1. 谁创立了分形几何学
分形理论是当今世界十分风靡和活跃的新理论、新学科。分形的概念是美籍数学家曼德布罗特(B.B.Mandelbort)首先提出的。1967年他在美国权威的《科学》杂志上发表了题为《英国的海岸线有多长?》的著名论文。海岸线作为曲线,其特征是极不规则、极不光滑的,呈现极其蜿蜒复杂的变化。我们不能从形状和结构上区分这部分海岸与那部分海岸有什么本质的不同,这种几乎同样程度的不规则性和复杂性,说明海岸线在形貌上是自相似的,也就是局部形态和整体形态的相似。在没有建筑物或其他东西作为参照物时,在空中拍摄的100公里长的海岸线与放大了的10公里长海岸线的两张照片,看上去会十分相似。事实上,具有自相似性的形态广泛存在于自然界中,如:连绵的山川、飘浮的云朵、岩石的断裂口、布朗粒子运动的轨迹、树冠、花菜、大脑皮层……曼德布罗特把这些部分与整体以某种方式相似的形体称为分形(fractal)。1975年,他创立了分形几何学(fractalgeometry)。在此基础上,形成了研究分形性质及其应用的科学,称为分形理论(fractaltheory)。
2. 分形几何是非欧几何
分形产生于20世纪,没有非欧几何也可独立研究,其基本数学基础为复数域迭代,主要应用领域为自相似图景艺术创作、奇异吸引子等;非欧几何为几何学拓展,至20世纪已趋成熟,其基本数学基础为平行公理重设,将空间无穷远处定义为有限远点,从而得到与欧几里德几何不尽相同的数学结论,主要应用领域为空间弯曲科学研究、空间弯曲工程分析(共形映射)、空间弯曲艺术创作。两者实属不同数学分支,分形创作原则上只是用了欧几里德几何的基本原理。硬要将两者并列,实属偏颇。
3. 分形几何是什么
分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。分形几何建立以后,很快就引起了许多学科的关注,这是由于它不仅在理论上,而且在实用上都具有重要价值。
分形几何学的基本思想是:客观事物具有自相似的层次结构,局部与整体在形态、功能、信息、时间、空间等方面具有统计意义上的相似性,称为自相似性。
例如,一块磁铁中的每一部分都像整体一样具有南北两极,不断分割下去,每一部分都具有和整体磁铁相同的磁场。这种自相似的层次结构,适当的放大或缩小几何尺寸,整个结构不变。
分形几何与传统几何相比有什么特点:
(1)从整体上看,分形几何图形是处处不规则的。例如,海岸线和山川形状,从远距离观察,其形状是极不规则的。
(2)在不同尺度上,图形的规则性又是相同的。上述的海 岸线和山川形状,从近距离观察,其局部形状又和整体形态相似,它们从整体到局部,都是自相似的。当然,也有一些分形几何图形,它们并不完全是自相似的。
其中一些是用来描述一般随即现象的, 还有一些是用来描述混沌和非线性系统的。
4. 分形几何学是数学家伯努瓦曼得尔布罗在20世纪70年代创立的一门新的数学学科,它的创立为解决传统科学众
根据图甲所示的分形规律,1个白圈分形为2个白圈1个黑圈,1个黑圈分形为1个白圈2个黑圈,
第一行记为(1,0),第二行记为(2,1),第三行记为(5,4),第四行的白圈数为2×5+4=14;黑圈数为5+2×4=13,
∴第四行的“坐标”为(14,13);
第五行的“坐标”为(41,40),
各行白圈数乘以2,分别是2,4,10,28,82,即1+1,3+1,9+1,27+1,81+1,
∴第n行的白圈数为
3n?1+1 |
2 |
3n?1+1 |
3 |
3n?1?1 |
3 |
3n?1+1 |
2 |
3n?1?1 |
2 |
5. 是谁发明了几何分形用于股价预测
你好,很高兴帮助你
为你解答问题,疑问
祝你生活愉快,幸福
: 个股的选择上,还是建议远离近期炒高的个股,只要有过被爆炒的短期内暂时不碰为好,以免成为短期内的接棒者。
6. 什么是分形几何
我们在学校里学习的可以说都是经典几何学,以规则且光滑的几何图形,如球面、双曲面、马鞍面、花瓶表面等几何图形为研究对象。但自然界中大量存在的事物或数学模型却是极不规则、极不光滑的。如山峦、河流里的旋涡、海岸、云朵及土地龟裂的裂纹、玻璃窗上的冰花等。这些图形使传统的几何学和古典数学显得有些束手无策。
当你漫步在海滩时,你可曾想过海岸线有多长吗?冬天,当雪花落下来时,你可曾留心过每个雪花的轮廓曲线是什么样的吗?这些不规则,但又很常见的图形,虽不会引起常人的重视,但这些问题在当代数学家芒德勃罗的眼中却有着不同的意义。他根据长期观察分析、收集与总结,创立了分形几何,很快,就引起了许多学科的关注,这是由于分形几何不仅在理论上,而且在实际生活中都具有重要价值。
分形几何是一门边缘学科,有着极其广泛的应用。比如,近年在研究治疗癌症的过程中,人们认为癌具有自相似性。癌细胞发育停滞,而分裂速度异常快,不规则、不协调,一片混乱,在“癌区”存在着“癌变分形元”。研究人员设法促进癌的分化发育,以突破滞点。目前许多药物与疗法正是根据这一原理进行的。
在上世纪70年代中期以前,芒德勃罗一直使用英文fractional一词来表示他的分形思想。因此,取拉丁词之头,采英文之尾的fractal,本意是不规则的、破碎的、分离的。芒德勃罗是想用此词来描述传统几何学所不能描述的一大类复杂无章的几何对象。例如,弯弯曲曲的海岸线、起伏不平的山脉、粗糙不堪的断面、变幻无常的浮云、九曲回肠的河流、纵横交错的血管、令人眼花缭乱的满天繁星等。它们的特点是,极不规则或极不光滑。直观而粗略地说,这些对象都是分形几何体。
中国著名学者周海中教授认为:分形几何不仅展示了数学之美,也揭示了世界的本质,还改变了人们理解自然奥秘的方式;可以说分形几何是真正描述大自然的几何学,对它的研究也极大地拓展了人类的认知疆域。
分形几何学作为当今世界十分风靡和活跃的新理论、新学科,它的出现,使人们重新审视这个世界:世界并非线性的一成不变,分形无处不在。分形几何学不仅让人们感悟到科学与艺术的融合,数学与艺术审美的统一,而且还有其深刻的科学方法与意义。
无尽相似的艺术
7. 分形的发展史
分形学发展史上的重要里程碑
1883年 Cantor集合被创造
1895年 Weierstrass曲线被创造,此曲线特点是“处处连续,点点不可微”
1906年 Koch曲线被创造
1914年 Sierpinski三角形被创造
1919年 描述复杂几何体的Hausdorff维问世
1951年 英国水文学家Hurst通过多年研究尼罗河,总结出Hurst定律
1967年 Mandelbrot在《Science》杂志上发表论文《英国的海岸线有多长》
1975年 Mandelbrot创造“Fractals”一词
1975年 Mandelbrot在巴黎出版的法文著作《Les objets fractals:forme,hasard et dimension》
1977年 Mandelbrot在美国出版英文著作《Fractals:Form,Chance,and Dimension》以及《The Fractal Geometry of Nature》
1982年 《The Fractal Geometry of Nature》第二版,并引发“分形热”
1991年 英国的Pergman出版社创办《Chaos,Soliton and Fractal》杂志
1993年 新加坡世界科学出版社创办《Fractal》杂志
1998年 在马耳他(Malta)的瓦莱塔(Valletta)召开了“分形98年会议”(5th International Multidisciplinary Conference)
2003年 在德国的Friedrichroda召开了“第三届分形几何和推测学国际会议”
2004年 在加拿大(Canada)的温哥华(Vancouver)召开了“分形2004年会议”(8th International Multidisciplinary Conference)
8. 分形几何学的由来
客观自然界中许多事物,具有自相似的“层次”结构,在理想情况下,甚至具有无穷层次。适当的放大或缩小事物的几何尺寸,整个结构并不改变。不少复杂的物理现象,背后就是反映着这类层次结构的分形几何学。
客观事物都有它自己的特征尺度,要用恰当的尺度去测量。用尺子来测量万里长城,嫌太短,而用来测量大肠杆菌,又嫌太长。还有的事物没有特征尺度,就必须同时考虑从小到大的许许多多尺度(或者叫标度),这就是“无标度性”的问题。
湍流是自然界中普遍现象,小至静室中缭绕的轻烟,巨至木星大气中的涡流,都是十分紊乱的流体运动。流体宏观运动的能量,经过大、中、小、微等许多多度尺度上的漩涡,最后转化成分子尺度上的热运动,同时涉及大量不同尺度上的运动状态。要描述湍流现象就需要借助流体的的“无标度性”,而湍流中高漩涡区域,就需要用到分形几何学。
9. 有谁会知道分形几何近十年的发展啊
普通几何学研究的对象,一般都具有整数的维数。比如,零维的点、一维的线、二维的面、三维的立体、乃至四维的时空。最近十几年的,产生了新兴的分形几何学,空间具有不一定是整数的维,而存在一个分数维数,这是几何学的新突破,引起了数学家和自然科学者的极大关注。
分形几何的产生
客观自然界中许多事物,具有自相似的“层次”结构,在理想情况下,甚至具有无穷层次。适当的放大或缩小几何尺寸,整个结构并不改变。不少复杂的物理现象,背后就是反映着这类层次结构的分形几何学。
客观事物有它自己的特征长度,要用恰当的尺度去测量。用尺来测量万里长城,嫌太短;用尺来测量大肠杆菌,又嫌太长。从而产生了特征长度。还有的事物没有特征尺度,就必须同时考虑从小到大的许许多多尺度(或者叫标度),这叫做“无标度性”的问题。
如物理学中的湍流,湍流是自然界中普遍现象,小至静室中缭绕的轻烟,巨至木星大气中的涡流,都是十分紊乱的流体运动。流体宏观运动的能量,经过大、中、小、微等许许多度尺度上的漩涡,最后转化成分子尺度上的热运动,同时涉及大量不同尺度上的运动状态,就要借助“无标度性”解决问题,湍流中高漩涡区域,就需要用分形几何学。
在二十世纪七十年代,法国数学家曼德尔勃罗特在他的著作中探讨了英国的海岸线有多长?这个问题这依赖于测量时所使用的尺度。
如果用公里作测量单位,从几米到几十米的一些曲折会被忽略;改用米来做单位,测得的总长度会增加,但是一些厘米量级以下的就不能反映出来。由于涨潮落潮使海岸线的水陆分界线具有各种层次的不规则性。海岸线在大小两个方向都有自然的限制,取不列颠岛外缘上几个突出的点,用直线把它们连起来,得到海岸线长度的一种下界。使用比这更长的尺度是没有意义的。还有海沙石的最小尺度是原子和分子,使用更小的尺度也是没有意义的。在这两个自然限度之间,存在着可以变化许多个数量级的“无标度”区,长度不是海岸线的定量特征,就要用分维。
数学家寇赫从一个正方形的“岛”出发,始终保持面积不变,把它的“海岸线”变成无限曲线,其长度也不断增加,并趋向于无穷大。以后可以看到,分维才是“寇赫岛”海岸线的确切特征量,即海岸线的分维均介于1到2之间。
这些自然现象,特别是物理现象和分形有着密切的关系,银河系中的若断若续的星体分布,就具有分维的吸引子。多孔介质中的流体运动和它产生的渗流模型,都是分形的研究对象。这些促使数学家进一步的研究,从而产生了分形几何学。
电子计算机图形显示协助了人们推开分形几何的大门。这座具有无穷层次结构的宏伟建筑,每一个角落里都存在无限嵌套的迷宫和回廊,促使数学家和科学家深入研究。
法国数学家曼德尔勃罗特这位计算机和数学兼通的人物,对分形几何产生了重大的推动作用。他在1975、1977和1982年先后用法文和英文出版了三本书,特别是《分形——形、机遇和维数》以及《自然界中的分形几何学》,开创了新的数学分支——分形几何学。
分形几何的内容
分形几何学的基本思想是:客观事物具有自相似的层次结构,局部与整体在形态、功能、信息、时间、空间等方面具有统计意义上的相似性,成为自相似性。例如,一块磁铁中的每一部分都像整体一样具有南北两极,不断分割下去,每一部分都具有和整体磁铁相同的磁场。这种自相似的层次结构,适当的放大或缩小几何尺寸,整个结构不变。
维数是几何对象的一个重要特征量,它是几何对象中一个点的位置所需的独立坐标数目。在欧氏空间中,人们习惯把空间看成三维的,平面或球面看成二维,而把直线或曲线看成一维。也可以稍加推广,认为点是零维的,还可以引入高维空间,对于更抽象或更复杂的对象,只要每个局部可以和欧氏空间对应,也容易确定维数。但通常人们习惯于整数的维数。
分形理论认为维数也可以是分数,这类维数是物理学家在研究混沌吸引子等理论时需要引入的重要概念。为了定量地描述客观事物的“非规则”程度,1919年,数学家从测度的角度引入了维数概念,将维数从整数扩大到分数,从而突破了一般拓扑集维数为整数的界限。
维数和测量有着密切的关系,下面我们举例说明一下分维的概念。
当我们画一根直线,如果我们用 0维的点来量它,其结果为无穷大,因为直线中包含无穷多个点;如果我们用一块平面来量它,其结果是 0,因为直线中不包含平面。那么,用怎样的尺度来量它才会得到有限值哪?看来只有用与其同维数的小线段来量它才会得到有限值,而这里直线的维数为 1(大于0、小于2)。
对于我们上面提到的“寇赫岛”曲线,其整体是一条无限长的线折叠而成,显然,用小直线段量,其结果是无穷大,而用平面量,其结果是 0(此曲线中不包含平面),那么只有找一个与“寇赫岛”曲线维数相同的尺子量它才会得到有限值,而这个维数显然大于 1、小于 2,那么只能是小数了,所以存在分维。经过计算“寇赫岛”曲线的维数是1.2618……。
分形几何学的应用
分形几何学已在自然界与物理学中得到了应用。如在显微镜下观察落入溶液中的一粒花粉,会看见它不间断地作无规则运动(布朗运动),这是花粉在大量液体分子的无规则碰撞(每秒钟多达十亿亿次)下表现的平均行为。布朗粒子的轨迹,由各种尺寸的折线连成。只要有足够的分辨率,就可以发现原以为是直线段的部分,其实由大量更小尺度的折线连成。这是一种处处连续,但又处处无导数的曲线。这种布朗粒子轨迹的分维是 2,大大高于它的拓扑维数 1。
在某些电化学反应中,电极附近成绩的固态物质,以不规则的树枝形状向外增长。受到污染的一些流水中,粘在藻类植物上的颗粒和胶状物,不断因新的沉积而生长,成为带有许多须须毛毛的枝条状,就可以用分维。
自然界中更大的尺度上也存在分形对象。一枝粗干可以分出不规则的枝杈,每个枝杈继续分为细杈……,至少有十几次分支的层次,可以用分形几何学去测量。
有人研究了某些云彩边界的几何性质,发现存在从 1公里到1000公里的无标度区。小于 1公里的云朵,更受地形概貌影响,大于1000公里时,地球曲率开始起作用。大小两端都受到一定特征尺度的限制,中间有三个数量级的无标度区,这已经足够了。分形存在于这中间区域。
近几年在流体力学不稳定性、光学双稳定器件、化学震荡反映等试验中,都实际测得了混沌吸引子,并从实验数据中计算出它们的分维。学会从实验数据测算分维是最近的一大进展。分形几何学在物理学、生物学上的应用也正在成为有充实内容的研究领域。
这样行么?
10. 分形几何学的产生
在二十世纪七十年代,法国数学家曼德尔勃罗特在他的著作中探讨了英国的海岸线有多长?这个问题依赖于测量时所使用的尺度。
如果用公里作测量单位,从几米到几十米的一些曲折会被忽略;改用米来做单位,测得的总长度会增加,但是一些厘米量级以下的就不能反映出来。由于涨潮落潮使海岸线的水陆分界线具有各种层次的不规则性。海岸线在大小两个方向都有自然的限制,取不列颠岛外缘上几个突出的点,用直线把它们连起来,得到海岸线长度的一种下界。使用比这更长的尺度是没有意义的。还有海沙石的最小尺度是原子和分子,使用更小的尺度也是没有意义的。在这两个自然限度之间,存在着可以变化许多个数量级的“无标度”区,长度不是海岸线的定量特征,就要用分维。
数学家寇赫从一个正方形的“岛”出发,始终保持面积不变,把它的“海岸线”变成无限曲线,其长度也不断增加,并趋向于无穷大。以后可以看到,分维才是“寇赫岛”海岸线的确切特征量,即海岸线的分维均介于1到2之间。
这些自然现象,特别是物理现象和分形有着密切的关系,银河系中的若断若续的星体分布,就具有分维的吸引子。多孔介质中的流体运动和它产生的渗流模型,都是分形的研究对象。这些促使数学家进一步的研究,从而产生了分形几何学。
电子计算机图形显示协助了人们推开分形几何的大门。这座具有无穷层次结构的宏伟建筑,每一个角落里都存在无限嵌套的迷宫和回廊,促使数学家和科学家深入研究。
法国数学家曼德尔勃罗特这位计算机和数学兼通的人物,对分形几何产生了重大的推动作用。他在1975、1977和1982年先后用法文和英文出版了三本书,特别是《分形——形、机遇和维数》以及《自然界中的分形几何学》,开创了新的数学分支——分形几何学。