A. 我们平常所用的阿拉伯数字,为何是印度人发明的
阿拉伯数字大家都知道,它的普及率和使用率是在全国范围内的。阿拉伯数字的出现最早可以追溯到公元500年那一段时期,当时有一位叫做阿叶彼海特的天文学家,创造了阿拉伯数字的祖先,到后面很长一段时间后,才出现了1~9的数字发明,至于数字0,它比数字1~9的出现还要晚一千多年,所以说从数字0~9都是由印度人发明的。因为印度人发明的数字十分便利,很快就被阿拉伯人所使用,当时的阿拉伯人善于行走于欧洲乃至世界,欧洲人误以为这些数字是阿拉伯人创造的,所以冠名为阿拉伯数字。
在那个科技发展迟缓,思想文化经济发展缓慢的年代,都依然有人在努力的突破自己,努力的实现自我价值,为世界的发展带来自己的贡献,那生活在科技时代都高速发展的我们更没有理由逃避自己,应该努力实现自身价值,我们可以碌碌无为,却不应该平庸而活。
B. 印度的数学家和他们的贡献
在我看来,以下15位非常牛X:
第一位:“数学之神”——阿基米德
阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
后来阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。
《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。
《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为: <π< ,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。
《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部著作中,他还提出了著名的"阿基米德公理"。
《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。
《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。
《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。
《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。
《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体的体积。
丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。
正因为他的杰出贡献,美国的E.T.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。
第二位:祖冲之
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.
祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".
第三位:数学之父——塞乐斯
塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。
塞乐斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,塞乐斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。如果是这样的话,就要用到三角形对应边成比例这个数学定理。塞乐斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。
在塞乐斯以前,人们在认识大自然时,只满足于对各类事物提出怎么样的解释,而塞乐斯的伟大之处,在于他不仅能作出怎么样的解释,而且还加上了为什么的科学问号。古代东方人民积累的数学知识,王要是一些由经验中总结出来的计算公式。塞乐斯认为,这样得到的计算公式,用在某个问题里可能是正确的,用在另一个问题里就不一定正确了,只有从理论上证明它们是普遍正确的以后,才能广泛地运用它们去解决实际问题。在人类文化发展的初期,塞乐斯自觉地提出这样的观点,是难能可贵的。它赋予数学以特殊的科学意义,是数学发展史上一个巨大的飞跃。所以塞乐斯素有数学之父的尊称,原因就在这里。 塞乐斯最先证明了如下的定理:
1.圆被任一直径二等分。
2.等腰三角形的两底角相等。
3.两条直线相交,对顶角相等。
4.半圆的内接三角形,一定是直角三角形。
5.如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等。 这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理。相传塞乐斯证明这个定理后非常高兴,宰了一头公牛供奉神灵。后来,他还用这个定理算出了海上的船与陆地的距离。
塞乐斯对古希腊的哲学和天文学,也作出过开拓性的贡献。历史学家肯定地说,塞乐斯应当算是第一位天文学家,他经常仰卧观察天上星座,探窥宇宙奥秘,他的女仆常戏称,塞乐斯想知道遥远的天空,却忽略了眼前的美色。数学史家Herodotus层考据得知Hals战后之时白天突然变成夜晚(其实是日蚀),而在此战之前塞乐斯曾对Delians预言此事。
第四位:数学奇才——伽罗华
1832年5月30日晨,在巴黎的葛拉塞尔湖附近躺着一个昏迷的年轻人,过路的农民从枪伤判断他是决斗后受了重伤,就把这个不知名的青年抬到医院。第二天早晨十点钟,他就离开了人世。数学史上最年轻、最有创造性的头脑停止了思考。人们说,他的使数学发展推迟了好几十年。这个青年就是时不满21岁的伽罗华。
伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。
1828年,17岁的伽罗华开始研究方程论,创造了“置换群”的概念和方法,解决了几百年来使人头痛的方程来解决问题。伽罗华最重要的成就,是提出了“群”的概念,用群论改变了整个数学的面貌。1829年5月,伽罗华把他的成果写成论文,递交法国科学院,但伴随着这篇杰作而来的是一连串的打击和不幸。先是父亲因不堪忍受教士诽谤而自杀,接着因他的答辩既简捷又深奥令考官们不满而未能进入著名的巴黎综合技术学校。至于他的论文,先是被认为新概念太多又过于简略而要求重写;第二份推导详尽的稿子又因审稿人病逝而下落不明;1831年1月提交的第三份论文又因评阅人不能全部看懂而被否定。
青年伽罗华一方面追求数学的真知,另一方面又献身于追求社会正义的事业。在1831年法国的“七月革命”中,作为高等师范学校新生,伽罗华率领群众走上街头,抗议国王的专制统治,不幸被捕。在狱中,他染上了霍乱。即使在这样的恶劣条件下,伽罗华仍然继续搞他的数学研究,并且写成了论文,准备出狱后发表。出狱不久,因为卷入一场无聊的“爱情”纠葛而决斗身亡。
他去世后16年,他留存下来的60页手稿才得以发表,科学界才传遍了他的名字。
第五位:欧拉(Leonhard Euler 公元1707-1783年) 1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导。 欧拉是科学史上最多产的一位杰出的 数学家欧拉
数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年。19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法。" 过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁。1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明。不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了。 沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来。在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录。欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久。 欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成。 欧拉的风格是很高的,拉格朗从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生。等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:“我了”。欧拉终于“停止了生命和计算”。
第六位:高斯
高斯[1](Johann Carl Friedrich Gauss)(1777年4月30日—1855年2月 高斯
23日),生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家。 高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。 高斯虽然幼时家境贫困,但聪敏异常,受一贵族资助进学校受教育。1795~1798年在哥廷根大学学习,1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。 1792年,15岁的高斯进入Braunschweig学院。在那里,高斯开始对高等数学作研究。独立发现了二项式定理的一般形式、数论上的“二次互反律”(Law of Quadratic Reciprocity)、“质数分布定理”(prime numer theorem)、及“算术几何平均”(arithmetic-geometric mean)。 1795年高斯进入哥廷根大学。1796年,19岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。5年以后,高斯又证明了形如"Fermat素数"边数的正多边形可以由尺规作出。 1855年2月23日清晨,高斯于睡梦中去世。
第七位:牛顿
艾萨克·牛顿(Isaac Newton)是英国伟大的数学家、物理学家、天文学家和自然哲学家,其研究领域包括了物理学、数学、天文学、神学、自然哲学和炼金术。牛顿的主要贡献有发明了微积分,发现了万有引力定律和经典力学,设计并实际制造了第一架反射式望远镜等等,被誉为人类历史上最伟大,最有影响力的科学家。为了纪念牛顿在经典力学方面的杰出成就,“牛顿”后来成为衡量力的大小的物理单位。
第八位:近代科学的始祖:笛卡尔
勒奈·笛卡尔(Rene Descartes),1596年3月31日生于法国都兰城。笛卡尔是伟大的哲学家、物理学家、数学家、生理学家。解析几何的创始人。笛卡儿是欧洲近代资产阶级哲学的奠基人之一,黑格尔称他为“现代哲学之父”。他自成体系,熔唯物主义与唯心主义于一炉,在哲学史上产生了深远的影响。同时,他又是一位勇于探索的科学家,他所建立的解析几何在数学史上具有划时代的意义。笛卡儿堪称17世纪的欧洲哲学界和科学界最有影响的巨匠之一,被誉为“近代科学的始祖”。
第九位:莱布尼茨
戈特弗里德·威廉·凡·莱布尼茨,德国最重要的自然科学家、数学家、物理学家、历史学家和哲学家,一位举世罕见的科学天才,和牛顿(1643年1月4日—1727年3月31日)同为微积分的创建人。他的研究成果还遍及力学、逻辑学、化学、地理学、解剖学、动物学、植物学、气体学、航海学、地质学、语言学、法学、哲学、历史、外交等等,“世界上没有两片完全相同的树叶”就是出自他之口,他还是最早研究中国文化和中国哲学的德国人,对丰富人类的科学知识宝库做出了不可磨灭的贡献。
第十位:拉格朗日
约瑟夫·拉格朗日,全名约瑟夫·路易斯·拉格朗日(Joseph-Louis Lagrange 1735~1813)法国数学家、物理学家。1736年1月25日生于意大利都灵,1813年4月10日卒于巴黎。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。
近百余年来,数学领域的许多新成就都可以直接或间接地溯源于拉格朗日的工作。所以他在数学史上被认为是对分析数学的发展产生全面影响的数学家之一。被誉为“欧洲最大的数学家”。
第十一位:业余数学家之王——费马
费马一生从未受过专门的数学教育,数学研究也不过是业余之爱好。然而,在17世纪的法国还找不到哪位数学家可以与之匹敌:他是解析几何的发明者之一;对于微积分诞生的贡献仅次于艾萨克·牛顿、戈特弗里德·威廉·凡·莱布尼茨,概率论的主要创始人,以及独承17世纪数论天地的人。此外,费马对物理学也有重要贡献。一代数学天才费马堪称是17世纪法国最伟大的数学家之一。
第十二位:华罗庚
华罗庚(1910.11.12—1985.6.12.),世界著名数学家,中国解析数论、矩阵几何学、典型群、自安函数论等多方面研究的创始人和开拓者。国际上以华氏命名的数学科研成果就有“华氏定理”、“怀依—华不等式”、“华氏不等式”、“普劳威尔—加当华定理”、“华氏算子”、“华—王方法”等。
第十三位:刘徽
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是中国最早明确主张用逻辑推理的方式来论证数学命题的人.刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。
第十四位:毕达哥拉斯
毕达哥拉斯(Pythagoras,572 BC—497 BC)古希腊数学家、哲学家。无论是解说外在物质世界,还是描写内在精神世界,都不能没有数学!最早悟出万事万物背后都有数的法则在起作用的,是生活在2500年前的毕达哥拉斯。 毕达哥拉斯出生在爱琴海中的萨摩斯岛(今希腊东部小岛),自幼聪明好学,曾在名师门下学习几何学、自然科学和哲学。以后因为向往东方的智慧,经过万水千山来到巴比伦、印度和埃及(有争议),吸收了阿拉伯文明和印度文明(公元前480年)。
第十五位:泰勒斯
古希腊时期的思想家、科学家、哲学家,希腊最早的哲学学派——米利都学派(也称爱奥尼亚学派)的创始人。希腊七贤之一,西方思想史上第一个有记载有名字留下来的思想家。“科学和哲学之祖”,泰勒斯是古希腊及西方第一个自然科学家和哲学家。泰勒斯的学生有阿那克西曼德、阿那克西米尼等。
泰勒斯在数学方面划时代的贡献是引入了命题证明的思想。它标志着人们对客观事物的认识从经验上升到理论,这在数学史上是一次不寻常的飞跃。在数学中引入逻辑证明,它的重要意义在于:保证了命题的正确性;揭示各定理之间的内在联系,使数学构成一个严密的体系,为进一步发展打下基础;使数学命题具有充分的说服力,令人深信不疑。他曾发现了不少平面几何学的定理,诸如:“直径平分圆周”、“三角形两等边对等角”、“两条直线相交、对顶角相等”、“三角形两角及其夹边已知,此三角形完全确定”、“半圆所对的圆周角是直角”等,这些定理虽然简单,而且古埃及、古巴比伦人也许早已知道,但是,泰勒斯把它们整理成一般性的命题,论证了它们的严格性,并在实践中广泛应用。据说他可以利用一根标杆,测量、推算出金字塔的高度。据说,一年春天,泰勒斯来到埃及,人们想试探一下他的能力,就问他是否能解决这个难题。泰勒斯很有把握地说可以,但有一个条件——法老必须在场。第二天,法老如约而至,金字塔周围也聚集了不少围观的老百姓。泰勒斯来到金字塔前,阳光把他的影子投在地面上。每过一会儿,他就让别人测量他影子的长度,当测量值与他的身高完全吻合时,他立刻将大金字塔在地面的投影处作一记号,然后在丈量金字塔底到投影尖顶的距离。这样,他就报出了金字塔确切的高度。在法老的请求下,他向大家讲解了如何从“影长等于身长”推到“塔影等于塔高”的原理。也就是今天所说的相似三角形定理。在科学上,他倡导理性,不满足于直观的感性的特殊的认识,崇尚抽象的理性的一般的知识。譬如,等腰三角形的两底角相等,并不是指我们所能画出的、个别的等腰三角形,而应该是指“所有的”等腰三角形。这就需要论证、推理,才能确保数学命题的正确性,才能使数学具有理论上的严密性和应用上的广泛性。泰勒斯的积极倡导,为毕达哥拉斯创立理性的数学奠定了基础。
C. 印度人谁发明的数字
阿拉伯数字由0,,2,3,4,5,6,7,8,9共10个计数符号组成。采取位值法,高位在左,低位在右,从左往右书写。借助一些简单的数学符号(小数点、负号、百分号等),这个系统可以明确的表示所有的有理数。为了表示极大或极小的数字,人们在阿拉伯数字的基础上创造了科学记数法。
起源
公元500年前后,随着经济、种姓制度的兴起和发展,印度次大陆西北部的旁遮普地区的数学一直处于领先地位。天文学家阿叶彼海特在简化数字方面有了新的突破:他把数字记在一个个格子里,如果第一格里有一个符号,比如是一个代表1的圆点,那么第二格里的同样圆点就表示十,而第三格里的圆点就代表一百。这样,不仅是数字符号本身,而且是它们所在的位置次序也同样拥有了重要意义。以后,印度的学者又引出了作为零的符号。可以这么说,这些符号和表示方法是阿拉伯数字的老祖先了。
印度数字
公元3世纪,古印度的一位科学家巴格达发明了阿拉伯数字。最古的计数目大概至多到3,为了要设想“4”这个数字,就必须把2和2加起来,5是2加2加1,3这个数字是2加1得来的,大概较晚才出现了用手写的五指表示5这个数字和用双手的十指表示10这个数字。这个原则实际也是数学计算的基础。罗马的计数只有到Ⅴ(即5)的数字,Ⅹ(即10)以内的数字则由Ⅴ(5)和其它数字组合起来。Ⅹ是两个Ⅴ的组合,同一数字符号根据它与其他数字符号位置关系而具有不同的量。这样就开始有了数字位置的概念,在数学上这个重要的贡献应归于两河流域的古代居民,后来古鳊人在这个基础上加以改进,并发明了表达数字的1,2,3,4,5,6,7,8,9,0十个符号,这就成为记数的基础。八世纪印度出现了有零的符号的最老的刻版记录。当时称零为首那。
两百年后,团结在伊斯兰教下的阿拉伯人征服了周围的民族,建立了东起印度,西从非洲到西班牙的阿拉伯帝国。后来,这个伊斯兰大帝国分裂成东、西两个国家。由于这两个国家的各代君王都奖励文化和艺术,所以两国的首都都非常繁荣,而其中特别繁华的是东都——巴格达,西来的希腊文化,东来的印度文化都汇集到这里来了。阿拉伯人将两种文化理解消化,从而创造了独特的阿拉伯文化。
大约700年前后,阿拉伯人征服了旁遮普地区,他们吃惊地发现:被征服地区的数学比他们先进。于是设法吸收这些数字。
771年,印度北部的数学家被抓到了阿拉伯的巴格达,被迫给当地人传授新的数学符号和体
D. 印度天才:未受过正规教育,却靠“女神托梦”创造出3900条公式
引言
人的一生都在学习,都在积累,都在凭借着过去的经验不断发现发现新的事物,总结新的经验,我们从一无所知到飞天遁地,是无数先辈终其一生的结晶。世界上总有一些天才,他们拥有我们无法拥有的智慧,并且通过利用自己的智慧,带动全球人民的智慧,剖析世界,造福人类。
结语
或许正是拉马努金对数学的痴迷程度和宗教信仰,两者结合构造出来的美妙故事,神告诉他的故事,更像是他对于未知数学神一般的直觉。他是一个幸运儿,神赋予他天赋,赐给他机会,他也勇敢地把握,他做的每一件事情,都是他想做的事情。他信奉的神灵,是他心里的神灵。
E. 古代印度人在数学上有哪些成就
古印度在数学方面有相当大的成就,在世界数学史上有重要地位。自哈拉巴文化时期起,古印度人用的就是十进位制,但是早期还没有位值法。
大约到了公元7世纪以后,古印度才有了位值法记数,不过开始时还没有“0”的符号,只用空一格来表示。公元9世纪后半叶有了零的符号,写作“.”。
这时,古印度的十进制位值法记数就完备了。后来这种记数法为中亚地区许多民族采用,又经过阿拉伯人传到了欧洲,逐渐演变为现今世界上通用的“阿拉伯记数法”。
所以说,阿拉伯数字并不是阿拉伯人创造的,他们只是起了传播作用。而真正对阿拉伯数字有贡献的,正是古印度人。
《准绳经》是现存古印度最早的数学著作,这是一部讲述祭坛修筑的书,大约成于公元前5至前4世纪,其中包含有一些几何学方面的知识。
这部书表明,他们那时已经知道了勾股定理,并使用圆周率π为3.09,古印度人在天文计算的时候已经运用了三角形,公元499年成书的《圣使集》中有关数学的内容共有66条,包括了算术运算、乘方、开方以及一些代数学、几何学和三角学的规则。
圣使还研究了两个无理数相加的问题,得到正确的公式,在三角学方面他又引进了正矢函数,他算出的π为3.1416。
公元7~13世纪是古印度数学成就最辉煌的时期,其间的著名人物有梵藏(约589~?)、大雄(9世纪)、室利驮罗(999~?)和作明(1114~?)。
梵藏约于628年写成了《梵明满悉檀多》,对许多数学问题进行了深人的探讨,梵藏是古印度最早引进负数概念的人,他还提出负数的运算方法。
而大雄继续了他前人的工作,他的主要著作是《计算精华》。他认识到零乘以任何一个数都等于零,不过他又错误地认为以零除一个数仍然等于这个数。
大雄对分数的研究也很有意义,他认识到以一个分数除另外一个分数,等于把这个分数的分子分母颠倒相乘。
现存的室利驮罗的数学著作有《算法概要》一书,据说他还有一部专论二次方程的著作。他的主要工作是研究二次方程的解法。
在这一时期,数学上成就最大的要数作明。他的《历数全书头珠》中的《嬉有章》和《因数算法章》反映了古印度数学的最高成就,是那个时期的代表作。
作明对零进行了进一步的研究,正确地指出以零除一个数为无限大。他继续研究二次方程求解的问题,知道一个数的平方根有两个数,一正一负。
他还明确地指出负数的平方根是没有意义的。作明在不定方程的研究中取得了十分显著的成绩,他用巧妙的方法解决了许多不定方程的求整数解的问题。
F. 古代印度人在数学上有哪些成就2点
1、印度人创造的这套数码1、2、3、4、5、6、7、8、9、0,是对数学知识的非常宝贵的贡献!它很快就引起了计算艺术的革命。
2、印度数学家还研究了分数,并且能象我们今天这样书写它们。到公元五百年,伏拉罕密希拉能通过计算,预告行星的位置;阿耶波多论述了确定平方根的法则,给出了圆周率的近似值3.1416。
G. 古印度在数学历史上有什么重大发明
1、印度人创造的这套数码1、2、3、4、5、6、7、8、9、0,是对数学知识的非常宝贵的贡献!它很快就引起了计算艺术的革命.
2、印度数学家还研究了分数,并且能象我们今天这样书写它们.到公元五百年,伏拉罕密希拉能通过计算,预告行星的位置;阿耶波多论述了确定平方根的法则,给出了圆周率的近似值3.1416.
望采纳!
H. 古印度的数学家有哪些
印度数学的数学发展可以划分为三个重要时期,首先是雅利安人入侵以前的达罗毗荼人时期,史称河谷文化;随后是吠陀时期;其次是悉檀多时期。
十进制的建立和零概念的引入为数学的发展奠定了基础。
零当作一个数字
约在6世纪初,印度开始使用命位记数法。7世纪初印度大数学家葛拉夫.玛格蒲达首先说明了0的性质,任何数乘0是0,任何数加上0或减去0得任何数。遗憾的是,他并没有提到以命位记数法来进行计算的实例。也有的学者认为,O的概念之所以在印度产生并得以发展,是因为印度佛教中存在着“绝对无”这一哲学思想。
婆罗摩笈多的两部天文著作《婆罗摩修正体系》(628)和《肯德卡迪亚格》(约665),都含有大量的数学内容,其代数成就十分可贵。他把0作为一个数来处理,9世纪马哈维拉和施里德哈勒接受了这一传统。婆罗摩笈多对负数有明确的认识,提出了正负数的乘除法则。他曾利用色彩名称来作为未知数的符号,并给出二次方程的求根公式。7 世纪以后,印度数学出现了沉寂,到9世纪才又呈现出繁荣。如果说7世纪以前印度的数学成就总是与天文学交织在一起,那么9世纪以后发生的改变。马哈维拉的《计算方法纲要》可以说是一部系统的数学专著,全书有九个部分:(1)算术术语,(2)算术运算,(3)分数运算,(4)各种计算问题,(5)三率法(即比例)问题,(6)混合运算,(7)面积计算,(8)土方工程计算,(9)测影计算。基本是对以往数学内容的总结和推广,书中给出了一般性的组合公式,而且给出椭圆周长近似公式。
引进十进制的数字
这些符号在某些情况下和现在的数字很相近。此后,印度数学引进十进制的数字,同样的数字在不同的位置表示完全不同的含义,这样就大大简化了数的运算,并使计数法更加明确。比如,古巴比伦的记号▼既可以表示1,也可以表示1/60,而在古印度人那里,符号1只能表示1个单位,要表示十、百等,必须在符号1的后面加上相应个数的符号0。这实在是个了不起的发明,以致于到了现代,人们在计数的时候依然沿用这种方法。
负数
古印度人很早就会用负数表示欠债和反方向运动。他们还接受了无理数的概念,在实际计算的时候,把适用于有理数的计算方法和步骤运用到无理数中去。另外,他们还解出了一次方程和二次方程。
一次方程和二次方程
从公元七世纪印度的代数有了很大发展, 数学家婆罗摩笈多创立表示量的概念和描述运算的一套符号,12世纪婆什迦罗提出负平方根的概念、研究无理方程的解法和无理数的运算法则,把代数学的研究推向了新的阶段。
三角
印度数学在几何方面没有取得大的进展,但古印度人对三角学贡献很大。这是他们热衷于研究天文学的副产品。如在他们的计算中,用到了三种量——一种相当于现代的正弦,一种相当于现代的余弦,还有一种称为“正矢”,在数量上等于1-cosα,这个三角量现在已经不用了。他们还知道一些三角量之间的关系,比如 “同角正弦和余弦的平方和等于1”等等,古印度人还会利用半角表达式计算某些特殊角的三角值。
由于印度屡被其他民族征服,使印度古代天文数学受外来文化影响较深,除希腊天文数学外,也不排除中国文化的影响,然而印度数学始终保持东方数学以计算为中心的实用化特色。与其算术和代数相比,印度人在几何方面的工作显得十分薄弱,最具特色与影响的成就是其不定分析和对希腊三角术的推进。
I. 谁是印度数学天才发明3000多个公式从不证明
在印度人的心目当中,有三人获得了“印度之子”的称号,他们分别是著名诗人泰戈尔、“印度圣雄”甘地、以及数学家斯里尼瓦瑟·拉马努金。比起前面两个如雷贯耳的人物,拉马努金这个名字,难免让人感到陌生,实际上,他是印度历史上最为著名的天才数学家,不妨来看看他的故事。
1913年,英国剑桥大学数学系教授哈代(G. Hardy)收到了一封来自印度的信件,信的开头是这样的:“尊敬的先生,谨自我介绍如下:我是马德拉斯港务信托处的一个职员……我未能按常规念完大学的正规课程,但我在开辟自己的路……本地的数学家说我的结果是‘惊人的’……如果您认为这些内容是有价值的话,请您发表它们……”
这段话让哈代颇有些感觉好笑,实际上,他教出来的很多学生,也是自信满满的将自己的公式得意的呈现给教授看,认为发明了什么了不得的大道理,然而仔细研究,却完全站不住脚。
在这封信的后面,哈代果然发现了一大堆密密麻麻的公式和计算,看来研究者颇下了一番苦心,本着职业精神,哈代教授还是决定验证一二,然而结果很快让他大吃一惊,这些公式以及命题,很多没有写出证明过程,然而运算的结果却是完全吻合,有一些公式,甚至连哈代也不了解,他只能去找自己的同事,另外一个颇有名气的英国数学家李特尔伍德(J. Littlewood),两人对这个名字自称为拉马努金的印度人写下的公式进行仔细的演算,惊讶的发现,结果完全正确。
如果拉马努金真按照信件上所说,没有接受过教育,那么他可以说是难得一见的数学天才。随后教授们更加详细的了解了拉马努金的人生。
1887年,拉马努金出生在了印度泰米尔纳德邦一个没落的婆罗门家族,全家7口人只能靠父亲每个月20卢比的工资生活,拉马努金大部分时间在祖母家中度过,他从小便表现出了超出常人的思考能力,并且对数学产生了浓厚的兴趣。
让人感到遗憾的是,这样一位天才数学家,在32岁,就因为肺结核离开了人世,当然世界数学界却永远记住了他的名字,以及为人类做出的贡献,他也成为了励志的典范。
J. 英年早逝的印度天才数学家拉马努金,到底有多牛
印度有两个让世人尊敬的人,一个是泰戈尔,一个是拉马努金;泰戈尔就不用说了,那是文学史上的一盏明灯;拉马努金在大众中的名声上可能要稍逊于泰戈尔,但在数学界,他被誉为是千年一遇的数学家,甚至有人说拉马努金是后世穿越而来的数学家。
先说说拉马努金是如何厉害吧,有一句话是这样形容他的:人们都在学习数学,而拉马努金是在创造数学。他留下了接近4000道数学公式和猜想,这些大多都只有结果,而没有证明过程。
哈代和拉马努金是亦师亦友的关系,二人在5年时间里面合作发表了28篇重要的论文,拉马努金也因此成为了英国皇家学会会员,以及剑桥大学三一学院的院士,这是牛顿、霍金他们曾经获得的荣誉。
然而天妒英才,拉马努金的身体一直不是很健康,一战导致的蔬菜缺乏让他病情加重,1920年4月他在印度病逝,时年37岁。
拉马努金是千年不遇的超级数学家,他在三本活页纸笔记上,记录了很多公式和猜想的结果,这种直觉的跳跃令人感到非常困惑,至今一些数学家还在孜孜不倦地进行研究。
正是因为拉马努金取得的成就太不可思议,而且他提出来的理论要远超于现代(比如经过计算后的23维空间),还有很多神秘的猜想有待解开,所以,有人认为拉马努金是未来穿越而来的人。