导航:首页 > 创造发明 > linkedin张溪梦创造价值

linkedin张溪梦创造价值

发布时间:2021-12-05 17:42:28

❶ 创业公司该从什么时候开始做数据运营

许多公司处于疯狂增长时期,大家一拍脑子做的决定,可能已经产生很多价值了,这种情况下他们很难意识到数据决策能产生的巨大价值。

同时,他们没有太多基础方法论的认知,技术和业务彼此不了解,进一步加剧了数据使用的缓慢,不能看到价值实现。最后就变成了凭感觉来做决策,而不是真正通过数据运营来做决策。

但是我们看看美国,以LinkedIn为例, 在过去6年间从一个7000万左右年营收的企业,一下子增长至30亿美元营业额的企业,这种增长速度在企业服务领域里面是惊人的。

6年多以前,我第一次在LinkedIn的公司例会上,听到德鲁克的一句话:一个事情,如果不能衡量它,就不能增长它。这句话沉淀出了LinkedIn的企业价值观:增长带动数据分析,数据带动变现,变现进一步促进增长。

LinkedIn早期就有清晰的数据框架

只有一万用户,就做数据驱动

反复问一个用数据能证明的问题

LinkedIn是2002年底成立的,成立早期就已经把用户数据和变现的框架讲得很清楚了。无论是在产品设计还是业务运营,数据都是很重要的环节。哈弗曼(LinkedIn创始人&CEO)收集大量的用户信息,想了三种变现方式:

一、通过用户的基本信息来变现,比如说公司发布职位;

二、用户数量增长到一定程度的时候,有B2B企业投广告;

三、当有大量人的信息以后,公司的猎头会用这个平台来找候选人。


创业公司该从什么时候开始做数据运营

变现的方式他想得很清楚,但并没有在第一天就去做,他核心关注的是用户体验和使用度,是整体的增长,增长产生大量的数据,他从数据里学习,未来才做变现。

LinkedIn 在只有1万用户的时候,就开始用数据驱动业务。这段时间去观测两个渠道,一个是电子邮件,一个是搜索。从数据里发现,从搜索引擎的渠道里进来的用户,比电子邮件邀请进来的人数量差不多,但在产品平台上的活跃度要高3倍。

这是之前没有想到过的,于是做了一个决定:如果要获取同样数量的用户,他们更愿意投入资源在使用频次更高、更愿意把时间花在这里的人,所以,放弃低活跃的用户,专注活跃的用户。

LinkedIn每年反复要去问的一个问题是:如果只有一件事全公司要做的话,是什么?得用数字来证明的?

一星期内加到5个联系人的用户,他们的留存、使用频度、停留时间是那些没有加到5个联系人的用户的三倍到五倍,这是他们找到的驱动增长的魔法数字。

但是当时这样的人非常非常少,于是他们在产品各个入口都增加社交关系。

LinkedIn最早的时候,并不知道为什么增加社交关系会产生那么大的留存度,我们分析了起码有两三百个各种不同的指标,最后没有任何一个指标能告诉我们,就是因为这个原因。

可是加权以后的结果是,这些用户在上面花了很多时间,间接就成为变现的可能。产品经理就把非常复杂的问题简化,让所有的东西都关注这一个点:让更多的用户在第一周里加到5个联系人。于是,增长飞快。

从什么时候开始关注数据?

每个阶段的重点不同

增长期是数据驱动的关键时期

虽然说数据很重要,那么,创业者应该从什么时候开始关注数据呢?从公司成立就开始吗?不是的。

一般来说,创业者会经历 4到5个产品、企业的生命周期。

第一个阶段,冷启动。这个时候公司特别早期,用大数据驱动是一个伪命题——因为客户数量有限,样本性不足。他们需要更多地去了解潜在客户的需求,去“求”客户来用这个产品。

第二个阶段,增长前期。冷启动接近完成。有经验的创业者,会开始布局和增长有关系的一些核心指标,比如说日/月活跃,留存度。

这些指标的目的不是为了衡量产品当前当下的表现,而是为了未来做增长时有可比较的基准。并且,这些指标能够告诉我们,什么时候我们应该去做增长。

产品本身没有黏度的话,去烧钱做增长,它不会真正地增长起来,因为流失速度超过增长速度。以前很多烧钱的企业能成功,是因为竞争没有那么激烈,用户没有那么多种选择。但是今天如果你的产品很差,留存不高,口碑也不好,烧再多的钱也不能获得真正核心的自然增长。

第三个阶段,是增长期。这个阶段就能看出来好的创业公司和普通创业公司的巨大差别——效率。

无论PR还是做活动,都需要人力和时间成本。如何在增长中,找到效率最高的渠道?这个我觉得,是创业公司之间PK的核心竞争力。

如果不做数据驱动,靠直觉,一次两次可以,但没有人能进赌场连赢一万次。所以,直觉需要和数据进行结合,这样企业能迅速优化各个渠道,来提高单位时间的转化效率。通过转化效率的提高和叠加,变成企业的核心竞争力。

一个不用数据驱动的公司,和一个用数据驱动的公司,假设运营策略一样,资本储备类似,客户也一样,后者一定会胜出。

第四个阶段,是变现期。业务变现,要求有很高的用户基数。一般互联网产品中高活跃、体验好的用户,会转化为付费用户。类似一个漏斗,不断地去筛,这里面就是要拼运营的效率了。

比如说,电商用户的转化漏斗一般是:访问——注册——搜索——浏览——加入购物车——支付,或者到未来的退货。

这是非常非常长的一个漏斗,真正要做好数据化运营,要对漏斗的每个环节持续地进行追踪。为什么呢?因为不能衡量,就很难去做增长。

一个好的企业,特别是以后要做营收的企业,必须要关注各个部门各个环节的转化效率。这种转化效率,要达成的手段,可以通过市场营销的方法、产品改进的方法、甚至客户运营的方法。

而其中每个环节小幅提高,加在一起就是一个倍数的提高。这种倍增,如果没有做过数据化运营的人,很难体会到会有多大。

比如,以前我们在LinkedIn做数据驱动转化时,要推送某篇EDM,同样发给10万人,拍脑袋决策的转化是0.01%,但是经由数据驱动部门做个简单的数据模型,同样推送后,转化率提升到了0.3%,高出30倍。如果每周都那么做的话,这种转化效果还是非常可观的。

文章作者:张溪梦(GrowingIO 创始人兼CEO,前LinkedIn商业分析部高级总监)

❷ 如何进行互联网金融运营数据的分析,都有哪些方法

作者:张溪梦 Simon
链接:https://www.hu.com/question/29185414/answer/110954989
来源:知乎
著作权归作者所有

我们之前做过一期互联网金融的公开课,「互联网金融增长宝典:三大步骤提高转化,搞定用户运营」,主讲人是 GrowingIO 的业务增长负责人徐主峰,曾任职 Criteo、Microsoft 等公司,有丰富的电商、互联网金融客户解决方案经验。 这是公开课的速记整理。
这是一篇互联网金融宝典,我推荐给所有转化率只有 1%、总是为谁可能是你的购买用户而犯愁的互联网金融的高管、PM、市场运营和销售们。本文通过实战案例,手把手教你建立转化指标、 梳理分析思路、提供分析步骤并最终建立用户行为分析模型。

文 / 徐主峰

大部分的互联网金融公司最为纠结的一点是,流量这么大,获客成本这么高,为什么最后的转化率和成单量却这么低?怎样才能提高用户运营效率?用户行为数据分析怎样把处在不同购买决策阶段的用户挑选出来,帮助互联网金融公司做到精益化运营?

我们的客户中很大一部分来自互联网金融,比如人人贷等行业前 10 的互联网金融公司。在服务客户的过程中,我们也积累了大量的数据驱动业务的实践案例,来帮助客户创造价值。

一 、互联网金融用户四大行为特征

互联网金融平台用户有四大行为特征:

第一流量转化率低,下图是某互联网金融公司网站上,新客户过去 30 天整体购买转化漏斗,其转化率只有 0.38%:

而这并非个例,实际上,绝大多数互联网金融公司,在 web 端购买的转化率基本都在 1% 以下,APP购买率在 5% 左右,远远低于电商或者其他在线交易的购买率。
第二,虽然转化率低,但是客单价却很高。一般来说,电商行业客单价在几十到几百,而互联网金融客户,客单价从几千到几万,某些特殊领域甚至高达几十万。而客单价高,就意味着用户购买决策会更复杂,购买周期也会更长。
第三,用户购买行为有很强周期性。电商的客户下次购买时间是不确定的,但是互联网金融平台上,真正购买的用户,是有理财需求的用户,在资金到期赎回产品后,一定还会进行下一次购买,只不过未必发生在你的平台上。
最后一个特点是「很强的特征性」,主要包括两个特征:
A:用户的购买偏好比较容易识别,理财产品数量和品类都很少,所以用户购买的需求或者偏好,很容易从其行为数据上识别出来。
B:用户购买过程中的三个阶段特别容易识别:
用户在购买决策阶段,有大量的交互事件产生,他会看产品,比对不同产品的收益率和风险,比对不同产品的投资期限等等;
但是一旦他完成了产品的购买,就不会有大量的交互行为产生,他可能仅是回来看一看产品的收益率。
当用户的产品资金赎回之后,又有大量的交互事件产生,实际上他处在下一款产品购买的决策期。

二、互联网金融用户运营的三大步骤

针对互联网金融用户行为的四个特征,在用户运营上有三个比较重要的阶段性工作:

1.首先,获取可能购买的目标用户,合理配置在渠道上的投放预算,以提高高质量用户获取的比例:
渠道工作的核心,主要是做好两方面的工作:宏观层面,优化整个渠道的配置;微观层面,单一渠道角度来说,根据渠道配置的策略,有针对性地实施和调整。
具体渠道的实施,大家都比较熟悉,但是对于整个渠道组合配置的优化,很多人接触的其实并不多。
以渠道一为例,总体的转化率是 0.02%;在过去 30 天站内总体的流量是 18.9K,漏斗第一级到第二级的转化率是 3.36%,这样一共是五级,我们看到最终渠道一带来总体的成交用户一共是 4 人。
类似的,前 10 的渠道数据都很清晰。不同渠道带来的流量,不同渠道总体的转化率,以及不同渠道在整个转化路径上每步的转化率都可以看到。
这里面有几个渠道很有特点:
渠道一的特点,渠道一带来的流量是所有 10 个渠道里最大的,但是它的总体转化率却是低的;
渠道二和渠道七,渠道二的量很大,但是转化率是零。渠道七量比较一般,转化率也是零;
渠道九和渠道十,这两个渠道是所有渠道里转化率最高的。但是这两个渠道特点,是带来流量不是特别大……
结合典型渠道特点,可以做一个象限图:
第一象限(右上角)渠道质量又高,带来流量又大的,这里面渠道三四五是符合这个特征的,渠道策略应该是继续保持和提高渠道的投入。
第二象限(左上角)渠道的质量比较高,但带来的流量比较小,这里面包含的主要渠道就是八九十。对应的主要策略是,加大渠道的投放,并且在加大投放的过程中,要持续关注渠道质量的变化。
我们先看第四象限(右下角),渠道质量比较差,但是带来流量比较大,这里面主要有渠道一和渠道二。相对应的渠道策略,应该在渠道做更加精准的投放,来提高整个渠道的质量。
第三象限(左下角)这个象限里渠道质量又差,带来流量又小,比如渠道六跟渠道七。我们是否要直接砍掉?这里建议是,策略上要比较谨慎一些。所以在具体渠道的策略上,业绩保持监测,然后小步调整。
根据上面数据分析得出的结果,做过渠道优化后,就会为我们带来更多高质量的用户。
2.接下来就要把高价值的用户——真正有购买需求,愿意付费、购买的用户找出来。
将资源与精力投入到真正可能购买的用户上的前提是,我们要能够识别出,哪些是真正有价值的用户?哪些是价值偏低的用户?
其实对于互联网金融平台来说,甚至所有包含在线交易的平台,用户的购买意愿,是可以从用户的行为数据上识别出来的。由于互联网金融平台的特殊性,相比于电商平台来说,商品品类更少,平台功能也更为简单,所以用户的行为数据,也更能反应出互联网金融平台上用户的购买意愿。
把用户在平台上的所有行为总结一下,核心的行为其实并不多,具体包括:
用户查看产品列表页,说明有一些购买意愿,点击某个产品,说明用户希望有进一步的了解。用户最终确认了支付,完成了购买,购买流程就走完了,他的理财需求已经得到了满足。每一种行为都表示出用户不同程度的购买意愿,所以获得用户在产品里的行为数据就十分重要。
既然用户行为数据这么重要,那么怎样获取呢?GrowingIO 以无埋点的方式,全量采集用户所有的行为数据,根据我们对业务的需求,配比成不同的权重系数,并按照每个用户购买意愿的强弱,进一步分群。
这是我们一个客户制作的用户购买意愿指标的范例,刚才的前 5 个行为,都是用户在购买前典型的行为:
每种典型事件的权重系数不一样,用户购买意愿是越来越强的:用户点了投资按纽,甚至点了提交的按钮,显然要比他单单看产品列表页,或者单单看产品页、详情页的意愿强。越能反应用户购买意愿的事件,你给它分类的权重应该是最大的,这是大的原则,0.05 还是 0.06 影响并不大,所以不必纠结。
这样通过这种方式,我们就可以按照每个用户的所有行为,给用户做购买意愿打分的指标,最终形成用户购买意愿的指标。
这是我们从高到低截取部分用户购买意愿打分的情况,第一列是每个用户的 ID,第二列是按照购买意愿给每个用户打分的情况。得分高的,就是购买意愿最强烈的用户。
拿到所有用户购买意愿之后,我们就可以按照用户购买意愿的强烈与否,把所有的用户分成不同的群体,来做针对性的运营。
这是在把用户在过去 14 天内,由其产生的所有行为数据,按照购买意愿打分的权重,把打分大于 5 的用户找出来,在总体用户里,这部分用户购买意愿排名前 20% ,我们给它起个名字,叫购买意愿强烈的用户。
类似我们还做了购买意愿中等的用户分群,这是购买意愿排名在 20-60% 之间的用户;购买意愿排名在最后 40% 的用户,是购买意愿最弱的用户分群。
分群之后,点击任意一个分群,都会以用户 ID 的形式列出来。因为你要有用户的 ID ,才能对这些用户施加运营策略。每个用户最近 30 天的访问次数,最近的访问地点,最后一次访问时间都可以看到。
接下来针对这些购买意愿强烈的用户,怎样推动用户的转化呢?
3.采取针对性的运营策略,提高高价值用户的转化率。
首先我们来看一下购买偏好,互联网金融平台商品品类是比较少的,用户购买的目的性也比较清晰,一般商品的品类有这么几种:
第一种:债券型理财产品
第二种:股票型理财产品
第三种:货币型理财产品
第四种:指数型理财产品
第五种:混合型理财产品…
我们把用户在不同品类商品上的访问时长占比算出来,就能比较好地了解用户的购买偏好。比如下图,我们用用户访问债券型产品详情页的访问时长,除以用户在站内总体的访问时长,就能够得到用户在债券产品上访问时长占比的指标。
我们还是使用用户分群的工具,把在债券型产品上的访问时长占比大于40%的用户分出来,这是有非常强烈表征的客户,他购买的偏好就是债券型的产品。
同时我们再设定另外一个指标,比如用户购买意愿指标,之前我们做过大于5,也就是购买意愿排名在前 20% 的。
通过这两个条件,我们就可以把购买偏好是债券型产品,同时有强烈购买意愿的用户找出来,这两个指标的关系是并(and)的关系。同样我们可以按照用户的购买偏好,把关注其他品类的用户,都做成不同的用户分群,然后形成不同购买偏好的用户群体。
针对这些用户,其实在运营策略上,我们可以从三个层面来展开来进行做:
从购买阶段的角度,首先我们把所有用户可以分成新客和老客。对于这两个群体来说,运营策略和运营重点是非常不一样的。
新客群体,是从来没有在平台上发生过购买的用户,我们要根据用户的购买意愿,做进一步的运营。
老客群体,也就是在平台上已经发生过产品购买的用户,除了关注用户的购买意愿之外,用户的资金状态(资金是否赎回)也是非常重要的参数。
用户是否购买过产品?购买产品的用户是否已经赎回资金?这两个内容,其实是一个用户当前的属性。在我们分群的工作里,这有个维度的菜单,通过这个维度菜单,我们就可以把具有某种属性的用户找出来:
这里我做了一个分群,我们可以看一下。在维度的菜单里,我们把是否购买过产品的维度值设置成了 1 。把资金是否已经赎回这个维度的值,也设置成了 1 。实际上是把那些资金已经赎回的老用户找出来;同样在指标这个菜单里,我们同时也把有强烈购买意愿的用户找出来,时间是过去 14 天,指标大于 5 。
这样我们就制作了一个用户分群,而这个用户分群里所有用户,要满足下面的三个特征:
特征一:购买过产品的老客。
特征二:他们的资金,目前已经赎回了。
特征三:过去 14 天内的行为数据,表明这个用户有着强烈的购买意愿。
同理我们把所有用户,整理为下面几个不同类别,对应不同的运营策略:
比如新客里,当前有购买意愿的,其实他属于购买决策期的新用户。应该根据用户的购买偏好,推荐这种比较优质的理财产品。并给予一定的购买激励,来促进这些新客在平台上的第一次购买,这个对于新客来说是非常重要的,以此类推。
相比于电商或者其他行业,互联网金融平台结合行业和用户的特点,从用户行为数据分析的角度,驱动产品业务以及提高用户的转化率,有更加重要的意义。

阅读全文

与linkedin张溪梦创造价值相关的资料

热点内容
加强和改进公共服务实施方案 浏览:991
迷你世界创造熔岩号角 浏览:479
爱奇艺激活码有效期 浏览:507
医疗纠纷官司南方周末 浏览:855
公共服务类大楼的物业管理方案 浏览:284
电影版权买卖合同范本 浏览:167
口罩在商标注册属于哪个类目 浏览:256
基本公共卫生服务质控小结 浏览:668
数字版权的权源 浏览:565
驻马店置地弘润山转让 浏览:146
穂康投诉 浏览:146
嘉兴万联知识产权代理有限公司 浏览:344
公共文化服务体系的建立和完善 浏览:278
淄博市工商局王彬 浏览:867
国办发明电200330号 浏览:602
公共服务事项自查报告 浏览:872
2014年社区矛盾纠纷排查调处工作方案 浏览:873
公共卫生服务项目考试题库 浏览:245
购买软件使用权合同 浏览:134
灰烬创造者职业 浏览:566