方入手,提高学生的创新思维。
小学生的学习,以模仿为主,不仅有显性的知识、技能等方面的模仿学习,还有隐形的思维、策略等方面的模仿学习,特别是作为一名语文教师,如在教学时能时不时露几手“绝招”,能使学生具备更多的灵性。而这种创新教育,可谓是不留任何痕迹的创新艺术教育,更有利于提高学生的创新能力。我们可以从以下途径入手:
1、语言的表达上。在创新教育面前,语文教师的语言不仅要生动形象,更要追求“富于变化”,不管是导语也好,还是总结过渡语都要认真考虑,精心设计,力争变平为奇,变陈为新,达到语能惊人的境地。
2、板书的设计上。板书可谓是一堂课的微型教案,板书设计精当,构思巧妙,给人耳目一新之感,无形中也能带动学生的创新。
3、教法的选用上。“教学有法,教无定法”。语文教师在课文的教学设计上要力避“千课一面”,做到因文而异,给学生以新鲜感。
六、捕捉生活,提升学生的创新思维。
任何知识都来源于生活,形成于实践,又指导实践,推动科学技术的发展,而学习掌握它,如果脱离实践就成为无源之水。富勒说过:“理论是一种宝库,而实践是它的金钥匙。”我们要力求引导学生,通过阅读、练习、观察、实验、讨论等多种形式,使学生动脑动口动手,在亲自参与下获取知识,熟练技能,领悟理论的本质。组织学生互相讨论,发挥学生各自思维个性差异的优势,使他们相互间的思维“推波助澜”,形成多维立体交叉的思维信息网,教师随时点拨指导,使思维产生跃变。
丰富的知识经验是创造力的源泉。任何一个领域内的问题解决都会涉及到大量该领域的专门知识,离开了这些知识基础,问题解决就会成为一句空话,创造力也就成了无源之水。陶行知先生曾说过:“手和脑一块儿干,是创造教育的开始;手脑双全,是创造教育的目的。”在小学低年级数学教学中,让学生动手操作是激发学生内在创造潜力的重要途径。学生运用已有的经验,在具体的看、摸、折、量、比、算等操作活动中,经历知识的发现、问题的思考、规律的寻找、结论的概括、新知的重建等一系列数学活动过程,这本身就是充满了生命活力,体现创新意识的过程。
『拾』 浅谈在数学教学中如何培养高中生的创造性思维
创造教育是开发人的创造能力,培养创造型人才的教育。创新能力是21世纪合格人才最重要的素质。在21世纪里,国家的综合国力和国际竞争能力将越来越取决于教育发展、科学技术和知识创新水平。数学教学中就是要让高中生对已有的数学知识,进行重新组织加工,创造出新的设想,新的解题思路。在培养高中生创造性思维过程中,教师要重视突出高中生学习的主体地位和数学探究精神的培养。
一、数学创新性思维的概念及特征
探讨在高中数学教学中培养中学生创新性思维,就有必要先了解数学创造性思维的概念及特征:
(一)数学创新性思维的概念
所谓创新性思维是指有创见性的思维,人们通过这种思维不仅可以揭示出事物的本质及其内在联系,而且还能在此基础上产生新颖的、独创的、有实际社会意义的思维。数学创新性思维是指能主动的、独创地提出新的观点与方法,解决新问题的一种思维品质,它具有独创性和新颖性。而高中生数学创新性思维是个体在强烈的创新意识指导下,把头脑中已有的知识信息重新组合,产生具有一定意义的新发现、新设想及与众不同的方法。高中生的创造性思维不一定具有社会价值,但对高中生个人创造性思维的培养具有非常重要的意义,因此,在教学过程中,必须有意识地培养高中生的创造性思维,使高中生形成良好的思维品质。
(二)数学创新性思维的特征
数学创新性思维发挥着大脑的整体工作特点及下意识活动能力,完整地把握真数与形的关联,数学创新性思维不仅具有创新的特点而且具有数学思维的特点,是两者的有机结合,具有的相关特征如下阐述所示:数学创新性思维具有创建性、新颖性的标志;积极地创造性想象与现实统一是数学创新性思维的重要环节;发散思维与逻辑思维相结合是数学创新性思维的基本模式;专注与灵感是创新性思维的重要特点。
二、数学教学,要突出高中生的主体地位
创造力普遍存在于人类个体之中,是人所具有的一种潜能。高中生创造力的培养过程,实质上就是人的潜能向显能的“引发”过程,从教育学的角度分析,这一过程也是人的主体地位的回归和提升的过程,没有人的主体地位的复现,人所特有的能动性,自主性和创造性就无法很好地被“引发”出来,高中生的创造力,创造性思维培养亦无从谈起。数学不仅是概念、定义、定理、法则,它更是一个活动的过程,一种思考和探索我们所生存的这个世界数与量各种关系的方式。数学是做出来的,而不是教出来的,创新的数学教学更应当按照陶行知创新教育的思想,激励高中生的自主学习,激发高中生产生主体地位的欲望,解放他们的头脑,双手、眼睛、嘴巴……。高中生只有在做数学的具体过程中,能够亲身经历数学概念与数学知识发展过程的相互作用后,才能真正理解数学,掌握数学,驾驭数学。对于许多高中生来说当他们需要解决一些感兴趣的又与他们的实际能力相适当的数学问题时,他们便发现数学知识的重要,从而产生学习数学的积极性,自觉捕捉学习数学知识的要点,在数学课堂教学中不能将数学当作一个已经完成的、现成的形式理论来教,而要在了解高中生现实的基础上,突出高中生的主体地位,由自已通过亲身的活动来发现与创造数学,在实现认知的同化过程中,发展自己的创造性思维。
把激趣、启思、致用三者辩证统一起来,不仅教给了高中生基础知识和基本技能,培养高中生动手操作,团结合作的能力,从而激发了高中生的创造兴趣,创造意识,培养了高中生的创造能力。因此高中生主体地位的体现是高中生创造性思维培养的基本要求。
三、在数学教学中强化思维训练以培养高中生创新思维意识
在中学数学教学中,培养高中生的创新思维能力,按照不同的教学内容,采用不同的教学方式,以针对性提高高中生创新意识的能力。
(一)适当时机进行统摄思维训练以培养高中生的创新性思维
数学内容教学到一定阶段后,有必要进行统摄思维训练,以增强高中生的创新思维意识及能力。统摄训练是对学过的数学相关的概念、定理、单元章节等进行系统的复习,并且进行技巧性的总结归纳,掌握知识的内在联系,理顺知识的脉络,编织良好的知识网络。采用统摄培训教学方法主要是为高中生创新性思维发挥打造良好的基础。
(二)恰当地进行批判性思维以培养高中生的创新意识
批判性思维是高中生对自我解题思路的冷静分析,对解题结果的重新审核。在数学解题中采用批判性思维就能够不断对解题的思路及结果进行完善,不断找到新方法、新思路。批判性思维不仅仅是对高中生自己解题思路的审核,而且能够科学的分析教师教学的一切,打破唯书唯师论,高中生经过自己对问题或者解题思路进行系统的考量,更能够进一步的接受所学知识。为了能够让高中生有不少机会进行批判性思维锻炼,在数学教学过程中,教师可以有意识地适当出一些改错题或判断题等题型来发展高中生思维的批判性,加强创新意识的培养。
(三)不时地进行直觉思维训练以培养高中生的创新意识
数学直觉思维是建立在对客观数学知识掌握及熟悉的基础上发生的,是平时数学知识的积累与沉淀的一种良好反应,表现在数学问题上就是没有严格的逻辑推理、没有进行理论推导时就能够感觉到问题的结论。直觉思维越过中间环节,不像逻辑思维要经过严格的论证与推理等中间环节,就像英语学习中所谓的“语感”。在数学考试中,需要强烈的这种直觉思维,因为有着良好的直觉思维能够形成良好的解题思路,不但准确率高,而且节约考试宝贵的时间,体现解题的高效率。因此在教学中,首先,教师就应该不时地对高中生进行示范,让高中生体会到直觉思维的魅力;其次,教师在教学中多设置直觉思维的题目,在高中生毫无准备下突问高中生用直觉思维解决问题;最后,要充分运用启发式教学,有效地发展高中生直觉思维。
(四)针对性地进行逆向思维训练以培养高中生的创新意识
在兵法上强调迂回,其实生活中很多事情亦如此。当一个问题在正面难以找到突破口时,就应该从其他的角度下手,冲破思维定视,间接求解,利用正难则反的思维。数学中存在着不少的证明题,就可以利用这一思维,在数学教学中教师就应该有针对性的设置逆向思维的题目,引导高中生灵活地转换观察和分析数学问题的角度,让高中生充分看到逆向思维的功能。
(五)有机地进行集中思维与发散思维训练以提高高中生的创新意识
在数学教学中进行集中与发散思维训练,针对某个知识点或者是某个问题进行发散,对于散乱的知识点进行集中,总结。创新性思维基本成分包括集中性与发散性思维,所谓集中性思维就是利用已有的信息按照一般的单一模式,得出一个正确的答案。发散性思维是根据某个知识点沿着不同的方向去思考、探索,联想到更多的解决问题方案,这些方案不一定都具有价值,需要评判、筛选、提炼、升华。集中性思维是发散思维的起点和归宿,两者相辅相成,要培养高中生的创新意识就不能够单单从集中性思维或者发散性思维进行培养,而应两者进行有机地结合,才能发挥效用。
在数学教学过程中,要以知识为载体,传授知识的同时,要有意识地渗透和突出数学思想,培养高中生的创造性思维能力,使高中生在获得知识的同时,也学到了思考问题的方法,提高解决问题的能力从传统教育所强调的逻辑思维向现代社会所需要的创造性思维转变。