❶ 圆周率历史简介
圆的周长与直径之比是一个常数,人们称之为圆周率。通常用希腊字母π 来表示。1706年,英国人琼斯首次创用π 代表圆周率。他的符号并未立刻被采用,以后,欧拉予以提倡,才渐渐推广开来。现在π 已成为圆周率的专用符号, π的研究,在一定程度上反映这个地区或时代的数学水平,它的历史是饶有趣味的。
在古代,实际上长期使用 π=3这个数值,巴比伦、印度、中国都是如此。到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。东汉的数学家又将 π值改为 (约为3.16)。直正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他专门写了一篇论文《圆的度量》,用几何方法证明了圆周率与圆直径之比小于22/7而大于223/71 。这是第一次在科学中创用上、下界来确定近似值。第一次用正确方法计算π 值的,是魏晋时期的刘徽,在公元263年,他首创了用圆的内接正多边形的面积来逼近圆面积的方法,算得π 值为3.14。我国称这种方法为割圆术。直到1200年后,西方人才找到了类似的方法。后人为纪念刘徽的贡献,将3.14称为徽率。
公元460年,南朝的祖冲之利用刘徽的割圆术,把π 值算到小点后第七位3.1415926,这个具有七位小数的圆周率在当时是世界首次。祖冲之还找到了两个分数:22/7 和355/113 ,用分数来代替π ,极大地简化了计算,这种思想比西方也早一千多年。
祖冲之的圆周率,保持了一千多年的世界记录。终于在1596年,由荷兰数学家卢道夫打破了。他把π 值推到小数点后第15位小数,最后推到第35位。为了纪念他这项成就,人们在他1610年去世后的墓碑上,刻上:3.这个数,从此也把它称为卢道夫数。
之后,西方数学家计算 π的工作,有了飞速的进展。1948年1月,费格森与雷思奇合作,算出808位小数的π 值。电子计算机问世后, π的人工计算宣告结束。20世纪50年代,人们借助计算机算得了10万位小数的 π,70年代又突破这个记录,算到了150万位。到90年代初,用新的计算方法,算到的π 值已到4.8亿位。π 的计算经历了几千年的历史,它的每一次重大进步,都标志着技术和算法的革新。
❷ 圆周率是谁发明的 历史上圆周率的发明人是谁
圆周率是一个本来就存在的常数,它不存在被发明,只有可能被发现,最早使用科学方法求圆周率的人是阿基米德,魏晋时期的中国数学家刘徽在九章算术数内最早提出用割圆术求π,南北朝时期的祖冲之,进一步在刘徽的基础上,把π的值计算到了小数点后七位。
❸ 圆周率的历史发展
一、实验时期
一块古巴比伦石匾(约产于公元前1900年至1600年)清楚地记载了圆周率 = 25/8 = 3.125。 同一时期的古埃及文物,莱因德数学纸草书(Rhind Mathematical Papyrus)也表明圆周率等于分数16/9的平方,约等于3.1605。
二、几何法时期
阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。
接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。
最后,他求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值3.141851 为圆周率的近似值。阿基米德用到了迭代算法和两侧数值逼近的概念,称得上是“计算数学”的鼻祖。
三、分析法时期
这一时期人们开始利用无穷级数或无穷连乘积求π,摆脱可割圆术的繁复计算。无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,使得π值计算精度迅速增加。
斯洛文尼亚数学家Jurij Vega于1789年得出π的小数点后首140位,其中只有137位是正确的。这个世界纪录维持了五十年。他利用了梅钦于1706年提出的数式。
到1948年英国的弗格森(D. F. Ferguson)和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。
四、计算机时代
电子计算机的出现使π值计算有了突飞猛进的发展。1949年,美国制造的世上首部电脑-ENIAC(ElectronicNumerical Integrator And Computer)在阿伯丁试验场启用了。次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出π的2037个小数位。
2011年10月16日,日本长野县饭田市公司职员近藤茂利用家中电脑将圆周率计算到小数点后10万亿位,刷新了2010年8月由他自己创下的5万亿位吉尼斯世界纪录。56岁的近藤茂使用的是自己组装的计算机,从10月起开始计算,花费约一年时间刷新了纪录。
圆周率用希腊字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值,它是一个无理数,即无限不循环小数。
1965年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式 。
在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。
❹ 圆周率历史简介
其实,人们对于圆周率π的理解经历了一个相当漫长的过程,从π的出现到确定它是无理数,人类花了近4千年的时间。最早关于圆周率的历史记录可以追溯到约公元前20世纪,一块古巴比伦石匾清楚地记载了圆周率π=25/8=3.125。同一时期的古埃及文物,莱因德数学纸草书也表明圆周率等于分数16/9的平方,约等于3.1605,埃及人似乎在更早的时候就知道圆周率了。
英国作家 John Taylor (1781–1864) 在其名著《金字塔》(《The Great Pyramid: Why was it built, and who built it?》)中指出,造于公元前2500年左右的胡夫金字塔和圆周率有关。例如,金字塔的周长和高度之比等于圆周率的两倍,正好等于圆的周长和半径之比。公元前800至600年成文的古印度宗教巨著《百道梵书》也显示了圆周率等于分数339/108,约等于3.139。
金字塔与圆周率π
一直到公元前3世纪,古希腊著名数学家、物理学家阿基米德才将圆周率正确地计算到小数点后3位。此后经过五百多年的时间,人们才将π值从3.141推进到3.14159(魏晋时期中国数学家刘徽)。又过了两百多年,南北朝时期的数学家祖冲之用盈朒两数表示圆周率的数值在3.1415926和3.1415927之间,将π的精度计算到小数点后7位,并且在之后的800多年里祖冲之计算出的π值都是准确的。
一直到15世纪初阿拉伯数学家卡西求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。德国数学家鲁道夫·范·科伊伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。
此后,圆周率π的计算从几何法时期进入到分析法时期。这一时期人们开始利用无穷级数或无穷连乘积求π,摆脱可割圆术的繁复计算。无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,使得π值计算精度迅速增加。第一个快速算法由英国数学家梅钦提出,1706年梅钦计算π值突破100位小数大关,他利用了如下公式:
其中arctan x可由泰勒级数算出,类似的方法称为“梅钦类公式”。 斯洛文尼亚数学家Jurij Vega于1789年得出π的小数点后140位,其中只有137位是正确的,这个世界纪录维持了五十年。到1948年英国的弗格森和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。
再后来,电子计算机的出现使π值的计算有了突飞猛进的发展。1949年,美国制造的世上首台计算机—ENIAC(电子数字积分计算机)在阿伯丁试验场启用了。次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出π的2037个小数位,这部电脑只用了70小时就完成了这项工作。
五年后,IBM NORC(海军兵器研究计算机)只用了13分钟,就算出π的3089个小数位。科技不断进步,电脑的运算速度也越来越快,在60年代至70年代,随着美、英、法的电脑科学家不断地进行电脑上的竞争,π的值也越来越精确。在1973年,Jean Guilloud和Martin Bouyer以电脑CDC 7600发现了π的第一百万个小数位。
世界上第一台计算机ENIAC
1989年美国哥伦比亚大学研究人员计算出π值小数点后4.8亿位数,后又继续算到小数点后10.1亿位数。2010年1月,法国工程师法布里斯·贝拉将圆周率算到小数点后2万7千亿位。2010年8月,日本计算机奇才近藤茂利用家用计算机和云计算相结合,计算出圆周率到小数点后5万亿位。一年后,近藤茂又刷新了之前5万亿位的记录,将圆周率计算到了小数点后10万亿位。
去年圆周率日(3月14日),谷歌工程师Emma Iwao 利用谷歌运算引擎计算出精确度达31.4万亿位的圆周率。而有人可能也会不禁发问了,人类对圆周率π如此痴迷,如今已计算到了小数点后30多万亿位,那它到底有什么实际作用?
除了我们熟知的圆周率π用来解决圆、球体等几何问题,其实在其他方面也有不少的应用。比如天文学中关于宇宙可观测范围的计算,只要精确到小数点后39位,误差就不会超过一个原子的体积;又如在计算机信息加密领域,重要的文件资料利用圆周率完全随机的数字对数据加密,被破解的几率微乎其微;再如测试计算机的性能,π对于计算机来说就像是一把标尺,计算π的数值越精确,计算机的性能就越强。除此之外,它在三角函数、微积分、交流电、无线电传播计算等多个领域都有着重要的应用。
也有的科学家认为圆周率是宇宙的代码,它无限不规律的特性和宇宙极为相似,如果能计算出π的数值,人类就能够揭开宇宙真正的奥秘。
其实到了现在,圆周率算到后面具体是什么数字已经不重要了,重要的是,小小的一个π,在人类文明发展史中引领着我们不断探索的步伐,甚至可以说,它反映着人类工具、思想和智慧的进化,更多的是一种不断思考和不断追求的精神!
❺ 圆周率是怎么发明的
真的圆周率是根据“圆周长上的点的数量与直径上的点的数量的比”发现的,比值是3分之6+2√3。
而所谓的圆周率3.1415926.....是根据正6x2ⁿ边形的周长与过中心点的对角线的比值应叫正6x2ⁿ边率。
因此正6x2ⁿ边率不等于圆周率。
❻ 圆周率的发展过程是什么
古往今来,世界上许多数学家运用各种方法计算过圆周率,为认识π这个数付出了无数心血。我国战国时期的数学著作《周髀算经》中已有“周三径一”之说,意思是圆的周长约是其直径的三倍。这是人们在长期的实际生产生活中摸索总结出的经验性知识,并不是通过严格的数学计算得到的精确值,人们在应用过程中也发现用它计算出来的圆周长和圆面积都比实际值小。后来的数学家利用各自的方法逐步将其精确化,从此踏上寻找圆周率精确值的漫漫旅程,今天的数学家利用计算机已经将圆周率精确到小数点后数亿位。
❼ 圆周率是谁发明的
圆周率 编辑摘要摘要 发明人:祖冲之。 简介: 祖冲之( 公元429年─公元500年)是我国杰出的数学家,科学家。南北朝时期人,汉族人,字文远。生于宋文帝元嘉六年,卒于齐昏侯永元二年。祖籍范阳郡遒县(今河北涞水县)。 圆周率,一般以π来表示,是一个在数学及物理学普遍存在的数学常数。它定义为圆形之周长与直径之比。它也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学上,π可以严格地定义为满足sin(x) = 0的最小正实数x,这里的sin是正弦函数(采用分析学的定义来说)。
❽ 关于圆周率的历史资料
古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。
接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。
最后,他求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值3.141851 为圆周率的近似值。阿基米德用到了迭代算法和两侧数值逼近的概念,称得上是“计算数学”的鼻祖。
南北朝时代著名数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。他的辉煌成就比欧洲至少早了1000年。
其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲不知道是祖冲之先知道密率的,将密率错误的称之为安托尼斯率。
阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。
德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。
斐波那契算出圆周率约为3.1418。
韦达用阿基米德的方法,算出3.1415926535<π<3.1415926537
他还是第一个以无限乘积叙述圆周率的人。
鲁道夫万科伦以边数多过32000000000的多边形算出有35个小数位的圆周率。
华理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9......
欧拉发现的e的iπ次方加1等于0,成为证明π是超越数的重要依据。
(8)圆周率的发明过程简介扩展阅读:
魏晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即“割圆术”),求得π的近似值3.1416。
汉朝时,张衡得出π的平方除以16等于5/8,即π等于10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。 王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。
公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小于八亿分之一。这个纪录在一千年后才给打破。
印度,约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。 婆罗门笈多采用另一套方法,推论出圆周率等于10的算术平方根。
圆周率(Pai)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。
圆周率用字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。
在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。