导航:首页 > 创造发明 > 普朗克发明

普朗克发明

发布时间:2021-12-06 03:16:56

1. 爱因斯坦发明有什么

重要贡献相对论 狭义相对论的创立: 早在16岁时,爱因斯坦就从书本上了解到光是以很快速度前进的电磁波,他产生了一个想法,如果一个人以光的速度运动,他将看到一幅什么样的世界景象呢?他将看不到前进的光,只能看到在空间里振荡着却停滞不前的电磁场。这种事可能发生吗? 与此相联系,他非常想探讨与光波有关的所谓以太的问题。以太这个名词源于希腊,用以代表组成天上物体的基本元素。17世纪,笛卡尔首次将它引入科学,作为传播光的媒质。其后,惠更斯进一步发展了以太学说,认为荷载光波的媒介物是以太,它应该充满包括真空在内的全部空间,并能渗透到通常的物质中。与惠更斯的看法不同,牛顿提出了光的微粒说。牛顿认为,发光体发射出的是以直线运动的微粒粒子流,粒子流冲击视网膜就引起视觉。18世纪牛顿的微粒说占了上风,然而到了19世纪,却是波动说占了绝对优势,以太的学说也因此大大发展。当时的看法是,波的传播要依赖于媒质,因为光可以在真空中传播,传播光波的媒质是充满整个空间的以太,也叫光以太。与此同时,电磁学得到了蓬勃发展,经过麦克斯韦、赫兹等人的努力,形成了成熟的电磁现象的动力学理论——电动力学,并从理论与实践上将光和电磁现象统一起来,认为光就是一定频率范围内的电磁波,从而将光的波动理论与电磁理论统一起来。以太不仅是光波的载体,也成了电磁场的载体。直到19世纪末,人们企图寻找以太,然而从未在实验中发现以太。 但是,电动力学遇到了一个重大的问题,就是与牛顿力学所遵从的相对性原理不一致。关于相对性原理的思想,早在伽利略和牛顿时期就已经有了。电磁学的发展最初也是纳入牛顿力学的框架,但在解释运动物体的电磁过程时却遇到了困难。按照麦克斯韦理论,真空中电磁波的速度,也就是光的速度是一个恒量,然而按照牛顿力学的速度加法原理,不同惯性系的光速不同,这就出现了一个问题:适用于力学的相对性原理是否适用于电磁学?例如,有两辆汽车,一辆向你驶近,一辆驶离。你看到前一辆车的灯光向你靠近,后一辆车的灯光远离。按照麦克斯韦的理论,这两种光的速度相同,汽车的速度在其中不起作用。但根据伽利略理论,这两项的测量结果不同。向你驶来的车将发出的光加速,即前车的光速=光速+车速;而驶离车的光速较慢,因为后车的光速=光速-车速。麦克斯韦与伽利略关于速度的说法明显相悖。我们如何解决这一分歧呢? 19世纪理论物理学达到了巅峰状态,但其中也隐含着巨大的危机。海王星的发现显示出牛顿力学无比强大的理论威力,电磁学与力学的统一使物理学显示出一种形式上的完整,并被誉为“一座庄严雄伟的建筑体系和动人心弦的美丽的庙堂”。在人们的心目中,古典物理学已经达到了近乎完美的程度。德国著名的物理学家普朗克年轻时曾向他的老师表示要献身于理论物理学,老师劝他说:“年轻人,物理学是一门已经完成了的科学,不会再有多大的发展了,将一生献给这门学科,太可惜了。” 爱因斯坦似乎就是那个将构建崭新的物理学大厦的人。在伯尔尼专利局的日子里,爱因斯坦广泛关注物理学界的前沿动态,在许多问题上深入思考,并形成了自己独特的见解。在十年的探索过程中,爱因斯坦认真研究了麦克斯韦电磁理论,特别是经过赫兹和洛伦兹发展和阐述的电动力学。爱因斯坦坚信电磁理论是完全正确的,但是有一个问题使他不安,这就是绝对参照系以太的存在。他阅读了许多著作发现,所有人试图证明以太存在的试验都是失败的。经过研究爱因斯坦发现,除了作为绝对参照系和电磁场的荷载物外,以太在洛伦兹理论中已经没有实际意义。于是他想到:以太绝对参照系是必要的吗?电磁场一定要有荷载物吗? 爱因斯坦喜欢阅读哲学著作,并从哲学中吸收思想营养,他相信世界的统一性和逻辑的一致性。相对性原理已经在力学中被广泛证明,但在电动力学中却无法成立,对于物理学这两个理论体系在逻辑上的不一致,爱因斯坦提出了怀疑。他认为,相对论原理应该普遍成立,因此电磁理论对于各个惯性系应该具有同样的形式,但在这里出现了光速的问题。光速是不变的量还是可变的量,成为相对性原理是否普遍成立的首要问题。当时的物理学家一般都相信以太,也就是相信存在着绝对参照系,这是受到牛顿的绝对空间概念的影响。19世纪末,马赫在所著的《发展中的力学》中,批判了牛顿的绝对时空观,这给爱因斯坦留下了深刻的印象。 1905年5月的一天,爱因斯坦与一个朋友贝索讨论这个已探索了十年的问题,贝索按照马赫主义的观点阐述了自己的看法,两人讨论了很久。突然,爱因斯坦领悟到了什么,回到家经过反复思考,终于想明白了问题。第二天,他又来到贝索家,说:谢谢你,我的问题解决了。原来爱因斯坦想清楚了一件事:时间没有绝对的定义,时间与光信号的速度有一种不可分割的联系。他找到了开锁的钥匙,经过五个星期的努力工作,爱因斯坦把狭义相对论呈现在人们面前。 1905年6月30日,德国《物理学年鉴》接受了爱因斯坦的论文《论动体的电动力学》,在同年9月的该刊上发表。这篇论文是关于狭义相对论的第一篇文章,它包含了狭义相对论的基本思想和基本内容。狭义相对论所根据的是两条原理:相对性原理和光速不变原理。爱因斯坦解决问题的出发点,是他坚信相对性原理。伽利略最早阐明过相对性原理的思想,但他没有对时间和空间给出过明确的定义。牛顿建立力学体系时也讲了相对性思想,但又定义了绝对空间、绝对时间和绝对运动,在这个问题上他是矛盾的。而爱因斯坦大大发展了相对性原理,在他看来,根本不存在绝对静止的空间,同样不存在绝对同一的时间,所有时间和空间都是和运动的物体联系在一起的。对于任何一个参照系和坐标系,都只有属于这个参照系和坐标系的空间和时间。对于一切惯性系,运用该参照系的空间和时间所表达的物理规律,它们的形式都是相同的,这就是相对性原理,严格地说是狭义的相对性原理。在这篇文章中,爱因斯坦没有多讨论将光速不变作为基本原理的根据,他提出光速不变是一个大胆的假设,是从电磁理论和相对性原理的要求而提出来的。这篇文章是爱因斯坦多年来思考以太与电动力学问题的结果,他从同时的相对性这一点作为突破口,建立了全新的时间和空间理论,并在新的时空理论基础上给动体的电动力学以完整的形式,以太不再是必要的,以太漂流是不存在的。 什么是同时性的相对性?不同地方的两个事件我们何以知道它是同时发生的呢?一般来说,我们会通过信号来确认。为了得知异地事件的同时性我们就得知道信号的传递速度,但如何测出这一速度呢?我们必须测出两地的空间距离以及信号传递所需的时间,空间距离的测量很简单,麻烦在于测量时间,我们必须假定两地各有一只已经对好了的钟,从两个钟的读数可以知道信号传播的时间。但我们如何知道异地的钟对好了呢?答案是还需要一种信号。这个信号能否将钟对好?如果按照先前的思路,它又需要一种新信号,这样无穷后退,异地的同时性实际上无法确认。不过有一点是明确的,同时性必与一种信号相联系,否则我们说这两件事同时发生是无意义的。 光信号可能是用来对时钟最合适的信号,但光速非无限大,这样就产生一个新奇的结论,对于静止的观察者同时的两件事,对于运动的观察者就不是同时的。我们设想一个高速运行的列车,它的速度接近光速。列车通过站台时,甲站在站台上,有两道闪电在甲眼前闪过,一道在火车前端,一道在后端,并在火车两端及平台的相应部位留下痕迹,通过测量,甲与列车两端的间距相等,得出的结论是,甲是同时看到两道闪电的。因此对甲来说,收到的两个光信号在同一时间间隔内传播同样的距离,并同时到达他所在位置,这两起事件必然在同一时间发生,它们是同时的。但对于在列车内部正中央的乙,情况则不同,因为乙与高速运行的列车一同运动,因此他会先截取向着他传播的前端信号,然后收到从后端传来的光信号。对乙来说,这两起事件是不同时的。也就是说,同时性不是绝对的,而取决于观察者的运动状态。这一结论否定了牛顿力学中引以为基础的绝对时间和绝对空间框架。 相对论认为,光速在所有惯性参考系中不变,它是物体运动的最大速度。由于相对论效应,运动物体的长度会变短,运动物体的时间膨胀。但由于日常生活中所遇到的问题,运动速度都是很低的(与光速相比),看不出相对论效应。 爱因斯坦在时空观的彻底变革的基础上建立了相对论力学,指出质量随着速度的增加而增加,当速度接近光速时,质量趋于无穷大。他并且给出了著名的质能关系式:E=mc^2,质能关系式对后来发展的原子能事业起到了指导作用。 广义相对论的建立: 1905年,爱因斯坦发表了关于狭义相对论的第一篇文章后,并没有立即引起很大的反响。但是德国物理学的权威人士普朗克注意到了他的文章,认为爱因斯坦的工作可以与哥白尼相媲美,正是由于普朗克的推动,相对论很快成为人们研究和讨论的课题,爱因斯坦也受到了学术界的注意。 1907年,爱因斯坦听从友人的建议,提交了那篇著名的论文申请联邦工业大学的编外讲师职位,但得到的答复是论文无法理解。虽然在德国物理学界爱因斯坦已经很有名气,但在瑞士,他却得不到一个大学的教职,许多有名望的人开始为他鸣不平,1908年,爱因斯坦终于得到了编外讲师的职位,并在第二年当上了副教授。1912年,爱因斯坦当上了教授,1913年,应普朗克之邀担任新成立的威廉皇帝物理研究所所长和柏林大学教授。 在此期间,爱因斯坦在考虑将已经建立的相对论推广,对于他来说,有两个问题使他不安。第一个是引力问题,狭义相对论对于力学、热力学和电动力学的物理规律是正确的,但是它不能解释引力问题。牛顿的引力理论是超距的,两个物体之间的引力作用在瞬间传递,即以无穷大的速度传递,这与相对论依据的场的观点和极限的光速冲突。第二个是非惯性系问题,狭义相对论与以前的物理学规律一样,都只适用于惯性系。但事实上却很难找到真正的惯性系。从逻辑上说,一切自然规律不应该局限于惯性系,必须考虑非惯性系。狭义相对论很难解释所谓的双生子佯谬,该佯谬说的是,有一对孪生兄弟,哥在宇宙飞船上以接近光速的速度做宇宙航行,根据相对论效应,高速运动的时钟变慢,等哥哥回来,弟弟已经变得很老了,因为地球上已经经历了几十年。而按照相对性原理,飞船相对于地球高速运动,地球相对于飞船也高速运动,弟弟看哥哥变年轻了,哥哥看弟弟也应该年轻了。这个问题简直没法回答。实际上,狭义相对论只处理匀速直线运动,而哥哥要回来必须经过一个变速运动过程,这是相对论无法处理的。正在人们忙于理解相对狭义相对论时,爱因斯坦正在接受完成广义相对论。 1907年,爱因斯坦撰写了关于狭义相对论的长篇文章《关于相对性原理和由此得出的结论》,在这篇文章中爱因斯坦第一次提到了等效原理,此后,爱因斯坦关于等效原理的思想又不断发展。他以惯性质量和引力质量成正比的自然规律作为等效原理的根据,提出在无限小的体积中均匀的引力场完全可以代替加速运动的参照系。爱因斯坦并且提出了封闭箱的说法:在一封闭箱中的观察者,不管用什么方法也无法确定他究竟是静止于一个引力场中,还是处在没有引力场却在作加速运动的空间中,这是解释等效原理最常用的说法,而惯性质量与引力质量相等是等效原理一个自然的推论。 1915年11月,爱因斯坦先后向普鲁士科学院提交了四篇论文,在这四篇论文中,他提出了新的看法,证明了水星近日点的进动,并给出了正确的引力场方程。至此,广义相对论的基本问题都解决了,广义相对论诞生了。1916年,爱因斯坦完成了长篇论文《广义相对论的基础》,在这篇文章中,爱因斯坦首先将以前适用于惯性系的相对论称为狭义相对论,将只对于惯性系物理规律同样成立的原理称为狭义相对性原理,并进一步表述了广义相对性原理:物理学的定律必须对于无论哪种方式运动着的参照系都成立。 爱因斯坦的广义相对论认为,由于有物质的存在,空间和时间会发生弯曲,而引力场实际上是一个弯曲的时空。爱因斯坦用太阳引力使空间弯曲的理论,很好地解释了水星近日点进动中一直无法解释的43秒。广义相对论的第二大预言是引力红移,即在强引力场中光谱向红端移动,20年代,天文学家在天文观测中证实了这一点。广义相对论的第三大预言是引力场使光线偏转,。最靠近地球的大引力场是太阳引力场,爱因斯坦预言,遥远的星光如果掠过太阳表面将会发生一点七秒的偏转。1919年,在英国天文学家爱丁顿的鼓动下,英国派出了两支远征队分赴两地观察日全食,经过认真的研究得出最后的结论是:星光在太阳附近的确发生了一点七秒的偏转。英国皇家学会和皇家天文学会正式宣读了观测报告,确认广义相对论的结论是正确的。会上,著名物理学家、皇家学会会长汤姆孙说:“这是自从牛顿时代以来所取得的关于万有引力理论的最重大的成果”,“爱因斯坦的相对论是人类思想最伟大的成果之一”。爱因斯坦成了新闻人物,他在1916年写了一本通俗介绍相对论的书《狭义与广义相对论浅说》,到1922年已经再版了40次,还被译成了十几种文字,广为流传。 相对论的意义: 狭义相对论和广义相对论建立以来,已经过去了很长时间,它经受住了实践和历史的考验,是人们普遍承认的真理。相对论对于现代物理学的发展和现代人类思想的发展都有巨大的影响。 相对论从逻辑思想上统一了经典物理学,使经典物理学成为一个完美的科学体系。狭义相对论在狭义相对性原理的基础上统一了牛顿力学和麦克斯韦电动力学两个体系,指出它们都服从狭义相对性原理,都是对洛伦兹变换协变的,牛顿力学只不过是物体在低速运动下很好的近似规律。广义相对论又在广义协变的基础上,通过等效原理,建立了局域惯性长与普遍参照系数之间的关系,得到了所有物理规律的广义协变形式,并建立了广义协变的引力理论,而牛顿引力理论只是它的一级近似。这就从根本上解决了以前物理学只限于惯性系数的问题,从逻辑上得到了合理的安排。相对论严格地考察了时间、空间、物质和运动这些物理学的基本概念,给出了科学而系统的时空观和物质观,从而使物理学在逻辑上成为完美的科学体系。 狭义相对论给出了物体在高速运动下的运动规律,并提示了质量与能量相当,给出了质能关系式。这两项成果对低速运动的宏观物体并不明显,但在研究微观粒子时却显示了极端的重要性。因为微观粒子的运动速度一般都比较快,有的接近甚至达到光速,所以粒子的物理学离不开相对论。质能关系式不仅为量子理论的建立和发展创造了必要的条件,而且为原子核物理学的发展和应用提供了根据。 对于爱因斯坦引入的这些全新的概念,当时地球上大部分物理学家,其中包括相对论变换关系的奠基人洛仑兹,都觉得难以接受。甚至有人说“当时全世界只有两个半人懂相对论”。旧的思想方法的障碍,使这一新的物理理论直到一代人之后才为广大物理学家所熟悉,就连瑞典皇家科学院,1922年把诺贝尔物理学奖授予爱因斯坦时,也只是说“由于他对理论物理学的贡献,更由于他发现了光电效应的定律。”对爱因斯坦的诺贝尔物理学奖颁奖辞中竟然对于爱因斯坦的相对论只字未提。 E=mc^2 物质不灭定律,说的是物质的质量不灭;能量守恒定律,说的是物质的能量守恒。(信息守恒定律) 虽然这两条伟大的定律相继被人们发现了,但是人们以为这是两个风马牛不相关的定律,各自说明了不同的自然规律。甚至有人以为,物质不灭定律是一条化学定律,能量守恒定律是一条物理定律,它们分属于不同的科学范畴。 爱因斯坦认为,物质的质量是惯性的量度,能量是运动的量度;能量与质量并不是彼此孤立的,而是互相联系的,不可分割的。物体质量的改变,会使能量发生相应的改变;而物体能量的改变,也会使质量发生相应的改变。 在狭义相对论中,爱因斯坦提出了著名的质能公式:E=mc^2 (这里的E代表物体的能量,m代表物体的质量,c代表光的速度,即3×10^8m/s)。 爱因斯坦的理论,最初受到许多人的反对,就连当时一些著名物理学家也对这位年青人的论文表示怀疑。然而,随着科学的发展,大量的科学实验证明爱因斯坦的理论是正确的,爱因斯坦才一跃而成为世界著名的科学家,成为20世纪世界最伟大的科学家。 爱因斯坦的质能关系公式,正确地解释了各种原子核反应:就拿 氦 4 来说,它的原子核是由2个质子和2个中子组成的。照理,氦4原子核的质量就等于2个质子和2个中子质量之和。实际上,这样的算术并不成立,氦核的质量比2个质子、2个中子质量之和少了0.0302原子质量单位[57]!这是为什么呢?因为当2个氘[]核(每个氘核都含有1个质子、1个中子)聚合成1个氦4原子核时,释放出大量的原子能。生成1克氦4原子时,大约放出2.7×10^12焦耳的原子能。正因为这样,氦4原子核的质量减少了。 这个例子生动地说明:在2个氘原子核聚合成1个氦4原子核时,似乎质量并不守恒,也就是氦4原子核的质量并不等于2个氘核质量之和。然而,用质能关系公式计算,氦4原子核失去的质量,恰巧等于因反应时释放出原子能而减少的质量! 这样一来,爱因斯坦就从更新的高度,阐明了物质不灭定律和能量守恒定律的实质,指出了两条定律之间的密切关系,使人类对大自然的认识又深了一步。 光电效应 光照射到某些物质上,引起物质的电性质发生变化。这类光致电变的现象被人们统称为光电效应(Photoelectric effect)。 光电效应分为光电子发射、光电导效应和光生伏特效应。前一种现象发生在物体表面,又称外光电效应。后两种现象发生在物体内部,称为内光电效应。 赫兹于1887年发现光电效应,爱因斯坦第一个成功的解释了光电效应。金属表面在光辐照作用下发射电子的效应,发射出来的电子叫做光电子。光波长小于某一临界值时方能发射电子,即极限波长,对应的光的频率叫做极限频率。临界值取决于金属材料,而发射电子的能量取决于光的波长而与光强度无关,这一点无法用光的波动性解释。还有一点与光的波动性相矛盾,即光电效应的瞬时性,按波动性理论,如果入射光较弱,照射的时间要长一些,金属中的电子才能积累住足够的能量,飞出金属表面。可事实是,只要光的频率高于金属的极限频率,光的亮度无论强弱,光子的产生都几乎是瞬时的,不超过十的负九次方秒。正确的解释是光必定是由与波长有关的严格规定的能量单位(即光子或光量子)所组成。 光电效应里,电子的射出方向不是完全定向的,只是大部分都垂直于金属表面射出,与光照方向无关 ,光是电磁波,但是光是高频震荡的正交电磁场,振幅很小,不会对电子射出方向产生影响。 1905年,爱因斯坦提出光子假设,成功解释了光电效应,因此获得1921年诺贝尔物理奖。 “上帝不掷骰子” 爱因斯坦曾经是量子力学的催生者之一,但是他不满意量子力学的后续发展,爱因斯坦始终认为“量子力学(以玻恩为首的哥本哈根诠释:“基本上,量子系统的描述是机率的。一个事件的机率是波函数的绝对值平方。”)不完整”,但苦于没有好的解说样板,也就有了著名的“上帝不掷骰子”的否定式呐喊!其实,爱因斯坦的直觉是对的,决定论的量子诠释才是“量子论诠释”的本真、根源。爱因斯坦到过世前都没有接受量子力学是一个完备的理论。爱因斯坦还有另一个名言:“月亮是否只在你看着他的时候才存在?” 宇宙常数 爱因斯坦在提出相对论的时候,曾将宇宙常数(为了解释物质密度不为零的静态宇宙的存在﹐他在引力场方程中引进一个与度规张量成比例的项﹐用符号Λ 表示。该比例常数很小﹐在银河系尺度范围可忽略不计。只在宇宙尺度下﹐Λ 才可能有意义﹐所以叫作宇宙常数。即所谓的反引力的固定数值)代入他的方程。他认为,有一种反引力,能与引力平衡,促使宇宙有限而静态。当哈勃得意洋洋的在天文望远镜展示给爱因斯坦看时,爱因斯坦惭愧极了,他说:“这是我一生所犯下的最大错误。”宇宙是膨胀着的!哈勃等认为,反引力是不存在的,由于星系间的引力,促使膨胀速度越来越慢。 那么,爱因斯坦就完全错了吗?不。星系间有一种扭旋的力,促使宇宙不断膨胀,即暗能量。70亿年前,它们“战胜”了暗物质,成为宇宙的主宰。最新研究表明,按质量成份(只算实质量,不算虚物质)计算,暗物质和暗能量约占宇宙96%。看来,宇宙将不断加速膨胀,直至解体死亡。(目前也有其它说法,争议不休)。宇宙常数虽存在,但反引力的值远超过引力。也难怪这位倔强的物理学家与波尔在量子力学的争论:“上帝是不掷骰子的!”(不要指挥上帝如何决定宇宙的命运) 林德饶有风趣的说:“现在,我终于明白,为什么他(爱因斯坦)这么喜欢这个理论,多年后依然研究宇宙常数,宇宙常数依然是当今物理学最大的疑问之一。”

2. 爱因斯坦有哪些发明

爱因斯坦不是发明家,所以他没有发明过什么。他是提出了很多理论 比如《相对论》,很多东西都是在他的理论上发明的。他是一位物理学家,主要进行物理理论研究,有许多杰出的物理成就。爱因斯坦的成就如下:

爱因斯坦提出了相对论、广义相对论;发现了光电效应,对能量守恒定律进行了更加突出的研究。

虽然这两条伟大的定律相继被人们发现了,但是人们以为这是两个风马牛不相关的定律,各自说明了不同的自然规律。甚至有人以为,物质不灭定律是一条化学定律,能量守恒定律是一条物理定律,它们分属于不同的科学范畴。

爱因斯坦认为,物质的质量是惯性的量度,能量是运动的量度;能量与质量并不是彼此孤立的,而是互相联系的,不可分割的。物体质量的改变,会使能量发生相应的改变;而物体能量的改变,也会使质量发生相应的改变。

在狭义相对论中,爱因斯坦提出了著名的质能公式:E=mc²(E代表能量,m代表质量,c代表光的速度,近似值为3×10^8m/s,这说明能量可以用增加质量的方法创造!)。

拓展资料:

阿尔伯特·爱因斯坦(1879.3.14-1955.4.18)犹太裔物理学家。爱因斯坦是和平主义者和人道主义者,晚年成为民主社会主义者。他曾经说:“我认为甘地的观点是我们这个时期所有政治家中最高明的。我们应该朝着他的精神方向努力:不是通过暴力达到我们的目的,而是不同你认为邪恶的势力结盟。”爱因斯坦反对共产主义、麦卡锡主义和种族主义。他还是德国自由民主党的建立者之一。

3. 爱因斯坦的发明

年 月 日清晨,巴西南部一个叫做索不拉尔的偏僻村庄里。太阳刚刚升起。上帝赐予了当地人永久的宁静,在他们眼中,世界不过是蓝天,麦田,草原,绵羊,仅此而已。甚至刚结束的硝烟弥漫的第一次世界大战仿佛也是天边的传说。
但他们还是一大早就被人吵醒了,门口来了一队行装古怪的外国人。有的操着蹩足的葡萄牙语向他们问好,有的打着手势借水喝,更多人在忙着架设天文望远镜和照相机。
中午时分,灿烂的阳光慢慢开始变暗,本世纪一次著名的日全食发生了。围观的人群骚动了起来,纷纷在胸口画着十字,有人急忙去找牧师,而那些外国人则胸有成竹地开始进行观测。
他们是一支天文观测队,来自遥远的英国,此行的目的是验证一个德国人的奇怪理论。
很快数据得到了处理,而且底片也冲出来了。
领队的教授是一个标准的英格兰绅士,虽然绅士们最推崇沉着冷静的作风,但是教授的目光明显流露出期待和不安。当他将湿漉漉的底片放在灯下时,很快教授先生的手连同大胡子都激动地抖了起来,宇宙有界还是无界,我们所属的空间平直还是弯曲,牛顿思想胜利还是被颠覆,都取决这几张小小的底片了。他深吸一口气,睁大了眼睛。
很快,即使离屋子五十米以外的地方都可以听到一声毫无风度的嚎叫:“我的上帝,难道那个叫爱因斯坦的德国人到底说中了?!”
在两张重叠的底片上可以清晰地看到一条笔直的星光在穿过阴影中的太阳时,竟然发生了偏转,偏转角是 秒。

英国皇家学会的大厅里,坐满了英伦三岛的科学精英。他们有的可能意识到这会是个不平凡的日子,特地换上节日才穿的西装。
当大会主席汤姆逊爵士,扶了扶眼镜,慢吞吞地宣布这次大会的议题是《广义相对论在天文学上的验证》时,底下的学者们就开始窃窃私语,而后声音愈来愈大,有的甚至不等主持人的召唤隔着橡木桌就站起来大声辩论,汤姆生几次摇铃试图控制局势都未成功,他遗憾地摇摇头,向旁边的几位委员尴尬地笑笑。
但是当著名的天文学家爱丁顿勋爵,这次天文测量的总领队出席在会场时,下面顿时静了下来。他满脸风尘,声音低哑而且发言简短,但纵使会场离他最远的人也听清了这样几句,“……铁一般的事实……光线弯曲了……与爱因斯坦博士的计算结果完全一致……”
会议开到很晚,没人提前退出会场,甚至没有人站起来发言。鲜红的地毯,昏黄摇曳的烛光,将沉思中的学者们的脸衬得或明或暗。没人感到饥饿,没人感到倦意,更为糟糕的是工作人员似乎也受上了物理学家风范的影响,粗心得连晚餐也忘了上。但人们根本顾不上这些,从白发班驳的老学究,到颇富朝气的新锐,都在默默地思考着,激动着。
无论是赞成派还是反对派,都清楚这的确是重要的一天,不仅二十世纪物理学的一代巨人就此崛起,而且是他,爱因斯坦,亲手抡起大槌,将牛顿苦心创建,业已竣工百年的经典物理学的大厦砸开第一道裂纹。
牛顿也错了?物理学就此混乱?末日就此到来?呵,依撒克•牛顿,我们心中的神祗,我们都是你忠实的追随者,你会怎样指示我们呢?人们纷纷把目光投向大厅正中牛顿的巨幅画像上。
牛顿不说话,他只是高深莫测地笑着。

在伦敦,第二天影响甚大的《泰晤士报》头版头条的报道是《光线弯曲了,牛顿神话的破灭》,盛赞爱因斯坦是继牛顿之后的最伟大的物理学家,他更正了人类的时空观,拓展了人类的思维世界,并且断言他的相对论产生的影响决不会只囿于二十世纪。很快,从踯躅在伦敦街头的商贩,到面目黝黑的煤炭工人,都隐约知道了科学界最近发生了惊天动地的事,至于对其它人有什么影响,一时还领悟不到。毕竟,这离相对论的副产品之一——原子弹的诞生,还有漫长的二十六年。
在大西洋彼岸的纽约,惯用哗众取宠手法的《纽约时报》的头条标题是“俄国爆发革命”,但接下去以更大的标题写道:“爱因斯坦的胜利”,“恒星在不在它们应在的位置上出现,但是似乎不必担心。”按照他们的报道,公众们已开始怀疑九九乘法表的正确性,学生们则开始拒绝作几何题,又据称,爱因斯坦在把他的著作交付出版商时,警告说全世界仅有 个人懂相对论,但出版商乐于承担这个风险。
在巴黎,沙龙里“相对论”立时成了最时髦的词语。雍容的女贵族可以一边抚着怀中的哈巴狗,一边和女友们眉飞色舞地谈论“相对论”,如同在谈论昨夜刚上演的歌剧。她们并不需要纸和笔。
在柏林,官方机构正在为难是否宣传这位并不是日耳曼人而是犹太人的传奇科学家的时候,大街小巷的啤酒馆里的人都在神秘而兴奋地谈论着爱因斯坦和他的相对论。是的,自从一战以德国的惨败而告终后,很久没有这样激动人心的话题了。一个德国人能受到战胜国的推崇,真是少见。一夜之间,即使是小学生也把爱因斯坦那著名的公式写入了练习簿。
第一次世界大战的硝烟刚刚散尽。为民族主义所鼓动的人们在狂欢或狂悲过后,却发现轰轰烈烈的一战除了大口径重炮,齐柏林飞艇,满目疮痍的建筑物和以百万计亲人充当的炮灰以外,委实没有剩下什么。理性终于在人们的冷静中回归,科学再度被摆上至高无上的地位。
不管怎么讲, 年的爱因斯坦如日中天。
街头的电车刚刚停稳,就下来一个穿褐色风衣,头发凌乱的中年人。刚才在电车上,警惕的售票员几乎把他认作小偷,因为他实在很少见这种脖子上扎着领带,脚下穿着拖鞋的人。不过要是他知道这就是大名鼎鼎的爱因斯坦教授,一定会惊讶得说不出话的。爱因斯坦先生刚刚从他朋友洛仑兹教授的电报里得知广义相对论被证实的消息,他不过微微一笑,自然,一切都在意料中了。
心情毕竟很好,他边走边哼着舒伯特的小夜曲,但是没过多久声音就小了下去。爱因斯坦,这位历史上出名的智者,又一次晃着硕大的头脑陷入沉思,他在想些什么呢……

年 月 日,阿尔伯特•爱因斯坦诞生于德国南部一个宁静的小城乌尔姆。和牛顿一样,这个注定要震撼世界的人的童年并未有任何特异之处。
他的父亲海尔曼•爱因斯坦虽说是一位商人,但是他年青在学校里展现的数学方面的才华是有目共睹的。而他的母亲艾尔莎则是音乐爱好者,并经常在家庭聚会大声朗诵席勒的诗篇。父亲的数学才华加上母亲的艺术天赋,照理小爱因斯坦应该聪颖过人。然而这个孩子天生沉默寡言,以致忧心的母亲一度怀疑他是否有智力障碍。
但是当他的母亲奏起钢琴时,小爱因斯坦就会侧过脑袋倾听。他的湛蓝的目光显得很是深邃,孩子显然是听懂了。这就是美呀。也许他毕生所追求的自然界和谐的美就根源于此。
很快爱因斯坦就发现小城的环境并不适合他。弯曲而狭窄的街道,庄严的哥特式教堂,威武雄壮的炮台,这里似乎更适宜培养出一批热血的日耳曼战士,而不是他这种视自由为生命的思想家。在宏大的阅兵式上,普鲁士军官刻板的军令,士兵们单调的步伐,往往成为孩童们模仿的对像。而这时可怜的爱因斯坦紧张地抓住大人的手,他要回家。军号和刺刀是他厌恶了一生的东西。
在学校的情况似乎也妙不到哪里去。他是一个犹太人,而欧洲排犹的习俗由来已久。周围同学有意无意的伤害,使小爱因斯坦更加孤僻。老师们也没有注意到蜷在教室一角的他,在老师看来,不能掌握拉丁文语法的孩子是没有前途的,而且小爱因斯坦回答问题时总显得很迟钝。他们并不能理解这是爱因斯坦思考比同龄人深刻得多的缘故。
这期间也发生了触及爱因斯坦终生的事。
他的父亲送给小爱因斯坦一个罗盘针。不管他怎么拨动指针,它永远只朝一个方向。这在大人们看来是司空见惯,但在孩子的眼里充满了神奇,一定有什么神秘的力在推动它,怎么才能找到这种力呢?孩子为这苦恼了一段时间。
在他升入中学的时候,他第一次接触到了几何。这更是一个充满魔力的世界。书上各种复杂的定理归根到底由几个公理推论而出,一切是那么的简明,而证明过程又严格得无可挑剔,自然界有它独特的秩序美。
更令小爱因斯坦惊奇的是自然界竟也会骗人!人们通过粗浅的直觉经验得来的结论往往是那么的不可靠。上帝不仅淘气,而且吝啬,他经常会把真理像皮球一样踢向更深处,然后转过身向人们扮个鬼脸。人类对真理的追寻如同与上帝的角力。”或许我们对世界的看法根本就有偏差,因为它不过是建立在几个公理之上的,如果这些公理本身也有漏洞呢?”当小爱因斯坦摆弄着圆规和三角板的时候,心中升起这样的念头。当然他没有说出来,说出来也只会导致大人紧张地伸出手去摸他的额头,没有人相信若干年后这个羸弱的孩子会轻轻掀翻整个人类的世界观。
对于爱因斯坦而言,长期音乐的熏陶赋予他美感与想象,对常见事物的深思训练了他的洞察力,而几何题迷宫一样的推理使他的思路更加缜密。他无疑是幸运的。
然而爱因斯坦还是不能足够敏锐地回答老师的问题而遭白眼,还是不得不交出自己精心制作却依旧丑陋的泥捏小板凳而遭同学们嘲笑,拉丁语的课文念得结结巴巴,算术考试也由于马虎而错误百出,整个少年时代,学业不过平平。

从 年到 年,爱因斯坦求学于瑞士苏黎士工业大学,这是他一生中十分平静和惬意的地方。
瑞士立国数百年,自由的氛围欧洲无国可及。爱因斯坦在这里听不到士兵们无休止的冲杀声,空气清新,阳光也分外的和媚,即使巡逻在街头的警察也是步履缓慢,眼角蕴含着笑意。
在这里,爱因斯坦的自由散漫发挥到极致。他可以穿着拖鞋进出教室,可以蓬头垢面地整天窝在实验室,可以和同学们在一起自由讨论,可以不去上自己不喜欢的课。他甚至对数学这样重要的课都去敷衍。在他当时看来,物理世界是简单而优美的,上帝只垂青 、 、 、 ……,而数学只是徒增形式上的复杂。这甚至影响他多年以后的研究工作。
用现在的眼光看来,当时无论数学还是物理都发展得远不够充分。到二十世纪末,我们才发现数学和物理交叉愈来愈深。以前只是物理简单地从数学中寻找工具,而现在甚至物理可以导致数学中的突破。
我记得在一次报告中,诺贝尔物理奖获得者李政道博士伸出双手,这样说道:“物理学和数学犹如一根树枝上的两片叶子。”
可是一般说来,极富洞察力具有哲学家气质的人,并不一定很胜任细琐而又精密,逻辑性强的数学推理工作。
从来没有人能兼两者之长,牛顿不能,爱因斯坦也不能。
更主要的是爱因斯坦发现展现他面前的数学分支繁复,数论,几何,拓扑等等,任意一门就会耗尽一生的精力。这情形犹如布里丹之驴。这头可怜的驴子因为摆在它面前的两堆稻草同样厚而无法选取吃哪一堆,最终活活饿死。
但是,爱因斯坦很快就要为自己的选择付出代价了。考试之前,他对着自己散乱不堪的笔记发愣。幸好他的老朋友格罗斯曼先生是一个生来与爱因斯坦处处相反的人,他的笔记和他的人一样,光鲜齐整,一丝不苟。当爱因斯坦在发展广义相对论时发现几何知识欠缺而找其时已为数学教授的格罗斯曼援手时,这已经是十几年以后的事了。
爱因斯坦用格罗斯曼的笔记马虎对付了考试,但这并未改变老师对他的看法。在教授们眼中,他懒惰无比,性格怪僻,而且他是唯一与教授打招呼用“喂”的学生。这也是爱因斯坦虽然聪明绝顶,却不谙世事,天真得如同孩子的缘故。
他的数学老师闵可夫斯基看见爱因斯坦从实验室里衣冠不整地跑出来,便将他挡住:
“爱因斯坦,你也许是个聪明人,但你决不适合搞物理,为什么你不尝试一下其它职业,比如学医或者法律呢?”
“也许吧。”爱因斯坦淡淡地回答道。
仅仅几年后,闵可夫斯基为他“并不勤劳”的学生的狭义相对论摇旗呐喊,并为此名动四海时,一位记者不合时宜地问道:
“教授先生,您何以曾断言爱因斯坦不适合从事物理工作呢?”
“他太懒了,至少在当时。”教授耸耸肩。
不幸的是这位闵可夫斯基先生不久就身缠沉疴,临死前曾大发感慨:在相对论刚出世的年月就死去,真是可惜呀。

也不能说爱因斯坦在这几年无所事事,他主要的精力花在实验室里,当时全世界的物理学家都在疲于奔命地寻找以太,他也曾设计过几个实验,显而易见,简陋的条件和根本不存在的以太使他的努力徒劳。
他也经常和他的朋友们去一个叫做“都会”的咖啡厅。他们在这里经常进行哲学话题的探讨,一次同学介绍了马赫的作品《力学》给他。马赫是对牛顿的经典力学开炮的第一人,他尖锐地抨击了牛顿绝对空间和绝对时间的观念。
爱因斯坦如获至宝,马上拿回去通宵阅读。马赫的思想赫然如黑夜中的明星,空间也是绝对的,时间也是绝对的,既然都是绝对而孤立的,那么我们怎么能感觉到时间和空间的存在呢?
夜已经很深了,爱因斯坦屋内的灯光依旧闪烁,这位思想的巨人,又开始磨砺他的旷世利剑了。

当爱因斯坦走出校门,却悲惨地发现自己毕业即失业,而且父亲在意大利办的公司也破了产,丝毫帮不上忙。他曾努力地申请留在苏黎士工业学院教书,但是高高在上的教授们冷漠地拒绝了他。没有人喜欢一个离经叛道的斗士。
秋天晚上的瑞士已颇见寒意了,我们的爱因斯坦先生披着深色的风衣,手中的旧皮箱里盛着全部的家当,凉风拂着乱发,静静地走在漫长的街道上,路灯划下斜斜的影子。
真是安静呀,事实上终其一生,爱因斯坦都是在这种静谧中度过,这不仅是指外部环境上的,更是他内心深处的。无论他是在日内瓦时的穷困潦倒,或是在柏林时的誉满全球,还是在普林斯顿时的无人喝彩,孤独的感觉始终如影身随。
后来他曾反复说过自己最希望的职业是看守灯塔,汹涌而漆黑的海面上一盏明灯,指引了航船的同时也照亮了自己的内心,那里更像是一间祈祷室,可以静静地聆听上帝的指示。他甚至不愿意接受作为教授这项职业所领的薪水,而宁愿把物理学研究作为业余爱好。看来显然是受了中世纪的大哲学家斯宾诺沙的影响,这位先哲的正式职业是在荷兰阿姆斯特丹的一家偏僻的眼睛店里磨镜片。
可是现在真是发愁呀,辘辘的饥肠,妻子焦灼期盼的眼睛,还有她肚里的孩子……
迎面刮来一张残破的报纸,爱因斯坦没精打采地一瞥,上面印着份招聘启事:“伯尔尼专利局,征聘二级工程师,须受高等教育,精通机械工程或物理学……”
爱因斯坦眼睛一亮。

很快伯尔尼专利局的职员们迎来了一位新同事,这位同事似乎格外地忙。工作十分卖力不说,还经常和夫人一起排队买面包,或者推着婴儿车在公园闲转,而在上班时还偷偷地在纸上写写画画。幸亏他的上司一点儿也不知道这位年轻的专利审查员完成任务是多么迅速,不然他这种拙劣的表演很快就会露馅的。
其时已经是 年,爱因斯坦 岁。当时他久已远离的物理学界正处于更大的混乱中,寻找以太的实验彻底失败,一些物理学家提出种种解释。比如爱尔兰物理学家斐兹杰诺提出,运动的物体可能因为以太风压缩而变短,但这遭到更多人的反驳。不仅如此,几年以前,伦琴发现的 射线更使人觉察到物质内部有更为基本的结构,而普朗克在 年提出的量子论,也已经掀开了物理学新的篇章,只是当时没有人意识到罢了。无论怎样,用“山雨欲来风满楼”来形容当时的情形是再恰当不过的。
然而爱因斯坦在学术上处于十分封闭的状态,他没有机会听取报告,也没机会参加学院的讨论班,和他交往频繁的不过是一些民间物理学爱好者。但是这并不能阻止他向物理学的塔尖迈进。
他一直在苦思“以太之迷”,而且他走的道路与所有人的都不同。还在他中学的时候,他一度对迈克斯韦的电磁理论崇拜之致。这并不是因为它能解决很多实际问题,比如导致电磁波的发现。爱因斯坦看中的是公式本身具有完美的对称性,但是显然这种协变性与牛顿的经典理论是相冲突的。
比方说,按照牛顿力学的观点,如果一个人站在速度为 的车上以相对于车以 的速度向前抛出一个皮球,在地面静止的人来看,球的速度是 加 等于 。任何初通物理的人都会得出这个结论。然而,我们知道光也是一种电磁波,它在真空中的速度是 ,如果那个站在车上的人拿的是支手电筒,那么在地面上的人看来,光的速度是多少呢,还是 加上 吗?还能简单地叠加吗?
要是你以 的速度追上一束光,你会看到怎样的景象呢,你会看到光波在原地不动地抖动吗?
爱因斯坦进行了一次冒险,他宁愿为了从对称性这种单纯的美学观点出发,而放弃掉人们习以为常的经验。他也是信仰上帝的,但他不是信仰那个只手捏控人类命运的上帝,而是那个在万物的有序和谐中显示出来的上帝。

我们称之为冒险,是因为仅仅在几十年后,两个在美国留学的年青人在研究基本粒子中“ 之迷”的时候,提出的“在弱相互作用中宇称不守恒”理论,简单地说就是对称性的破坏,在当时激起轩然大波,按照普通美国人的解释是他们又推翻了爱因斯坦的相对论。事实上推翻的不是相对论,而是从古希腊文明以来人们对自然界恒久抱有的美丽幻想。仿佛无数物理学家费劲心机终于战战兢兢揭开上帝——这位梦中情人头上的面纱,却失望地看到一张坑坑洼洼的老妪的脸。
这两个值得全人类骄傲的年青人都是中国人,他们一个叫李政道,一个叫扬振宁。

观念上的重大修改无疑引起很多麻烦,对于新观念的创始人来说更是如此。很快爱因斯坦的头脑里塞满了以太,量子,时间,空间这些东西,以至于给他的孩子小汉斯拿着奶瓶喂奶时也时常走神。而逻辑上的混乱让爱因斯坦更是无所适从。
他疲倦地从办公室回到家里,头脑里天旋地转,然而凭直觉爱因斯坦逐步认定有种极平常的经验在作祟,究竟是什么呢?他越想越困,眼睛慢慢快要阖上了,这时,厨房里传来妻子米列娃的呼唤,“阿尔伯特,吃饭的时间到了,还不快收拾桌子?”
“时间!?”宛如流星划过脑际,爱因斯坦几乎从椅子上跳将下来。他匆匆翻开牛顿的《自然科学的哲学原理》。在上面牛顿以确凿的口气写道:
“绝对空间就其本性来说与外界任何事物毫无关系,它永远是同一的,不动的。”
“绝对的,真实的数学时间本身按其本性来说是均匀流逝的,与外界的任何事物无关。”
“在运动系和静止系坐标变换时,显然,时间是不变的。”
不会是这样的,一定不是这样,爱因斯坦一边埋着头,一边踱着步,一个在运动着的车上的人看到的时间,与在地上静止的人看到的时间未必相同,嘿嘿,根本不存在绝对的空间和绝对的时间,既然如此,我们费力寻找的以太,刻意想测量出地球相对于绝对空间的速度,都是徒然。以太不是找不到,而是根本就不存在!!

在一个月内,名不见经传的爱因斯坦向德国最有声望的杂志《物理学年鉴》 发表了四篇论文。他挑出分量最轻的一篇,内容是通过中性物质的稀溶液的扩散和内摩擦来测定原子的大小,寄给了他的母校苏黎士联邦工业学院,毫不费力地取得了博士学位。另一篇是关于研究悬浮微粒的布朗运动的,也开辟了一个新方向。
第三篇是著名的光电效应,历史上第一次提出光量子的理论,在发展与相对论并称二十世纪物理学两大基石的量子力学中意义重大,几年后单凭此而不是相对论就获得诺贝尔物理奖。其实就爱因斯坦的贡献来看,一生完全可以五次登上诺贝尔奖的领奖台。光量子理论;狭义相对论;广义相对论;统计物理中的玻色——爱因斯坦凝聚;还有我们熟悉的激光的理论工作也归功于他。
第四篇的论文名字很朴素,叫《论运动物体的电动力学》。然而稍通物理学史的人都知道这是一篇惊世骇俗的文章,它宣布了狭义相对论的诞生。在这篇文章里,爱因斯坦没有卖弄令人目眩的数学技巧,平实而又深刻是爱因斯坦论文的一贯风格。读懂它并不需要高深的数学知识,但更需要革命性的思想和与日常经验决裂的勇气,尤其是在当时。
爱因斯坦提出的假设很简单,第一,我们无法确定相对静止的物体到底是处于静止状态还是匀速运动状态。因为绝对静止的空间不存在了,一切静止都是相对的。第二,光在真空中的速度永远不变而且不可超越,它与光源的速度无关。也即,对于站在地面上的人看, 的车上发出的光和即使以光速飞行的火箭(当然是不可能的)上发出的光的速度是一样的,均为 。
从这两个假设出发首先得出的古怪结论是:所谓“同时”是相对的!假设我们站在地面上,一架飞机从我们面前匀速飞过。在我们地面上的人看来,我们右边的人挥起手的“同时”左边的人弯下腰,而在飞机上的人则坚决不这样认为,他们认为我们右边的人先挥手,而左边的人后弯腰。与此相反,在飞机上的人认定机头处空中小姐不小心打破只碟子的“同时”机尾处的乘客点燃支香烟,而地面上的人异口同声地说碟子先落在地上然后香烟才被点着。
荒谬吗?我奉劝各位不要带着秒表上飞机一证真伪,因为“同时”事件在另一群人眼中的时间差是千万分之一秒,你可不具备那个反应能力。而这又是由于飞机的速度尽管达到几百米每秒,比起光的速度, ,还是望尘莫及的。不过这样也不错,至少平时说“这两件事同时发生”时不用再地加上诸如“在我们这群相对静止的人看来”之类的复杂状语了。
为了更好地解释狭义相对论,爱因斯坦设计了一个著名的思想实验。所谓思想实验,就是在地球上的实验室无法实现的条件下作的假想实验,因为跨入二十世纪以来,人们对通常状态下的物质研究几乎穷尽,动辄就研究绝对零度的低温或者上亿度的高温,速度接近光速的运动或者万万分之一米长度的空间。这对爱因斯坦这位思想大师来说轻车熟路,并很快成为他在学术上进攻或者防守的利器。
爱因斯坦这样假设:”观察者 站在铁路边上,在沿火车前进方向上有一个点 ,在运动相反方向同样距离上有一点 ,某一时刻 和 同时闪电,观察者 自然认定这两个点是同时闪光的,因为光的传播速度不变,而他又恰好站在两个闪光点的中心。”
“假定在闪电时,有一列车从 点到 点方向运动。在两道闪电的一刹那,在火车内的观察者 恰好在与地面观察者 相对的位置上,但 正向闪光点 运行,而离开闪光点 ,自然他看到 点的闪光比 点的早,但他知道他是在运动中的,根据自己运动的速度,也很容易得出两道光是同时发生的结论。”
但根据前面两个基本假设,同样可想,火车是静止的,而地面正在向后运动。因此,火车上的观测者 是相继看到那些闪光的,因而他得出 点发光比 点早的结论。他又知道自己的位置是在两个闪光的中间,由于他认为自己是静止的,所以他不得不断定他看到的头一个闪光比他看见的下一个早。”
有趣的是地面上的观测者 也不能不同意这个结论,他的确看见两个闪光是同时发生的。但既然现在他是被假定运动着的。当他考虑到光速和他是在向发光的 点运动着这一事实,也作出 点闪光比 点早的结论。
总之一句话,对于闪电是否同时发生的问题,我们不能一口咬定是或不是,而是要就选定的参考系来回答。

你可能已经迷惑了,但再往下推导更会导致你意想不到的结论。比如说“尺缩效应”和“钟缓效应”,“质增效应”。
“尺缩效应”指在你面前有把尺子,当它相对你运动的时候,你会发现它的长度缩短。
而“钟缓效应”指在运动的参考系里时钟会变慢。比如,在地面上和飞机上各有一人手那时钟,这时飞机上一只鸡蛋落在机舱的地板上。从鸡蛋脱手的那一瞬间开始,机上和地上的人同时开始记时,到落地时止。结果是地面上的人测出的时间长一些。换句话说,在地面静止的人看来,处于运动状态的物体时间变慢。其实“钟缓效应”的道理很简单:假如你坐在一个光速火箭中飞行,并且射出一束激光,那么在太空中静止不动的人就应该看见光以两倍光速飞行,而事实上光速在所有参照系中永远保持恒定不变,即 ,所以根据 , 变大且 不变,则 变小,即时间变慢。
“质增效应”是指运动中的物体质量增加。譬如一筐一斤重的鸡蛋,如果它飞得足够快,我们在地面上静止的人称来重量会达到五斤。它飞得更快的话,会毫不犹豫地将地球上最大的磅秤压歪。但它永远也到不了光速,不光是鸡蛋,任何有质量的物质的速度都绝对达不到光速。因为根据爱因斯坦的质能公式 (这将在后文提到),当物体运动的更快时,能量 增大,则质量 也增大。当一个物体接近光速时,它的质量上升得越来越快,它需要越来越多的能量才能进一步加速上去。事实上它永远不可能达到光速,因为那时质量会变得无穷大,这就需要无穷大的能量才能做到。光也是一种物质,它的速度之所以能臻极限,原因就是光本身静止时是没有质量的。当然,你若据次推理出质量越小的物质跑得越快,显然是荒谬的。正是这个原因,相对论限制任何正常的物体必须永远以低于光速的速度运动,只有光或其他没有质量的波才能以光速运动,这导致了光锥的最终产生。

4. 爱因斯坦发明了什么东西

复印机
起初,爱迪生发明的石蜡纸,只是普遍运用于食品,糖果的包装材料上,后来他尝试在蜡纸上刻出文字轮廓,形成一张石蜡刻字纸版,在纸版下垫上白纸,再用墨水的滚轮从刻字的石蜡纸上滚一滚,奇妙的事发生了,白纸上出现清楚的字迹。之后又经过多次的改良试验,1976年,爱迪生开始量产他发明的复印机,一下子,机关,学校,事业单位,团体都采用这种蜡纸油印机。由于爱迪生复印机大受欢迎,风行全球,使得爱迪生深切体验到,应该发明人们普遍而且深切需要的东西。
同步发报机
早期的电报机,一次只能传递一个讯息,而且不能同时交换信号,由于爱迪生本身是电报技师,便著手改良传统发报机,制造出二重发报机,1974年又研发出四重发报机,也就是同步发报机。在无线电还没有发展的当时,同步发报机是一项重大的突破。
改良电话机
我们都知道,现代电话是由贝尔所发明的,事实上,电话能够清晰的接收与发话,要归功于爱迪生一次又一次的试验,突破传统的窠臼,制造出碳粉送话器,一举提高了电话的灵敏度,音量,接收距离,否则,我们现在打电话时还是会常常:喂!喂!听不到啊,听不清楚啦。
留声机诞生
1877年12月的一个夜里,梦罗园实验室的工作人员微微颤抖著,不是因为寒冷,而是因为他们听到了,人类有史以来第一次的录音:「玛琍有只小绵羊,毛色白皙像雪样,不论玛琍到哪里,小羊总在她身旁……这项伟大的发明,不用小罐子老师多作介绍,大家都可以了解,它的应用面有多广。法国政府,还因此授与爱迪生爵士的头衔呢!后来,爱迪生又多次改良留声机,直到将滚筒式改成胶木唱盘式为止,这中间可不是一,二年而已,而是历经几十年的不断改进喔!
光明的使者
19世纪初,人们开始使用煤气灯(瓦斯灯),但是煤气靠管道供给,一但漏气或堵塞,非常容易出事,人们对于照明的改革,十分殷切。事实上,爱迪生为自己订定了一个不可能的任务:除了改良照明之外,还要创造一套供电的系统。
于是他和梦罗园的伙伴们,不眠不休的做了1600多次耐热材料和600多种植物纤维的实验,才制造出第一个炭丝灯泡,可以一次燃烧45个钟头。后来他更在这基础上不断改良制造的方法,终于推出可以点燃1200小时的竹丝灯泡。

5. 科技史上有几个著名的“预言”.100多年前,德国物理学家普朗克的老师菲利普

科技史上有几个著名的“预言”。100多年前,德国物理学家普朗克的老师菲利普·冯·约利教授曾忠告他,“物理学基本是一门已经完成了的科学”。1899年,美国专利局局长断言,“所有能够发明的,都已经发明了”。IBM董事长老沃森也曾预言,“全球计算机市场的规模是5台”。今天看来,这些预言非常可笑;但这些人都是那个时代本领域最杰出的人才。他们预言的失败,不是因为短视,而是因为社会经济发展的需求动力远远超出了所有人的预测,人类创新的潜能更远远超出了所有人的想象。

6. 求普朗克创立量子理论的故事

我们现在的文明都建立在量子理论之上。
尽管量子力学是为描述远离我们的日常生活经验的抽象原子世界而创立的,但它对日常生活的影响无比巨大。没有量子力学作为工具,就不可能有化学、生物、医学以及其他每一个关键学科的引人入胜的进展。没有量子力学就没有全球经济可言,因为作为量子力学的产物的电子学革命将我们带入了计算机时代。同时,光子学的革命也将我们带入信息时代。量子物理的杰作改变了我们的世界,科学革命为这个世界带来了的福音,也带来了潜在的威胁。
或许用下面的一段资料能最好地描述这个至关重要但又难以捉摸的理论的独特地位:量子理论是科学史上能最精确地被实验检验的理论,是科学史上最成功的理论。量子力学深深地困扰了它的创立者,然而,直到它本质上被表述成通用形式的今天,一些科学界的精英们尽管承认它强大的威力,却仍然对它的基础和基本阐释不满意。
1900年,德国柏林大学教授普朗克首先提出了“量子论”。 1900年12月14日,普朗克在柏林的物理学会上发表了题为《论正常光谱的能量分布定律的理论》的论文,提出了著名的普朗克公式,这一天被 普遍地认为是量子物理学诞生的日子。
马克斯�6�1普朗克(Max Planck)提出量子概念100多年了,在他关于热辐射的经典论文中,普朗克假定振动系统的总能量不能连续改变,而是以不连续的能量子形式从一个值跳到另一个值。能量子的概念太激进了,普朗克后来将它搁置下来。随后,爱因斯坦在1905年(这一年对他来说是非凡的一年)认识到光量子化的潜在意义。不过量子的观念太离奇了,后来几乎没有根本性的进展。现代量子理论的创立则是崭新的一代物理学家花了20多年时间建立的。
量子物理[1]实际上包含两个方面。一个是原子层次的物质理论:量子力学,正是它我们才能理解和操纵物质世界;另一个是量子场论,它在科学中起到一个完全不同的作用。
旧量子论
量子革命的导火线不是对物质的研究,而是辐射问题。具体的挑战是理解黑体(即某种热的物体)辐射的光谱。烤过火的人都很熟悉这样一种现象:热的物体发光,越热发出的光越明亮。光谱的范围很广,当温度升高时,光谱的峰值从红线向黄线移动,然后又向蓝线移动(这些不是我们能直接看见的)。
结合热力学和电磁学的概念似乎可以对光谱的形状作出解释,不过所有的尝试均以失败告终。然而,普朗克假定振动电子辐射的光的能量是量子化的,从而得到一个表达式,与实验符合得相当完美。但是他也充分认识到,理论本身是很荒唐的,就像他后来所说的那样:“量子化只不过是一个走投无路的做法”。
普朗克将他的量子假设应用到辐射体表面振子的能量上,如果没有新秀阿尔伯特�6�1爱因斯坦(Albert Einstein),量子物理恐怕要至此结束。1905年,他毫不犹豫的断定:如果振子的能量是量子化的,那么产生光的电磁场的能量也应该是量子化的。尽管麦克斯韦理论以及一个多世纪的权威性实验都表明光具有波动性,爱因斯坦的理论还是蕴含了光的粒子性行为。随后十多年的光电效应实验显示仅当光的能量到达一些离散的量值时才能被吸收,这些能量就像是被一个个粒子携带着一样。光的波粒二象性取决于你观察问题的着眼点,这是始终贯穿于量子物理且令人头痛的实例之一,它成为接下来20年中理论上的难题。
辐射难题促成了通往量子理论的第一步,物质悖论则促成了第二步。众所周知,原子包含正负两种电荷的粒子,异号电荷相互吸引。根据电磁理论,正负电荷彼此将螺旋式的靠近,辐射出光谱范围宽广的光,直到原子坍塌为止。
接着,又是一个新秀尼尔斯�6�1玻尔(Niels Bohr)迈出了决定性的一步。1913年,玻尔提出了一个激进的假设:原子中的电子只能处于包含基态在内的定态上,电子在两个定态之间跃迁而改变它的能量,同时辐射出一定波长的光,光的波长取决于定态之间的能量差。结合已知的定律和这一离奇的假设,玻尔扫清了原子稳定性的问题。玻尔的理论充满了矛盾,但是为氢原子光谱提供了定量的描述。他认识到他的模型的成功之处和缺陷。凭借惊人的预见力,他聚集了一批物理学家创立了新的物理学。一代年轻的物理学家花了12年时间终于实现了他的梦想。
开始时,发展玻尔量子论(习惯上称为旧量子论)的尝试遭受了一次又一次的失败。接着一系列的进展完全改变了思想的进程。
量子力学史
1923年路易�6�1德布罗意(Louis de Broglie)在他的博士论文中提出光的粒子行为与粒子的波动行为应该是对应存在的。他将粒子的波长和动量联系起来:动量越大,波长越短。这是一个引人入胜的想法,但没有人知道粒子的波动性意味着什么,也不知道它与原子结构有何联系。然而德布罗意的假设是一个重要的前奏,很多事情就要发生了。
1924年夏天,出现了又一个前奏。萨地扬德拉�6�1N�6�1玻色(Satyendra N. Bose)提出了一种全新的方法来解释普朗克辐射定律。他把光看作一种无(静)质量的粒子(现称为光子)组成的气体,这种气体不遵循经典的玻耳兹曼统计规律,而遵循一种建立在粒子不可区分的性质(即全同性)上的一种新的统计理论。爱因斯坦立即将玻色的推理应用于实际的有质量的气体从而得到一种描述气体中粒子数关于能量的分布规律,即著名的玻色-爱因斯坦分布。然而,在通常情况下新老理论将预测到原子气体相同的行为。爱因斯坦在这方面再无兴趣,因此这些结果也被搁置了10多年。然而,它的关键思想——粒子的全同性,是极其重要的。
突然,一系列事件纷至沓来,最后导致一场科学革命。从1925年元月到1928年元月:
�6�1沃尔夫刚�6�1泡利(Wolfgang Pauli)提出了不相容原理,为周期表奠定了理论基础。
�6�1韦纳�6�1海森堡(Werner Heisenberg)、马克斯�6�1玻恩(Max Born)和帕斯库尔�6�1约当(Pascual Jordan)提出了量子力学的第一个版本,矩阵力学。人们终于放弃了通过系统的方法整理可观察的光谱线来理解原子中电子的运动这一历史目标。
�6�1埃尔温�6�1薛定谔(Erwin Schrodinger)提出了量子力学的第二种形式,波动力学。在波动力学中,体系的状态用薛定谔方程的解——波函数来描述。矩阵力学和波动力学貌似矛盾,实质上是等价的。
�6�1电子被证明遵循一种新的统计规律,费米-狄拉克统计。人们进一步认识到所有的粒子要么遵循费米-狄拉克统计,要么遵循玻色-爱因斯坦统计,这两类粒子的基本属性很不相同。
�6�1海森堡阐明测不准原理。
�6�1保尔�6�1A�6�1M�6�1狄拉克(Paul A. M. Dirac)提出了相对论性的波动方程用来描述电子,解释了电子的自旋并且预测了反物质。
�6�1狄拉克提出电磁场的量子描述,建立了量子场论的基础。
�6�1玻尔提出互补原理(一个哲学原理),试图解释量子理论中一些明显的矛盾,特别是波粒二象性。
量子理论的主要创立者都是年轻人。1925年,泡利25岁,海森堡和恩里克�6�1费米(Enrico Fermi)24岁,狄拉克和约当23岁。薛定谔是一个大器晚成者,36岁。玻恩和玻尔年龄稍大一些,值得一提的是他们的贡献大多是阐释性的。爱因斯坦的反应反衬出量子力学这一智力成果深刻而激进的属性:他拒绝自己发明的导致量子理论的许多关键的观念,他关于玻色-爱因斯坦统计的论文是他对理论物理的最后一项贡献,也是对物理学的最后一项重要贡献。
创立量子力学需要新一代物理学家并不令人惊讶,开尔文爵士在祝贺玻尔1913年关于氢原子的论文的一封书信中表述了其中的原因。他说,玻尔的论文中有很多真理是他所不能理解的。开尔文认为基本的新物理学必将出自无拘无束的头脑。
1928年,革命结束,量子力学的基础本质上已经建立好了。后来,Abraham Pais以轶事的方式记录了这场以狂热的节奏发生的革命。其中有一段是这样的:1925年,Samuel Goudsmit和George Uhlenbeck就提出了电子自旋的概念,玻尔对此深表怀疑。10月玻尔乘火车前往荷兰的莱顿参加亨德里克�6�1A�6�1洛伦兹(Hendrik A. Lorentz)的50岁生日庆典,泡利在德国的汉堡碰到玻尔并探询玻尔对电子自旋可能性的看法;玻尔用他那著名的低调评价的语言回答说,自旋这一提议是“非常,非常有趣的”。后来,爱因斯坦和Paul Ehrenfest在莱顿碰到了玻尔并讨论了自旋。玻尔说明了自己的反对意见,但是爱因斯坦展示了自旋的一种方式并使玻尔成为自旋的支持者。在玻尔的返程中,遇到了更多的讨论者。当火车经过德国的哥挺根时,海森堡和约当接站并询问他的意见,泡利也特意从汉堡格赶到柏林接站。玻尔告诉他们自旋的发现是一重大进步。
量子力学的创建触发了科学的淘金热。早期的成果有:1927年海森堡得到了氦原子薛定谔方程的近似解,建立了原子结构理论的基础;John Slater,Douglas Rayner Hartree,和Vladimir Fock随后又提出了原子结构的一般计算技巧;Fritz London和Walter Heitler解决了氢分子的结构,在此基础上,Linus Pauling建立了理论化学;Arnold Sommerfeld和泡利建立了金属电子理论的基础,Felix Bloch创立了能带结构理论;海森堡解释了铁磁性的起因。1928年George Gamow解释了α放射性衰变的随机本性之谜,他表明α衰变是由量子力学的隧道效应引起的。随后几年中,Hans Bethe建立了核物理的基础并解释了恒星的能量来源。随着这些进展,原子物理、分子物理、固体物理和核物理进入了现代物理的时代。
量子力学要点
伴随着这些进展,围绕量子力学的阐释和正确性发生了许多争论。玻尔和海森堡是倡导者的重要成员,他们信奉新理论,爱因斯坦和薛定谔则对新理论不满意。
基本描述:波函数。系统的行为用薛定谔方程描述,方程的解称为波函数。系统的完整信息用它的波函数表述,通过波函数可以计算任意可观察量的可能值。在空间给定体积内找到一个电子的概率正比于波函数幅值的平方,因此,粒子的位置分布在波函数所在的体积内。粒子的动量依赖于波函数的斜率,波函数越陡,动量越大。斜率是变化的,因此动量也是分布的。这样,有必要放弃位移和速度能确定到任意精度的经典图像,而采纳一种模糊的概率图像,这也是量子力学的核心。
对于同样一些系统进行同样精心的测量不一定产生同一结果,相反,结果分散在波函数描述的范围内,因此,电子特定的位置和动量没有意义。这可由测不准原理表述如下:要使粒子位置测得精确,波函数必须是尖峰型的,然而,尖峰必有很陡的斜率,因此动量就分布在很大的范围内;相反,若动量有很小的分布,波函数的斜率必很小,因而波函数分布于大范围内,这样粒子的位置就更加不确定了。
波的干涉。波相加还是相减取决于它们的相位,振幅同相时相加,反相时相减。当波沿着几条路径从波源到达接收器,比如光的双缝干涉,一般会产生干涉图样。粒子遵循波动方程,必有类似的行为,如电子衍射。至此,类推似乎是合理的,除非要考察波的本性。波通常认为是媒质中的一种扰动,然而量子力学中没有媒质,从某中意义上说根本就没有波,波函数本质上只是我们对系统信息的一种陈述。
对称性和全同性。氦原子由两个电子围绕一个核运动而构成。氦原子的波函数描述了每一个电子的位置,然而没有办法区分哪个电子究竟是哪个电子,因此,电子交换后看不出体系有何变化,也就是说在给定位置找到电子的概率不变。由于概率依赖于波函数的幅值的平方,因而粒子交换后体系的波函数与原始波函数的关系只可能是下面的一种:要么与原波函数相同,要么改变符号,即乘以-1。到底取谁呢?
量子力学令人惊诧的一个发现是电子的波函数对于电子交换变号。其结果是戏剧性的,两个电子处于相同的量子态,其波函数相反,因此总波函数为零,也就是说两个电子处于同一状态的概率为0,此即泡利不相容原理。所有半整数自旋的粒子(包括电子)都遵循这一原理,并称为费米子。自旋为整数的粒子(包括光子)的波函数对于交换不变号,称为玻色子。电子是费米子,因而在原子中分层排列;光由玻色子组成,所以激光光线呈现超强度的光束(本质上是一个量子态)。最近,气体原子被冷却到量子状态而形成玻色-爱因斯坦凝聚,这时体系可发射超强物质束,形成原子激光。
这一观念仅对全同粒子适用,因为不同粒子交换后波函数显然不同。因此仅当粒子体系是全同粒子时才显示出玻色子或费米子的行为。同样的粒子是绝对相同的,这是量子力学最神秘的侧面之一,量子场论的成就将对此作出解释。
争议与混乱
量子力学意味着什么?波函数到底是什么?测量是什么意思?这些问题在早期都激烈争论过。直到1930年,玻尔和他的同事或多或少地提出了量子力学的标准阐释,即哥本哈根阐释;其关键要点是通过玻尔的互补原理对物质和事件进行概率描述,调和物质波粒二象性的矛盾。爱因斯坦不接受量子理论,他一直就量子力学的基本原理同玻尔争论,直至1955年去世。
关于量子力学争论的焦点是:究竟是波函数包含了体系的所有信息,还是有隐含的因素(隐变量)决定了特定测量的结果。60年代中期约翰�6�1S�6�1贝尔(John S. Bell)证明,如果存在隐变量,那么实验观察到的概率应该在一个特定的界限之下,此即贝尔不等式。多数小组的实验结果与贝尔不等式相悖,他们的数据断然否定了隐变量存在的可能性。这样,大多数科学家对量子力学的正确性不再怀疑了。
然而,由于量子理论神奇的魔力,它的本质仍然吸引着人们的注意力。量子体系的古怪性质起因于所谓的纠缠态,简单说来,量子体系(如原子)不仅能处于一系列的定态,也可以处于它们的叠加态。测量处于叠加态原子的某种性质(如能量),一般说来,有时得到这一个值,有时得到另一个值。至此还没有出现任何古怪。
但是可以构造处于纠缠态的双原子体系,使得两个原子共有相同的性质。当这两个原子分开后,一个原子的信息被另一个共享(或者说是纠缠)。这一行为只有量子力学的语言才能解释。这个效应太不可思议以至于只有少数活跃的理论和实验机构在集中精力研究它,论题并不限于原理的研究,而是纠缠态的用途;纠缠态已经应用于量子信息系统,也成为量子计算机的基础。
二次革命
在20年代中期创立量子力学的狂热年代里,也在进行着另一场革命,量子物理的另一个分支——量子场论的基础正在建立。不像量子力学的创立那样如暴风疾雨般一挥而就,量子场论的创立经历了一段曲折的历史,一直延续到今天。尽管量子场论是困难的,但它的预测精度是所有物理学科中最为精确的,同时,它也为一些重要的理论领域的探索提供了范例。
激发提出量子场论的问题是电子从激发态跃迁到基态时原子怎样辐射光。1916年,爱因斯坦研究了这一过程,并称其为自发辐射,但他无法计算自发辐射系数。解决这个问题需要发展电磁场(即光)的相对论量子理论。量子力学是解释物质的理论,而量子场论正如其名,是研究场的理论,不仅是电磁场,还有后来发现的其它场。
1925年,玻恩,海森堡和约当发表了光的量子场论的初步想法,但关键的一步是年轻且本不知名的物理学家狄拉克于1926年独自提出的场论。狄拉克的理论有很多缺陷:难以克服的计算复杂性,预测出无限大量,并且显然和对应原理矛盾。
40年代晚期,量子场论出现了新的进展,理查德�6�1费曼(Richard Feynman),朱利安�6�1施温格(Julian Schwinger)和朝永振一郎(Sinitiro Tomonaga)提出了量子电动力学(缩写为QED)。他们通过重整化的办法回避无穷大量,其本质是通过减掉一个无穷大量来得到有限的结果。由于方程复杂,无法找到精确解,所以通常用级数来得到近似解,不过级数项越来越难算。虽然级数项依次减小,但是总结果在某项后开始增大,以至于近似过程失败。尽管存在这一危险,QED仍被列入物理学史上最成功的理论之一,用它预测电子和磁场的作用强度与实验可靠值仅差2/1,000,000,000,000。
尽管QED取得了超凡的成功,它仍然充满谜团。对于虚空空间(真空),理论似乎提供了荒谬的看法,它表明真空不空,它到处充斥着小的电磁涨落。这些小的涨落是解释自发辐射的关键,并且,它们使原子能量和诸如电子等粒子的性质产生可测量的变化。虽然QED是古怪的,但其有效性是为许多已有的最精确的实验所证实的。
对于我们周围的低能世界,量子力学已足够精确,但对于高能世界,相对论效应作用显著,需要更全面的处理办法,量子场论的创立调和了量子力学和狭义相对论的矛盾。
量子场论的杰出作用体现在它解释了与物质本质相关的一些最深刻的问题。它解释了为什么存在玻色子和费米子这两类基本粒子,它们的性质与内禀自旋有何关系;它能描述粒子(包括光子,电子,正电子即反电子)是怎样产生和湮灭的;它解释了量子力学中神秘的全同性,全同粒子是绝对相同的是因为它们来自于相同的基本场;它不仅解释了电子,还解释了μ子,τ子及其反粒子等轻子。
QED是一个关于轻子的理论,它不能描述被称为强子的复杂粒子,它们包括质子、中子和大量的介子。对于强子,提出了一个比QED更一般的理论,称为量子色动力学(QCD)。QED和QCD之间存在很多类似:电子是原子的组成要素,夸克是强子的组成要素;在QED中,光子是传递带电粒子之间作用的媒介,在QCD中,胶子是传递夸克之间作用的媒介。尽管QED和QCD之间存在很多对应点,它们仍有重大的区别。与轻子和光子不同,夸克和胶子永远被幽禁在强子内部,它们不能被解放出来孤立存在。
QED和QCD构成了大统一的标准模型的基石。标准模型成功地解释了现今所有的粒子实验,然而许多物理学家认为它是不完备的,因为粒子的质量,电荷以及其它属性的数据还要来自实验;一个理想的理论应该能给出这一切。
今天,寻求对物质终极本性的理解成为重大科研的焦点,使人不自觉地想起创造量子力学那段狂热的奇迹般的日子,其成果的影响将更加深远。现在必须努力寻求引力的量子描述,半个世纪的努力表明,QED的杰作——电磁场的量子化程序对于引力场失效。问题是严重的,因为如果广义相对论和量子力学都成立的话,它们对于同一事件必须提供本质上相容的描述。在我们周围世界中不会有任何矛盾,因为引力相对于电力来说是如此之弱以至于其量子效应可以忽略,经典描述足够完美;但对于黑洞这样引力非常强的体系,我们没有可靠的办法预测其量子行为。
一个世纪以前,我们所理解的物理世界是经验性的;20世纪,量子力学给我们提供了一个物质和场的理论,它改变了我们的世界;展望21世纪,量子力学将继续为所有的科学提供基本的观念和重要的工具。我们作这样自信的预测是因为量子力学为我们周围的世界提供了精确的完整的理论;然而,今日物理学与1900年的物理学有很大的共同点:它仍旧保留了基本的经验性,我们不能彻底预测组成物质的基本要素的属性,仍然需要测量它们。
或许,超弦理论是唯一被认为可以解释这一谜团的理论,它是量子场论的推广,通过有长度的物体取代诸如电子的点状物体来消除所有的无穷大量。无论结果何如,从科学的黎明时期就开始的对自然的终极理解之梦将继续成为新知识的推动力。从现在开始的一个世纪,不断地追寻这个梦,其结果将使我们所有的想象成为现实。

7. 爱因斯坦发明了扑克普朗克关于能量量子化的假设提出了什么感

A、奥斯特发现了电流的磁效应,法拉第发现了电磁感应现象,故A错误.
B、爱因斯坦提出了光子说,普朗克提出了能量量子化假说,故B错误.
C、汤姆孙发现了电子,故C正确.
D、玻尔提出三个假设--玻尔理论,成功地解释了氢原子光谱,故D正确.
故选:CD

8. 电的利用与哪位科学家的发明有关 A牛顿 B、达尔文 C、爱因斯坦 D、普朗克

普朗克。普朗克的伟大成就,就是创立了量子理论,这是物理学史上的一次巨大变革。从此结束了经典物理学一统天下的局面。

9. 量子力学是谁发明

量子力学 是爱因斯坦发明的,普朗克只是发明了普朗克常数,只是做为一个数学概念引入,是为了解决黑体辐射问题,并没有将它与光本身的基本性质挂起钩来,然后是爱因斯坦赋予了普朗克常数的物理意义,并创立光量子,认为光即是粒子也是包,揭示了光的波粒二相性,这才是量子力学诞生的真正宣言(七堂极简物理课)
普朗克只能称做普朗克常数之父,爱因斯坦才是真正 的量子力学之父,
在爱因斯坦提出量子理论之后,普朗克在很长一段时间都不接受这个理论,并在晚年认为这是他犯过的最大错误。
爱因斯坦发表论文里有批评普朗克的话,称其完全没有领会普朗克常数的内涵,贝索建议他不要过于公开 的批评普朗克,贝索后来写道:“诚然,在协助编辑你关于量子的论文时,我剥夺了你的一部分荣耀,但另一方面,我却为普朗克赢得了你这个朋友”
(爱因斯坦-生活和宇宙)
对于普朗克来说,把能量视为一个个能量包块的集合只是计算上使用的一个特殊策略,就连他自己也不明白为什么这种方法会奏效。然而五年以后,又是爱因斯坦,终于认识到这些“能量包”是真实存在的。
爱因斯坦指出光是由成包的光粒子构成的,今天我们称之为“光子”。他在那篇文章的引言中写道:
“在我看来,如果我们假设光的能量在空间中的分布是不连续的,我们就能更好地理解有关黑体辐射、荧光、紫外线产生的阴极射线,以及其他有关光的发射和转化的现象。依据这个假设,点光源发射出的一束光线的能量,并不会在越来越广的空间中连续分布,而是由有限数目的‘能量量子’组成,它们在空间中点状分布,作为能量发射和吸收的最小单元,能量量子不可再分。”
这几句话说得简单而又清晰,是量子理论诞生的真正宣言。
----《七堂极简物理课》
后期又有玻尔和一众科学家参与进量子力学 的研究,为完善量子力学 做出贡献,这是后话。

10. 爱因斯坦有什么发明

他是提出了很多理论 比如《相对论》,发明到没有什么,很多东西都是在他的理论上发明的

爱因斯坦在1905年“爱因斯坦奇迹年”(Annus Mirabilis Papers)发表了四篇划时代的论文,分别为:〈关于光的产生和转化的一个启发性观点〉、〈根据分子运动论研究静止液体中悬浮微粒的运动〉、〈论运动物体的电动力学〉、〈物体惯性与其所含能量有关吗?〉,随后导出了E = mc²的公式。100年后的2005年,被定为“世界物理年”(World Year of Physics)。

1905年3月发表〈关于光的产生和转化的一个启发性观点〉(On a Heuristic Viewpoint Concerning the Proction and Transformation of Light),认为光是由分离的粒子所组成。爱因斯坦解释光也是由小的能量粒子(量子)组成的,并且量子可以像单个的粒子那样运动。“光量子”理论把1900年普朗克创立的量子论大大推进一步,对早已成为定论的光的波动理论提出有力挑战,揭示了微观世界的基本特征:波动—粒子二元性。
1905年4月:根据在咖啡馆里关于茶的讨论,爱因斯坦写出一篇论文,论证可以根据糖在液体中的扩散速度来计算糖分子的大小。这一篇〈根据分子运动论研究静止液体中悬浮微粒的运动〉(On the Motion Required by the Molecular Kinetic Theory of Heat of Small Particles Suspended in a Stationary Liquid)的论文。
1905年6月30日,德国《物理学年鉴》(Annalen der Physik)发表〈关于运动媒质的电动力学〉(On the Electrodynamics of Moving Bodies)一文。首次提出了狭义相对论基本原理,论文中提出了两个原理:“光速不变”,以及“相对性原理”。

阅读全文

与普朗克发明相关的资料

热点内容
加强和改进公共服务实施方案 浏览:991
迷你世界创造熔岩号角 浏览:479
爱奇艺激活码有效期 浏览:507
医疗纠纷官司南方周末 浏览:855
公共服务类大楼的物业管理方案 浏览:284
电影版权买卖合同范本 浏览:167
口罩在商标注册属于哪个类目 浏览:256
基本公共卫生服务质控小结 浏览:668
数字版权的权源 浏览:565
驻马店置地弘润山转让 浏览:146
穂康投诉 浏览:146
嘉兴万联知识产权代理有限公司 浏览:344
公共文化服务体系的建立和完善 浏览:278
淄博市工商局王彬 浏览:867
国办发明电200330号 浏览:602
公共服务事项自查报告 浏览:872
2014年社区矛盾纠纷排查调处工作方案 浏览:873
公共卫生服务项目考试题库 浏览:245
购买软件使用权合同 浏览:134
灰烬创造者职业 浏览:566