A. 科学家从小鸟启示发明了飞机的原理
近代由于空气动力学以及机械学的发展,人们渐渐懂得了鸟类飞行的原理,是由于鸟类的翅膀形状,气流流过翅膀上表面的速度比流过下表面的速度快,导致下翼面受到的向上的气流压力大于上翼面受到的向下的气流压力,这个压力差就是升力,并由此制造了飞机。
空气的流速不同,造成的空气压强不同,也就是说,飞机在上下面的构造结构不同,上面的曲面造成空气的流速与下面不同,从而导致空气压强不同,上面压强小,所以飞机就被空气“托”了起来。
飞机在高速飞行时,常会引起剧烈振动,甚至有时会折断机翼而引起飞机失事。蜻蜓依靠加重的翅膀在高速飞行时安然无恙,于是人们效仿蜻蜓在飞机的两翼加上了平衡重锤,解决了因高速飞行而引起振动这个令人棘手的问题。
(1)鸟的什么发明了机翼扩展阅读:
飞机飞行原理:
飞机的机翼横截面一般前端圆钝、后端尖锐,上表面拱起、下表面较平。当等质量空气同时通过机翼上表面和下表面时,会在机翼上下方形成不同流速。
空气通过机翼上表面时流速大,压强较小;通过下表面时流速较小,压强大,因而此时飞机会有一个向上的合力,即向上的升力,由于升力的存在,使得飞机可以离开地面,在空中飞行。飞机飞行速度越快、机翼面积越大,所产生的升力就越大。
参考资料来源:网络-飞机
B. 怎么样的机翼能使飞机飞得更快,人类根据鸟的什么特点发明了灰机,为什么竖向机翼较长的纸灰机灰得较近
要了解飞机的飞行原理就必须先知道飞机的组成以及功用,飞机的升力是如何产生的等问题。这些问题将分成几个部分简要讲解。
一、飞行的主要组成部分及功用
到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成:
1. 机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱等。不同用途的飞机其机翼形状、大小也各有不同。
2. 机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。
3. 尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。
4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。
5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。
飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。
二、飞机的升力和阻力
飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理:
流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。
连续性定理阐述了流体在流动中流速和管道切面之间的关系。流体在流动中,不仅流速和管道切面相互联系,而且流速和压力之间也相互联系。伯努利定理就是要阐述流体流动在流动中流速和压力之间的关系。
伯努利定理基本内容:流体在一个管道中流动时,流速大的地方压力小,流速小的地方压力大。
飞机的升力绝大部分是由机翼产生,尾翼通常产生负升力,飞机其他部分产生的升力很小,一般不考虑。从上图我们可以看到:空气流到机翼前缘,分成上、下两股气流,分别沿机翼上、下表面流过,在机翼后缘重新汇合向后流去。机翼上表面比较凸出,流管较细,说明流速加快,压力降低。而机翼下表面,气流受阻挡作用,流管变粗,流速减慢,压力增大。这里我们就引用到了上述两个定理。于是机翼上、下表面出现了压力差,垂直于相对气流方向的压力差的总和就是机翼的升力。这样重于空气的飞机借助机翼上获得的升力克服自身因地球引力形成的重力,从而翱翔在蓝天上了。
机翼升力的产生主要靠上表面吸力的作用,而不是靠下表面正压力的作用,一般机翼上表面形成的吸力占总升力的60-80%左右,下表面的正压形成的升力只占总升力的20-40%左右。
飞机飞行在空气中会有各种阻力,阻力是与飞机运动方向相反的空气动力,它阻碍飞机的前进,这里我们也需要对它有所了解。按阻力产生的原因可分为摩擦阻力、压差阻力、诱导阻力和干扰阻力。
1.摩擦阻力——空气的物理特性之一就是粘性。当空气流过飞机表面时,由于粘性,空气同飞机表面发生摩擦,产生一个阻止飞机前进的力,这个力就是摩擦阻力。摩擦阻力的大小,决定于空气的粘性,飞机的表面状况,以及同空气相接触的飞机表面积。空气粘性越大、飞机表面越粗糙、飞机表面积越大,摩擦阻力就越大。
2.压差阻力——人在逆风中行走,会感到阻力的作用,这就是一种压差阻力。这种由前后压力差形成的阻力叫压差阻力。飞机的机身、尾翼等部件都会产生压差阻力。
3.诱导阻力——升力产生的同时还对飞机附加了一种阻力。这种因产生升力而诱导出来的阻力称为诱导阻力,是飞机为产生升力而付出的一种“代价”。其产生的过程较复杂这里就不在详诉。
4.干扰阻力——它是飞机各部分之间因气流相互干扰而产生的一种额外阻力。这种阻力容易产生在机身和机翼、机身和尾翼、机翼和发动机短舱、机翼和副油箱之间。
以上四种阻力是对低速飞机而言,至于高速飞机,除了也有这些阻力外,还会产生波阻等其他阻力。
三、影响升力和阻力的因素
升力和阻力是飞机在空气之间的相对运动中(相对气流)中产生的。影响升力和阻力的基本因素有:机翼在气流中的相对位置(迎角)、气流的速度和空气密度以及飞机本身的特点(飞机表面质量、机翼形状、机翼面积、是否使用襟翼和前缘翼缝是否张开等)。
1.迎角对升力和阻力的影响——相对气流方向与翼弦所夹的角度叫迎角。在飞行速度等其它条件相同的情况下,得到最大升力的迎角,叫做临界迎角。在小于临界迎角范围内增大迎角,升力增大:超过临界临界迎角后,再增大迎角,升力反而减小。迎角增大,阻力也越大,迎角越大,阻力增加越多:超过临界迎角,阻力急剧增大。
2.飞行速度和空气密度对升力阻力的影响——飞行速度越大升力、阻力越大。升力、阻力与飞行速度的平方成正比例,即速度增大到原来的两倍,升力和阻力增大到原来的四倍:速度增大到原来的三倍,胜利和阻力也会增大到原来的九倍。空气密度大,空气动力大,升力和阻力自然也大。空气密度增大为原来的两倍,升力和阻力也增大为原来的两倍,即升力和阻力与空气密度成正比例。
3,机翼面积,形状和表面质量对升力、阻力的影响——机翼面积大,升力大,阻力也大。升力和阻力都与机翼面积的大小成正比例。机翼形状对升力、阻力有很大影响,从机翼切面形状的相对厚度、最大厚度位置、机翼平面形状、襟翼和前缘翼缝的位置到机翼结冰都对升力、阻力影响较大。还有飞机表面光滑与否对摩擦阻力也会有影响,飞机表面相对光滑,阻力相对也会较小,反之则大.
C. 根据鸟的那些原理发明了飞机
约在公元1800年,气体动力学创始人之一的英国科学家凯利,曾深入地研究过飞行动物的形态,寻找最具流线型的结构。他模仿鸟翼设计了一种机翼曲线,与现代飞机机翼截面曲线几乎完全相同。法国生理学家马雷曾写过一本研究鸟类飞行的《动物的机器》的书,介绍了鸟的体重与翅膀负荷(即单位翅膀面积所负的重量)的知识。后来,俄国科学家茹可夫斯基在研究鸟类飞行的基础上,提出了航空动力学的理论,正是通过对鸟类的一系列的研究,终于找到了人类上天的关键所在。在人们模仿鸟类翅膀,采用大功率轻便发动机带动螺旋桨之后,美国莱特兄弟终于在1903年发明了飞机,实现了人类梦寐以求的飞上天空的愿望。
现代航空技术飞速发展,先进的飞机时速可达3700公里,但飞机的飞行本领有许多方面不及飞鸟。有一种“军舰鸟”,它的翅膀骨骼仅有100克重,而两翅展开却有2米多长,因此,它飞行时消耗的能量和动力非常少。比“军舰鸟”更节省“燃料”的是一种叫作金色鹬的小鸟,它从加拿大越海连续飞到南美洲,行程3900公里,而体重只减轻60克。现代航空技术若能赶上这种效率,那么一架轻型飞机飞行30公里,只需耗用0.5升汽油,仅相当于目前用量的1/9。
“军舰鸟”
在西印度洋群岛上的蜂鸟,身长不过5厘米左右。就是这种小鸟,竟会做现有的任何飞机都做不到的各种机动灵活的飞行:向上高飞升至2000米的高空接着垂直下降,陡然起飞,掉头飞行,向后退着飞以及悬停空中等。如果一旦把它的飞行奥秘破译出来,对改善飞机性能将有宝贵的借鉴作用。
鸟类的飞行,还有其他许多优异特性是现代化飞机所不具备的。可以乐观地预测,继续深入地研究鸟的飞行并从中得到有益的启示,一定可以进一步改进现有飞机的性能,给未来新型飞机的设计增添异彩。
D. 人类是怎么根据鸟来发明飞机的
莱特兄弟发明了飞机。
1896年,两兄弟听闻了德国航空先驱奥托·李林达尔(又译奥托·李林塔尔)在一次滑翔飞行中不幸遇难的消息。按说,这条消息对那些梦想飞行的人是一个打击,但熟悉机械装置的莱特兄弟却从中认定,人类进行动力飞行的基础实际上已足够成熟,李林达尔的问题在于他还没有来得及发现操纵飞机的诀窍。对李林达尔的失败进行了一番总结后,莱特兄弟满怀激情地投入了对动力飞行的钻研。
莱特兄弟不仅努力掌握前人的研究成果,而且十分注意直接向活生生的飞行物——鸟类学习。他们常常仰面朝天躺在地上,一连几个小时仔细观察鹰在空中的飞行,研究和思索它们起飞、升降和盘旋的机理。当年他们提出的许多新颖想法,都在以后的航空工业中得到了应用。在吸取前人经验教训的基础上,莱特兄弟开始了飞行器的研制。在无法得到别人资助的情况下,他们用自行车生意赚来的钱进行飞机的研制。兄弟俩的配合是完美无缺的。哥哥威尔伯勤勤恳恳,扎扎实实,拥有工程师的细致和谨慎;弟弟奥维尔则富有艺术家的想象力,敢于不断创新。两颗智慧的大脑密切配合,相得益彰,正如威尔伯所说:“奥维尔和我一起生活,共同工作,而且简直是共同思维,就和一个人一样。两兄弟认为飞机能不能顺利飞行,关键就在于如何设计和控制它在飞行过程中各种受力间的平衡。维尔伯·莱特用一张水平放置的纸演示了这个问题:如果让它自由落下,在理想的平静空气当中,我们可以想象它一定是平稳落下,但理想条件是很罕见的,任何一点气流都会使得纸张翻转和飘荡。对于飞机来说,完全理想的空气条件下,要实现上天并不难,但是天空中总是存在风,这就使得实现飞机飞行的关键,在于如何调节飞机前后左右各个方向的受力平衡,特别是飞机的重心和升力受力点之间的关系。 早期由于担心机翼过大,会使得飞机难于操为151平方英尺,皮歇尔的为165平方英尺,查卢特的为143平方英尺。这就使得飞机所能够获得的升力并不充裕,相比之下,驾驶员的重量就占了升力的很大部分,那么在这种受力情况下,驾驶员自身的位置变化将严重地影响飞机的重心,而当时一般的设计思路就是顺势利用这点,由驾驶员改变身体位置来控制飞机的飞行姿态。然而正是这样一种思路严重制约了飞机操纵性能的提升,因此莱特兄弟决定改变这个技术思路。 他们首先仔细研究了前人的试验数据,再通过大量风筝、滑翔机以及风洞试验做验证,设计出了最佳的机翼剖面形状和角度,以便获得最大的升力;然后决定把一般大小的机翼增大一倍,达到308平方英尺。最重要的是,他们设计了通过直接控制机翼来操纵飞机飞行姿态的机构,同时,在飞机整体的升力增加后,飞机对于驾驶员自身位置的变化也不那么敏感了,这就使得飞机尽管机翼面积大大增加,但可操纵性能并没有比小机翼飞机降低! 兄弟俩认为要建造一架飞行机器,有三个主要的障碍:(1)如何制造升力机翼;(2)如何获得驱动飞机飞行的动力;(3)在飞机升空之后,如何平衡以及操纵飞机。前两个问题在某种程度上已经获得解决。
最初兄弟俩努力制造全尺寸的滑翔机,接连四个夏天,他们前往北卡罗来纳州旅行,目的地是个与世隔离的岬角。气象部门向他们建议,岬角风力大,是有利的练习场。之后不久,他们制作了第一架无人驾驶双翼滑翔机,把它象风筝一样放上了天。他们又在飞机的前面安装了升降舵,也就是一种摆动舵,可以用来操纵横轴。
1900年10月的一个傍晚,威尔伯·莱特趴在易碎的滑翔机骨架上,迎着海风飘了起来,他成功了。虽然这只是几秒钟的飞行,只有1米多高,但莱特兄弟的成就超过了试图靠移动身体重量操纵飞行的李林达尔。第二年,兄弟俩在上次制作的基础上,经过多次改进,又制成了一架滑翔机。这年秋天,他们又来到基蒂霍克海边,一试验,飞行高度一下子达到180米之高。
1900—1903年,他们制造了3架滑翔机并进行了1000多次滑翔飞行,还自制了200多个不同的机翼进行了上千次风洞实验,修正了李林达尔的一些错误的飞行数据,设计出了较大升力的机翼截面形状。在此期间,他们的滑翔机多次滑翔距离超过1000米。在当时看来,这可是不小的成就。经过不断钻研,不断改进,莱特兄弟不仅迅速掌握了当时的飞行器制造技术,而且在许多方面取得了重大突破。从1903年夏季开始,莱特兄弟着手制造这架著名的“飞行者一号”双翼机。动力飞行首先需要一台发动机,但当时市面上根本没有飞机的发动机出售,也没有一家公司愿意冒险制造航空发动机。但是兄弟俩并没有气馁,他们请了机械师查尔斯?泰勒(Charles?Taylor)来帮他们制造了一台大约12马力、重77.2千克的活塞式发动机。有了发动机,威尔伯和奥利弗只盼着多风的秋季能早日到来。10月中旬,“飞行者号”组装完毕,奥维尔对新飞行器非常满意,“这是我们迄今为止造得最好的一架飞机。‘她’非常听话。” 奥维尔的感情不难理解,“飞行者一号”的每一根“肋条”都是他们亲手制作而成。
E. 哪个科学家根据小鸟发明了飞机
飞机(fixed-wing aircraft)指具有机翼和一具或多具发动机,靠自身动力能在大气中飞行版的重于空气的航空器。权严格来说,飞机指具有固定机翼的航空器。20世纪初,美国的莱特兄弟在世界的飞机发展史上做出了重大的贡献。在1903年制造出了第一架依靠自身动力进行载人飞行的飞机“飞行者”1号,并且获得试飞成功。他们因此于1909年获得美国国会荣誉奖。同年,他们创办了“莱特飞机公司”。自从飞机发明以后,飞机日益成为现代文明不可缺少的运载工具。它深刻的改变和影响着人们的生活。
F. 飞机是从鸟的什么发明的
头雁飞行的过程中在其身后会形成一个低气压区,紧跟其后的大雁飞行时就可以利用这个低气压区减少空气的阻力,减少体力消耗并有利于整个群体的持续飞行。
世界上第一架滑翔机就是从此设计来的!
G. 人们从小鸟身上得到启示,发明了飞机,了解到了什么
蝙蝠-雷达
小鸟-飞机
青蛙-电子蛙眼
鲨鱼-潜水艇
变色龙-便衣
鲸鱼-提高轮船速度回
蜻蜓-让飞机的机翼答不会破碎
长颈鹿-抗荷服
海母-暴雨检查器
萤火虫-人工冷光
龙虾-气味探测仪
通过鲸鱼的流线型发明了潜水艇。
通过蜻蜓发明了直升机。
通过蜻蜓的复眼发明了多相片的照相机。
通过鸟发明了飞机。
人类模仿警犬的高灵敏嗅觉制成了用于侦缉的"电子警犬"。
人类通过蝴蝶发明迷彩服。
科学家根据野猪的鼻子测毒的奇特本领制成了世界上第一批防毒面具。
水母的顺风耳,仿照水母耳朵的结构和功能,设计了水母耳风暴预测仪赞同3| 评论
H. 人们怎么根据鸟的翅膀发明了飞机
某人把鸟的翅膀仔细的研究了一下 发现翅膀的截面是一面突出的拉长的水滴形 于是开始模仿并研究这个水滴形 后来发现流体 例如空气 流过这个形状的两面时候 两面的压力是不同的 会产生升力 于是就有了机翼 这个特别的水滴形就叫翼型, 但是当初的动力发展并不发达 只有蒸汽机和不成熟的内燃机 于是人们尝试从山坡上抱着翅膀滑下去 后来发现很容易翻滚 于是学鸟的样子做了尾巴 就是尾翼 又后来有些人的实验成功了 人们就进行择优改良 一代一代直到莱特兄弟造出一架能飞几百米的飞机
I. 飞机是根据什么鸟而发明的
约在公元1800年,气体动力学创始人之一的英国科学家凯利,曾深入地研究过飞行动物的形态,寻找最具流线型的结构。他模仿鸟翼设计了一种机翼曲线,与现代飞机机翼截面曲线几乎完全相同。法国生理学家马雷曾写过一本研究鸟类飞行的《动物的机器》的书,介绍了鸟的体重与翅膀负荷(即单位翅膀面积所负的重量)的知识。后来,俄国科学家茹可夫斯基在研究鸟类飞行的基础上,提出了航空动力学的理论,正是通过对鸟类的一系列的研究,终于找到了人类上天的关键所在。在人们模仿鸟类翅膀,采用大功率轻便发动机带动螺旋桨之后,美国莱特兄弟终于在1903年发明了飞机,实现了人类梦寐以求的飞上天空的愿望。
现代航空技术飞速发展,先进的飞机时速可达3700公里,但飞机的飞行本领有许多方面不及飞鸟。有一种“军舰鸟”,它的翅膀骨骼仅有100克重,而两翅展开却有2米多长,因此,它飞行时消耗的能量和动力非常少。比“军舰鸟”更节省“燃料”的是一种叫作金色鹬的小鸟,它从加拿大越海连续飞到南美洲,行程3900公里,而体重只减轻60克。现代航空技术若能赶上这种效率,那么一架轻型飞机飞行30公里,只需耗用0.5升汽油,仅相当于目前用量的1/9。
“军舰鸟”
在西印度洋群岛上的蜂鸟,身长不过5厘米左右。就是这种小鸟,竟会做现有的任何飞机都做不到的各种机动灵活的飞行:向上高飞升至2000米的高空接着垂直下降,陡然起飞,掉头飞行,向后退着飞以及悬停空中等。如果一旦把它的飞行奥秘破译出来,对改善飞机性能将有宝贵的借鉴作用。
鸟类的飞行,还有其他许多优异特性是现代化飞机所不具备的。可以乐观地预测,继续深入地研究鸟的飞行并从中得到有益的启示,一定可以进一步改进现有飞机的性能,给未来新型飞机的设计增添异彩。
J. 人们根据小鸟发明了飞机,人们根据什么发明了什么
人们模仿苍蝇的眼睛制成了一种新型光学元件蝇眼透镜,人们模仿鱼类的沉浮系统鱼鳔设计出潜艇,人们模仿萤火虫制成人造冷光