导航:首页 > 创造发明 > 风洞发明迷

风洞发明迷

发布时间:2021-12-31 19:24:40

1. 成都娱乐风洞在哪里

目前四川有两家有风洞一家在绵阳科技馆,另一家在华侨城极速空间站。绵阳的是由中国科学院人员研究发明的,主要供军方训练,不过现在也可以去体验,票价大家在150元左右,公交车好像是3或29路到吧,记不太清了。华侨城的是购买的国外一家公司的。地址:成都市北三环交大立交,金牛区沙西线16号。48、108、93路等能到。另外现在在郑州有一家上海创润风能科技有限公司民企公司自主研发了娱乐风洞,感觉还不错。如果有不清楚的可以再问我。

2. 法拉利的风洞

该风洞建于1998年,但初期的运作并不理想,原因是测试范围太广,技术人员足足用了两年时间才完全掌握整套设备。首次根据这个风洞的实验数据来设计赛车是在2000年,结果就是这一年,法拉利车队和舒马赫登顶成功。也许这只是一个巧合,但在当今F1赛车的性能表现与空气动力学息息相关联的的前提下,风洞实验工作的成效直接影响着车队的整体表现。
它由一个直径15英尺的风扇叶轮组成,并可以最大提供2000千瓦的动力,风洞可以模拟从弯道到直道任何环境中F1车体的环境指数。这里还有最先进的数据还原系统,它能完整还原车体在受到撞击时的真实受力情况。
法拉利风洞由世界顶级建筑师Renzo Piano设计。该风洞竣工于1997年,用于模拟F1赛车在赛道上所能遇到的真实场景。风洞配有金属轧制路,5米宽,功率为2,200kW的风机,能够根据紊流度、角度和均匀性生成极高质量的气流。风洞还具有世界最先进的数据获取系统和作用力及压力监控系统。可使用比例模型并结合由300多个传感器监控的复杂机构模拟任何一种设置或运动(滚动、侧滑、俯仰和过度转向)。日益加速的技术进步和不断改善的空气动力性能意味着 F1 赛车开发组始终如一地使用着风洞,同时风洞本身也在持续更新。

针对法拉利车队遥遥领先其他车队的现状,索伯车队老板皮特·索伯曾表达过自己的观点,他认为法拉利车队之所以比以前更加强势,原因之一就是他们在空气动力学套件(以下简称"空力套件")的发展上占据了绝对优势。为啥他会这样认为呢?一个主要的原因是,在2004赛季的F1大奖赛中,索伯车队不但使用了与法拉利车队相同的引擎,甚至连变速系统都是采用一样的零部件,而且在赛车底盘结构方面也都有接近之处,可为什么他们在整体表现上会落后法拉利车队如此遥远呢�赛季前半程结束后,排名第一的法拉利车队积142分,索伯车队以15个积分位列全部10支车队的第6位)?造成这些差距不仅在于引擎或是变速箱以及底盘的调校方面,可能主要原因之一还是出在赛车的空力套件上。毕竟,在研发空力套件的专业项目方面,索伯车队现在还处于起步阶段,消耗资金相当高的风洞实验室的研究也在最近才开始实施。

对于高速运转的赛车来说,空力套件发挥着至关重要的作用。当赛车在高速前进时,必须要面对两个"敌人"的挑战,一个是来自路面的阻力,另一个则是空气阻力。为了将迎面而来的无形空气切割开来,以达到在气流中更快速而且稳定穿梭的目标,赛车的前、中、后、侧、上和下各部分车身的设计就必须具有扰流与导流的功能,尽量能够减低风阻,并有效利用气流来将引擎、变速箱和刹车系统等产生的高温热能带走。同时,也要利用气流来产生足够的车身下压力,使赛车紧紧贴住地面,另外就是使得赛车尾部的乱流或是真空带对后方追击车辆产生更强烈的"影响"。这些,都是流体力学工程师们要不断解决的问题。

3. 世界上第一个风洞科学家

世界最早的风洞是英国人在1871年建造的,但是飞机的发明人却是美国的莱特兄弟。莱特兄弟在1901年建造了一个风速每秒12米的风洞,用它做实验发明了世界上第一架飞机。但是真正有系统地建造大量风洞的是德国人。

1907年,德国的哥廷根大学成立了「哥廷根空气动力实验院」,这个实验院的创办者和主持人就是后来赫赫有名的普朗特教授(Ludwig Prandtl,1875~1953)也是流体力学的奠基人,被称为「现代流体力学之父」。普朗特认为研究空气动力学必须做模型实验,于是在1906年建立德国的第一个风洞。接着在普朗特的领导下,德国耗费钜资建立了一批低速、高速、超高速和特种风洞。

4. 什么是风洞娱乐风洞还是风洞吗

风洞
风洞,简单地说,就是根据运动的相对性原理,用以模拟各种飞行器在空中飞行的庞大试验设备。风洞是我国航空航天飞行器的“摇篮”,所有的飞机、火箭、卫星、导弹、飞船都是被风洞“吹”上天空的。

阳春3月,记者走进我国自主设计建造的亚洲最大的立式风洞,领略风洞里独特的风景。

置身人造“天空”

秦岭之巅还残雪点点,山脚之下已是桃花吐艳。汽车驶过一段蜿蜒的山路,眼前景象豁然开朗:翠绿的山林间,一座5层高的建筑拔地而起。

“我们到了,这就是亚洲最大的立式风洞。”听到陪同人员介绍,记者感到有些失望,因为眼前的景象与想象中完全不一样。新建成的立式风洞不算高大,也不显得很威武,甚至不如城市里常见的摩天大楼。

从外表看,与普通房屋唯一不同的是,该建筑身上“背”着一根粗大的铁管。技术人员对记者介绍:“可不能小瞧这铁家伙,它是产生气流的主要通道。”

其实,风洞普通的外表下有着神奇的“心脏”。步入其中,记者发现这片人造“天空”完全是用高科技的成果堆砌而成。

风洞建设是一个涉及多学科、跨专业的系统集成课题,囊括了包括气动力学、材料学、声学等20余个专业领域。整个立式风洞从破土动工到首次通气试验仅用了2年半,创造了中国风洞建设史上的奇迹。

大厅里,螺旋上升的旋梯簇拥着两节巨大的管道,好不壮观!与其说它是试验设备,不如说是风格前卫的建筑艺术品。

一路参观,记者发现该风洞“亮点”多多:实现了两个摄像头同时采集试验图像,计算机自动判读处理;率先将世界最先进的中压变频调速技术用于风洞主传动系统控制,电机转速精度提高50%……

负责人介绍说,立式风洞是我国庞大风洞家族中最引人瞩目的一颗新星,目前只有极少数发达国家拥有这种风洞。

感受“风”之神韵

风,来无影去无踪,自由之极。可在基地科研人员的手中,无影无踪无所不在的风被梳理成循规蹈矩、各种强度、各种“形状”的气流。

记者赶得巧,某飞行器模型自由尾旋改进试验正在立式风洞进行。

何谓尾旋?它是指飞机在持续的失速状态下,一面旋转一面急剧下降的现象。在人们尚未彻底了解它之前,尾旋的后果只有一个:机毁人亡。资料显示,1966年至1973年,美国因尾旋事故就损失了上百架F-4飞机。

控制中心里,值班员轻启电钮,巨大的电机开始转动。记者不由自主地用双手捂住耳朵,以抵挡将要到来的“惊雷般的怒吼”。可没想到,想象中的巨响没有到来,只有空气穿流的浅唱低吟。30米/秒、50米/秒……风速已到极至,记者站在隔音良好的试验段旁,却没有领略到“大风起兮”的意境。

你知道50米/秒风速是什么概念?胜过飓风!值班员告诉记者,如果把人放在试验段中,可以让你体验被风吹起、乘风飞翔的感觉。

我国首座立式风洞已形成强大的试验能力。负责人告诉记者:该型风洞除可完成现有水平式风洞中的大多数常规试验项目,还能完成飞机尾旋性能评估、返回式卫星及载人飞船回收过程中空气动力稳定性测试等。

资料链接

世界上公认的第一个风洞是英国人于1871年建成的。美国的莱特兄弟于1901年建造了风速12米/秒的风洞,从而发明了世界上第一架飞机。风洞的大量出现是在20世纪中叶。到目前为止,我国已经拥有低速、高速、超高速以及激波、电弧等风洞。
群山连绵,植被茂密。从外表看,很难想象山里有洞,洞里卧虎藏龙。这些人工开凿的巨大山洞绵延数公里,横贯几座山,构成了目前中国也是亚洲最大的风洞群,包括低速风洞群、高速风洞群和超高速风洞群,分别应用于不同的研究试验范围。

2.4米×2.4米的大型风洞,是亚洲最大的跨声速风洞。走进这个世界级的大风洞,只见一枚国产新型导弹模型正在接受严格的气动试验。站在现代化的测试大厅,聆听着滚滚风雷的咆哮,看着试验数据在大屏幕上不断跳动,记者的血液一下子沸腾起来。

风洞试验,简单讲就是依据运动的相对性原理,将飞行器的模型或实物固定在地面人工环境中,人为制造气流流过,以此模拟空中的各种复杂飞行状态,获取试验数据。这是现代飞机、导弹、火箭等武器研制、定型的“必由之路”。

在高速风洞研究所的陈列室里,一排排“长征”系列运载火箭,各种新型作战飞机,各种战略、战术导弹的模型,看得人眼花缭乱。研究所负责人告诉记者,空气动力学是航空、航天工业的基础学科。风洞试验作为它的主要研究手段,其水平高低与一个国家的尖端科技、尤其是国防军事实力的强弱紧密相关。

因此,世界发达国家都非常重视发展空气动力试验研究机构。据了解,德国在1907年就成立了“哥廷根空气动力试验院”,并在此后不惜巨资修建了一批低速、高速、超高速和特种风洞,在世界上率先研制出喷气式飞机、弹道导弹;美国于1915年就成立了国家空气动力研究机构。

新中国从零开始发展航空航天事业时,风洞成为制约技术发展的“瓶颈”。当发达国家拥有了高性能的飞机、导弹时,中国自己研制的飞机、设计的导弹只有花大量外汇,拿到别国的风洞去做试验,还要看别人的脸色行事。而今天,任何先进的导弹、飞机,都可以在中国自己的风洞里拿到出厂的“通行证”。仅去年,中心的高速风洞研究所就先后试验解决了数百个技术问题,吹风试验5次打破历史最高纪录。

风洞人告诉记者,这些先进装备都是从这里的风洞“吹”出去的。他们说,那还只是“当年勇”,此刻我们所在的2.4米×2.4米风洞,是1997年12月首次通气试验宣告建成的。在这座大型风洞里,任何导弹、战机的模拟状态都更加接近实际飞行,可获得更为准确的试验数据。目前,我军的新型导弹、战机,都将首先从这里起飞,去精确命中目标、去自由翱翔蓝天。

太空飞船首先在这里遨游“苍穹”

大大小小的“神舟”飞船返回舱模型在记者面前摆了一大片,数一数,足足有100多个。那边还放着今年5月刚刚发射升空的“海洋”一号和“风云”一号卫星模型。

这是在中心的超高速风洞研究所。在宽敞明亮的试验大厅里,该所负责人告诉记者,航天技术是大国地位和国防实力的展示,而所有的航天飞行器,包括“ 神舟”飞船及其逃逸塔、返回舱等,都先要在风洞里“遨游太空”。尤其是飞船返回舱,在返回地球的过程中要穿越大气层,受到摩擦产生的高温及风、雨、雷、电影响,因而不仅其外型设计要经过“吹风”,其防热材料的选择也需经过多次风洞试验。

记者看到,经过加工制作的“神舟”返回舱模型,被科研人员送进电弧风洞,进行“热环境烧蚀”模拟试验。洞内高达几千摄氏度的高温气流,将模型外壳的防热材料烧成了明显的“蜂窝”状。技术人员介绍说,返回舱外壳的防热材料不仅要耐高温,而且对其烧蚀后的形状、均匀度等都有苛刻的要求。为选择最佳材料,这里已反复进行了上千次的试验。

矗立在另一边的激波风洞和1.2米×1.2米风洞,也是完成飞船返回舱试验的 “功勋风洞”。激波风洞是国内最大的、可在短时间运行的脉冲型超高速气动力、气动热试验设备,能模拟6~16倍音速的高速飞行器飞行环境,为飞行器在太空中飞行的空气动力特性研究提供准确数据。在1.2米×1.2米风洞中,“神舟”飞船、返回舱、逃逸塔等大量模型经历了数千次的气动试验、获取了数万个技术参数。通过反复提取试验数据、多次修改设计方案,才迎来中华“神舟”飞天的辉煌一刻。

4月1日,记者曾在“神舟”飞船着陆场目击“神舟”三号返回舱着陆,亲眼看到悬挂返回舱的90多根伞绳依次排列,没有一点缠绕。现场的专家称,不仅返回舱外壳材料的烧蚀达到最佳状态,着陆姿态也达到了最佳状态,说明飞船的空气动力试验达到了很高水平。

可以预见,在不久的将来,从这洞中飞出的“神舟”四号、“神舟”五号… …也将在茫茫太空写下神奇的篇章。

跻身国民经济主战场

漫步大大小小的风洞群,记者的目光被一座8米×6米、长达237米的庞然大物所吸引———这就是亚洲尺寸最大的低速风洞。这条盘踞在大山沟里的“巨龙” ,曾荣登国家科技进步奖的金榜。我国的东方明珠电视塔、西安仿古塔、成都万人体育馆等著名高层建筑,就是从这里获得“准生证”的。

低速风洞研究所的负责人告诉记者,利用空气动力学研究手段,对高层建筑、复杂外形建筑及桥梁等的风载风振现象进行风洞模拟试验,可以为抗风、抗振设计提供可靠的依据。

据说,对建筑物的第一次“风动”警告来自30多年前的美国。1971年,由美国著名桥梁专家设计建造的第一座斜拉索桥在强台风中扭曲折断。

1979年,中心承接了对红水河铁路桥模型的风洞试验,揭开了我国民用建筑抗风研究第一页,风洞的应用范围自此由单一的军工产品,拓展到广阔的国民经济主战场。

在这里的试验大厅里,摆放着上海东方明珠电视塔、北京新首都机场候机楼、厦门海沧大桥等许多精巧漂亮的建筑模型。技术人员说,东方明珠塔在设计之初,就在低速风洞中进行了上千次模型吹风试验,并修改了设计。1994年8月,一场强台风袭击我国东南沿海地区,许多高层建筑在风中倒塌,而东方明珠塔却安然无恙。北京新首都机场楼经风洞试验后发现,大楼一侧出现负压,修改设计后才破土动工。厦门海沧大桥是厦门市有史以来建设的最大一座桥,中心对该桥的模型进行了全面气动试验,对设计提出明确修改意见,确保深受台风灾害之苦的厦门人民用上放心桥。

磁悬浮高速列车、新一代中型载货汽车也是从这里启程的。我国的解放牌和东风牌中型载货汽车,造型曾几十年不变,其气动阻力系数比国外同类汽车要高出20%,燃料消耗要多出10%。“八五”期间,东风汽车技术中心与空气动力研究中心合作攻关,经4年努力设计出了新车型,其气动阻力和耗油量指数分别接近和达到国际先进水平。

亚洲雄风笑迎新挑战

前些年,对于中国的空气动力研究成就,曾闹过一场颇具戏剧性的“国际误会”———当国际上确认中国已拥有相当水平的空气动力研究设施时,美国人一口咬定是苏联帮着干的,而俄罗斯人则坚信是美国暗中帮的忙。若干年后,他们才不得不承认,这是中国人自力更生创造的奇迹。

20世纪60年代,一群来自北京、沈阳、哈尔滨的知识精英,来到这片深山沟,开始了艰苦的创业。如今,这里已建起亚洲最大的风洞群,拥有低速、高速和超高速等各类风洞,具备各种飞机、导弹、卫星、运载火箭及太空飞船等航空航天飞行器的空气动力研究试验能力。世界著名空气动力学家、法国宇航院院长奥里维尔博士来此参观后感叹:“我确信,这是一项能使中国走向巨大成功的世界性成就!”

然而,中国风洞人丝毫没有自满。在空气动力中心的几天里,记者发现所有 “风洞人”都在紧张忙碌着。科研一线的技术人员介绍说,随着现代军事科技的飞速发展,各种新式武器装备迅速出台亮相,我们的风洞群已难以完全适应新装备发展的需要。因此,一场大规模的技术改造正在这里展开。

记者看到,某新型导弹在经过改进的风洞环境中,正进行新一轮的试验。它要经过风、雨、雷、电、火、沙等各种条件下的严格考验。

一座座风洞,一座座丰碑。近年来,空气动力研究中心靠人才建洞,在建洞中育人,培养出一大批年轻的高素质人才。在这里,记者时时能感受到拼搏者的自豪、奉献者的胸怀和开拓者的蓬勃朝气。

在世界航空航天领域,中国“风洞人”将闯出一片更加广阔的发展空间。

5. 什么是风洞试验,风洞到底是什么东东

风洞一般称之为风洞试验。简单地讲,就是依据运动的相对性原理,将飞行器的模型或实物固定在地面人工环境中,人为制造气流流过,以此模拟空中各种复杂的飞行状态,获取试验数据。这是现代飞机、导弹、火箭等研制定型和生产的“绿色通道”。简单的说,风洞就是在地面上人为地创造一个“天空”。至于我们国家的风洞为什么会选择建在大山深处,那是历史原因造成的。 发达国家如何发展空气动力学 空气动力学是目前世界科学领域里最为活跃、最具有发展潜力的学科之一。世界各发达国家对空气动力学的发展都给予了高度重视,不惜花费巨额资金建设空气动力试验设施并开展研究工作。 美国早在80年代中期出台的震撼全球的超级跨世纪工程——“星球大战”计划中,就曾把作为基础学科的空气动力学放在非常突出的重要位置上。的确,如果不先在空气动力学上获得重大突破,这个将耗资1万亿美元的超级工程,很多关键技术将无法解决。紧接着在1985年发表的“美国航空航天2000年”中,也把空气动力学列为需要解决的七个问题中的第一个。而剩下的六个问题中还有四个与空气动力学有关。这使美国花费巨额投资研制了每秒20亿次的超级计算机专门为空气动力学研究服务。 前苏联在“十月革命”胜利后的第二年,列宁就下令组建了国家空气动力研究机构——中央流体动力研究院,并任命“俄罗斯航空之父”茹可夫斯基担任院长,这一决策为前苏联成为世界上另一个航天大国奠定了坚实的基础。二次大战之前,斯大林曾下令建造了世界上第一座可用于进行整架飞机试验的全尺寸风洞。与美国相比,前苏联在空气动力学的整体水平上毫不逊色,甚至在许多方面都领先于美国,它在航空航天领域取得的一系列成就足以说明这一点。 英、法两国在二次大战前均为名列前茅的老牌航空先进国家,然而战后他们突然发现自己比美、苏等国落后了一截,于是两国重振旗鼓、奋起直追。在战后第二年,法国政府便决定把因战争和被占领分散到全国各地的研究机构组织到一起,组建了国家空气动力研究机构,并在阿尔卑斯山腹地开始创建莫当试验中心,堪称世界一流的大功率空气动力试验风洞设备。曾经发明了世界上第一座风洞的英国人更是不甘落后,除了政府加强对空气动力学的领导规划之外,充分利用大学进行基础学科的研究。据有关资料透露,在英国的46所大学里,至少有30个以上高水平的空气动力研究试验室。 日本在战后受到限制的情况下,航空工业曾有过长达8年的空白。但在此期间,其基础研究——空气动力学则进展神速。仅60年代,就先后仿制出11种飞机,自行设计8种飞机。

麻烦采纳,谢谢!

6. 为什么新型飞机上天要进行风洞试验

完成一架飞机的设计必须要弄清楚飞机的动力学性能,需要进行反复测试。如果一架根据理论设计的样机直接飞上天空,危险性很大。所以从莱特兄弟开始,飞机设计师们就充分利用风洞进行地面测试,在飞机上天之前尽量弄清其性能。
风洞是一种产生人造气流的管道,用来研究物体在气流中所产生的气动效应以及进行耐热抗压实验等。世界上公认的第一个风洞是英国人韦纳姆在1871年建成的,其目的是为了测量物体与空气相对运动所受到的阻力。1901年,莱特兄弟为了得到正确的飞行资料,也利用风洞进行了200多个机翼模型的测试。根据模型测试的结果,他们不仅建成了当时最大的双翼滑翔机,而且在1903年发明了世界上第一架带动力的飞机。
1.在风洞中利用荧光毛线显示机翼上气流的变化
2.风洞能根据需要产生各种人造气流
3.科研人员在风洞中安装实验模型
与试飞时飞机在空气中运动正好相反,风洞试验把飞机、机翼或模型固定在管道中,用风扇、高压存贮气体释放等手段产生人造气流,通过准确地控制气流的速度、压力、温度等实验条件,可以高效地模拟飞机在各种复杂飞行状态下的空气动力学特征。风洞试验几乎是飞行器研发中不可或缺的环节。
风洞种类多种多样,按气流速度可分为亚声速、跨声速、超声速、高超声速等类型;在直径尺寸上,小到几厘米,大到可容纳整架飞机。
但风洞试验并不是完美的,它毕竟只是一种模拟实验,有其局限性,如气流会受到边界、模型支架的干扰,风洞中的气体参数不能完全替代真实情况等。因此,通过风洞试验的飞机还必须到真实环境中进行反复测试和验证。

7. 风洞群是什么东西用来干吗的

风洞,实际上是一种能在其中按需要造成一定速度的气流并能在其中进行各种空气动力学的模拟试验的装置。风洞广泛应用于航空、气象、工程等领域。

按气流速度,风洞可分为低速风洞,高亚声速风洞和跨声速、超声速、高超声速风洞;按工作方式,风洞可分为持续工作式风洞、暂冲式风洞;按结构可分为开口式、闭口式两种。

风洞通常由收缩段、实验段、扩散段和测量控制等部分组成。气象上应用的一般属低速风洞,主要有仪器检定风洞、云雾实验风洞、大气环境模拟风洞等。仪器检定风洞用来校准、检验测风仪器并对这些仪器的动力学性能作研究。云雾实验风洞用来模拟大气层云雾滴变化的微观过程,这时风洞中还需有温度、湿度、压力的控制系统。大气环境模拟风洞运用相似原理,模拟大气边界层气象条件,研究边界层动力学和热力学特性及其变化规律,研究大气中扩散物的扩散、迁移规律以及地形和热力条件对它的影响,这时风洞中常需设置一定地形特征、热力条件及烟气示踪物等。

中国气象科学研究院计量所的0.8米(指实验段截面尺寸为0.8米×0.8米)风洞属低速回流闭口式风洞。它作为我国等级最高的风速标准设备,不仅承担着气象部门风速标准量值传递和风速仪器测试工作,还承担着国家技术监督局委托的其他部门的有关仪表的风速量值传递任务。

上述的“量值传递”一词,其含义为,通过检定,将国家基准所复现的计量单位量值逐级传递到工作用计量器具上,在计量基准与工作用计量器具之间建立一定的量值关系,通过这种关系对计量器具的测值进行订正,以保证测量结果的量值准确一致。实际上,反过来说,就是计量器具及其测得的量值在允许的误差范围内可追溯到国家基准,而国际上称此叫“溯源性”。因此,“溯源性”和“量值传递”这互为反义的两个词,都是用来说明计量基准与工作用计量器具之间的量值关系的。

中国气象科学研究院计量所的0.8风洞所承担的风洞标准量值传递任务,就是通过国家技术监督局授权使用的气流速度一级标准及其配套设备,把风速标准值逐级传递到工作用测风仪器上。所谓“逐级传递”,就是由国家气象计量站用风速一级标准检定省气象局的风速计量设备,而省气象局以此检定结果作为二级标准来检定县局工作用的测风仪器,从而建立基层用的测风仪器与国家标准间的量值关系,为测风仪器在业务使用中进行测值订正提供了条件,保证了测量结果的准确性和可靠性。

8. 风洞的作用

如今"风洞"这个名词已为许多读者,乃至广大青少年所熟悉。风洞,是指在一个管道内,用动力设备驱动一股速度可控的气流,用以对模型进行空气动力实验的一种设备。最常见的是低速风洞。最近位于四川绵阳的中国空气动力学研究和发展中心已建成具有世界水平的2.4米跨声速风洞(风洞常以试验段尺度命名)。这样大尺度的跨声速风洞,世界上只有美国和俄罗斯等少数国家才有。大家知道,风洞是发展航空航天事业的关键设备,研制任何飞机,包括军用飞机、民用飞机以及航天飞机,都必须首先在风洞中进行大量试验,试验飞机能不能飞起来,能飞多高多快和多远以及其他各项飞行性能等。2.4米跨声速风洞的建成表明,我国已进入世界航空航天大国的行列。
风洞——研制飞行器的先行官
决定一架飞机或其他飞行器的飞行性能,如速度、高度等,除飞机重量、发动机推力等要素外,最重要的因素是作用于飞机的空气动力。空气动力主要决定于飞机的外形。在设计和研制飞机时,首先是设计其外形,由此就可以确定作用于飞机的空气动力并推算飞行性能。但是,这个工作只能做在最前,不能在飞机造出来以后。确定飞机空气动力的实验设备主要是风洞。人们把风洞和风洞试验叫做航空航天的先行官是恰如其分的。
风洞实验的基本原理是相对性原理和相似性原理。根据相对性原理,飞机在静止空气中飞行所受到的空气动力,与飞机静止不动、空气以同样的速度反方向吹来,两者的作用是一样的。但飞机迎风面积比较大,如机翼翼展小的几米、十几米,大的几十米(波音747是60米),使迎风面积如此大的气流以相当于飞行的速度吹过来,其动力消耗将是惊人的。根据相似性原理,可以将飞机做成几何相似的小尺度模型,气流速度在一定范围内也可以低于飞行速度,其试验结果可以推算出其实飞行时作用于飞机的空气动力。
飞行器(包括飞机、直升机、巡航导弹等)在风洞中的试验内容主要有测力试验(测量作用于模型的空气动力,如升力、阻力等,确定飞行性能);测压试验(测量作用于模型表面压力分布,确定飞机载荷和强度);布局选型试验 (模型各部件做成多套,可以更换组合,选择最佳的飞机布局和外形)等等。随着飞行器性能的提高和改进;风洞试验所需要的时间不断增加。40年代,研制一架螺旋桨飞机,风洞试验时间是几百小时。至70年代初,一架喷气式客机的风洞试验时间是4-5万小时。航天器(如洲际导弹、卫星、宇宙飞船等)大部分航行在大气层外,基本上与空气无关,但其发射和返回是在大气层中,仍然需要在风洞中进行试验。如美国的航天飞机,在不同风洞中总共进行了10万小时的试验。
风洞的发展
世界上公认的第一个风洞是英国人于1871年建成的。美国的莱特兄弟 (O.Wright和W.wright)于1901年制造了试验段0.56米见方,风速12/s的风洞,从而于1903年发明了世界上第一架实用的飞机。风洞的大量出现是在20世纪中叶。
为了试验炮弹的气动力作用和研究超声速流动,瑞士阿克雷特(G.Ackttet)于1932年建成了世界第一座超声速风洞,试验段面积0.4米×0·4米,马赫数(风速与声速之比)2。适应跨超声速飞行器的发展,1956年美国建成世界最大的跨超声速风洞,试验段面积488米×4.88米,马赫数0.8-4.88,功率为16.1万kW。1958年,美国航天局建成试验段直径0.56米,马赫数可高达18-22的高超声速风洞。
为了提高风洞实验的雷诺数(模拟尺度或粘性效应的相似准则),1980年,美国将一座旧的低速风洞改造成为世界最大的全尺寸风洞(可以直接把原形飞机放进试验段中吹风),试验段面积24.4米×12.2米,风速150m/s,功率10万kW。1975年,英国建成一座低速压力风洞,试验段5米×4.2米,风速95-110m/s,压力3个大气压,功率1.4万kW,试验雷诺数(它是一个无量纲数)8×106。80年代,美
国建成一座低温风洞,以氮气(氮气凝固点低,适于低温下工作)为工作介质,温度范围340-78K,压力可达9个大气压,试验段2.5米×2.5米,马赫数0.2-1.2,雷诺数高达120×106。
我国的风洞建设发展迅速。1977年,中国空气动力研究与发展中心建成亚洲最大的低速风洞,串联双试验段:8米×6米和16米×l2米,风速100m/s,功率7800kW。1999年,又建成具有世界规模的跨声速风洞,试验段口径2.4米,马赫数0.6-1.2。
风洞应用扩大到一般工业
随着工业技术的发展,从60年代开始,风洞试验(主要是低速风洞)从航空航天领域扩大到一般工业部门。反映各行各业的发展越来越需要空气动力学和风洞试验的参与,已经形成了新的学科:“工业空气动力学”和“风工程学”。
例如,当汽车速度达到180km/h时,空气阻力可占总阻力的1/3。对小汽车模型进行风洞试验,合理修形。可使气动阻力减小75%。对建筑物模型进行风载荷试验,从根本上改变了传统的设计方法和规范,大型建筑物如大桥、电视塔、大型水坝、高层建筑群等,己规定必须要进行风洞试验,而且模型必纲模拟实物的刚度 (即弹性模型),测量"风振特性"。这方面已有教训。1940年,美国塔科马(Tacoma)大桥,一座大型钢索吊桥,因为并不很大的风载荷,导致桥体强迫振动和共振,引起断塌,因而受到学界广泛重视。对于大型工厂、矿山群,也要做成模型,在风洞中进行防止污染和扩散的试验。
为此,应运而生出现了许多"大气边界层风洞"。在这种风洞中,试验段的气流并不是均匀的,从风洞底板向上,速度逐渐增加,模拟地面"风"的运动情况(称为大气边界层)。国内已出现了十几座这样的风洞。
风洞试验模拟的不足及其修正
风洞试验既然是一种模拟试验,不可能完全准确。概括地说,风洞试验固有的模拟不足主要有以下三个方面。与此同时,相应也发展了许多克服这些不足或修正其影响的方法。
1.边界效应或边界干扰
真实飞行时,静止大气是无边界的。而在风洞中,气流是有边界的,边界的存在限制了边界
附近的流线弯曲,使风洞流场有别于真实飞行的流场。其影响统称为边界效应或边界干扰。克服
的方法是尽量把风洞试验段做得大一些(风洞总尺寸也相应增大),并限制或缩小模型尺度,减小边界干扰的影响。但这将导致风洞造价和驱动功率的大幅度增加,而模型尺度太小会便雷诺数变小。近年来发展起一种称为"自修正风洞"的技术。风洞试验段壁面做成弹性和可调的。试验过程中,利用计算机,粗略而快速地计算相当于壁面处流线应有的真实形状,使试验段壁面与之逼近,从而基本上消除边界干扰。
2.支架干扰

风洞试验中,需要用支架把模型支撑在气流中。支架的存在,产生对模型流场的干扰,称为支架干扰。虽然可以通过试验方法修正支架的影响,但很难修正干净。近来,正发展起一种称为"磁悬模型"的技术。在试验段内产生一可控的磁场,通过磁力使模型悬浮在气流中。

3.相似准则不能满足的影响
风洞试验的理论基础是相似原理。相似原理要求风洞流场与真实飞行流场之间满足所有的相似准则,或两个流场对应的所有相似准则数相等。风洞试验很难完全满足。最常见的主要相似准则不满足是亚跨声速风洞的雷诺数不够。以波音737飞机为例,它在巡航高度(9000m)上,以巡航速度(927km/h)飞行,雷诺数为2.4×107,而在3米亚声速风洞中以风速100m/s试验,雷诺数仅约为1.4×106,两者相距甚远。提高风洞雷诺数的方法主要有:
(1)增大模型和风洞的尺度,其代价同样是风洞造价和风洞驱动功率都将大幅度增加。如上文所说美国的全尺寸风洞。
(2)增大空气密度或压力。已出现很多压力型高雷诺数风洞,工作压力在几个至十几个大气压范围。我国也正在研制这种高雷诺数风洞。
(3)降低气体温度。如以90K(-1830C)的氮气为工作介质,在尺度和速度相同时,雷诺数是常温空气的9倍多。世界上已经建成好几个低温型高雷诺数风洞。我国也研制了低温风洞,但尺度还比较小。

9. 风洞是什么有什么用

风洞(wind
tunnel)就是用来研究空气动力学的一种大型试验设施。风洞其实不是个洞,而是一内条大型隧道容或管道,里面有一个巨型扇叶,能产生一股强劲气流。气流经过一些风格栅,减少涡流产生后才进入试验室。
风洞主要用来测量汽车的风阻,风阻的大小用风阻系数cd或cw表示,风阻系数越小,说明它受空气阻力影响越小。各类汽车风阻系数见34页图。
风洞不单是用来测量风阻,还可以研究气流绕过车身时所产生的效应,如升力、下压力,还可以模拟不同的气候环境,如炎热、寒冷、下雨或下雪等情况。这样,工程师们便可以知道汽车在不同环境下的工作情况,特别是冷却水箱散热、制动系统散热等问题。
风洞是由飞机制造业最先应用的。从上世纪60年代起,世界各大汽车公司和有关机构开始建立自己的风洞试验室。
我国也有风洞——中国航空动力研究所风洞实验室。它主要承担中国航天和航空机械的风洞实验任务,也可用作汽车、建筑物、运动设备的风洞实验,最大风速100米/秒。
大众汽车公司的多用途风洞实验室是可模拟多种环境条件下的汽车风洞实验,空气温度可在-30℃至+45℃调节,湿度为5%至95%,最大风速为180公里/时。

阅读全文

与风洞发明迷相关的资料

热点内容
商标注册被骗怎么办 浏览:160
朗太书体版权 浏览:268
大学无形资产管理制度 浏览:680
马鞍山向山镇党委书记 浏览:934
服务创造价值疏风 浏览:788
工商登记代名协议 浏览:866
2015年基本公共卫生服务项目试卷 浏览:985
创造营陈卓璇 浏览:905
安徽职称计算机证书查询 浏览:680
卫生院公共卫生服务会议记录 浏览:104
泉州文博知识产权 浏览:348
公共卫生服务培训会议小结 浏览:159
马鞍山揽山别院价格 浏览:56
施工索赔有效期 浏览:153
矛盾纠纷交办单 浏览:447
2010年公需课知识产权法基础与实务答案 浏览:391
侵权责任法第5556条 浏览:369
创造者对吉阿赫利直播 浏览:786
中小企业公共服务平台网络 浏览:846
深圳市润之行商标制作有限公司 浏览:62