『壹』 历史上的数学天才!
华罗庚、陈景润、哥德巴赫、高斯、
华罗庚,1910年11月12日生于江苏省金坛市金城镇,1985年6月12日卒于日本东京。
俗话说得好:“温室里难开出鲜艳芬芳耐寒傲雪的花儿。人只有经过苦难磨练才有望获得成功。”我国著名大数学家华罗庚的成功就得益于他的坎坷经历。1924年金坛中学初中毕业,但因家境不好,读完初中后,便不得不退学去当店员。18岁时患伤寒病,造成右腿残疾。1930年后在清华大学任教。1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。历任清华大学教授,中国科学院数学研究所、应用数学研究所所长、名誉所长,中国数学学会理事长、名誉理事长,全国数学竞赛委员会主任,美国国家科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士,中国科学院物理学数学化学部副主任、副院长、主席团成员,中国科学技术大学数学系主任、副校长,中国科协副主席,国务院学位委员会委员等职。曾任一至六届全国人大常务委员,六届全国政协副主席。曾被授予法国南锡大学、香港中文大学和美国伊利诺斯大学荣誉博士学位。主要从事解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等领域的研究与教授工作并取得突出成就。40年代,解决了高斯完整三角和的估计这一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至今仍是最佳纪录。
从20世纪60年代开始,他把数学方法应用于实际,筛选出以提高工作效率为目标的优选法和统筹法,取得显著经济效益。
华罗庚是当代自学成才的科学巨匠,是世界著名的数学家。他是中国解析数论、典型群、矩阵几何学、自守函数论与多复变函数论等很多方面研究的创始人与开拓者。为以后矩阵几何学等,作下了奠基。
陈景润(1933-1996.3.19)中国数学家。
福建省闽侯人。父亲是一位邮政工人 ,在众多的兄弟姐妹中,陈景润排行第三。1945年陈景润随全家从闽西北迁居福州市并进入英华中学读书。他从小内向而好学,因只知啃书本而被同学们起了一个绰号“booker(书呆子)”。此时,我国著名科学家沈元教授(后来任北京航空学院院长)由于抗战而南下,曾在该校兼课,他在一堂数学课中,讲了17世纪德国数学家哥德巴赫提出的一个猜想。哥德巴赫在1742年曾经猜想任意的大偶数恒可表述为两个素数这和。别看这道题目外表简单,内涵却十分复杂。200多年来,这一问题至今没有得到完全证明。在19世纪,德、法、俄、英等国的数学家对这一猜想做过无数次努力,但均未获得有价值的进展。许多人因此望而却步,被称为数学皇冠上的明珠。在这群富于幻想。思想活跃的高中学生中,大家一听而过,唯有陈景润陷入沉思。他暗下决心,要沿着长满荆棘的道路上攀登和摘取这颗“数学皇冠上的明珠”。1950年,陈景润在高中尚未毕业时考入厦门大学,1953年大学毕业后被分配到北京一所名牌中学任教。由于缺乏教书的口才被认为不宜于教书。厦门大学校长王亚南爱惜人才,让陈景润回校任图书资料员。这一环境使他如鱼得一般地可以遨游数学王国。他的第一篇数学论文《关于塔利问题》寄到中科院数学所时,他的数学才能得到著名数学家华罗庚的赏识,邀请陈景润参加1956年全国数学论文宣读大会,并于1956年末将他调到中国科学院数学研究所工作,开始在华罗庚的指导下研究数论。他最重要的成就是对“哥德巴赫猜想”取得了(1+2)的世界最先进的结果。出现转机是在本世纪前半叶,在我国,首先是数学研究所的王元于1956-1957年相继证明了(3+4)与(2+3);接着山东大学的潘承洞于1962年取得了(1+5)的关键性进展。在此后数年间,他们两人又进一步证明了(1+4)和(1+3)。1966年,陈景润取得了(1+2)的详细证明,并创立了“陈氏定理”,受到国际数学界的高度赞扬,得到国际公认。为中国在国际“奥林匹克”大赛中,夺得了一块金牌。陈景润本想在他有生之年内,完成(1+1),使数学的基础理论出现奇光异彩。可惜,在他生命最后的十多年中,帕金森氏综合症困扰他,令他长期卧病在床而不能实现夙愿。但最终解决哥氏猜想的(1+1)还有一段艰巨的路程。据著名数学家杨乐的估计,要到下一世纪才有解决这个难题的可能。
高斯(Johann Carl Friedrich Gauss)(1777年4月30日—1855年2月23日),生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家。高斯被认为是最重要的数学家,有数学王子的美誉,并被誉为历史上伟大的数学家之一,和阿基米德、牛顿并列,同享盛名。
高斯1777年4月30日生于不伦瑞克的一个工匠家庭,1855年2月23日卒于格丁根。幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。1795~1798年在格丁根大学学习1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。
高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。
1792年,15岁的高斯进入Braunschweig学院。在那里,高斯开始对高等数学作研究。独立发现了二项式定理的一般形式、数论上的“二次互反律”(Law of Quadratic Reciprocity)、“质数分布定理”(prime numer theorem)、及“算术几何平均”(arithmetic-geometric mean)。
1795年高斯进入哥廷根大学。1796年,19岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。
1855年2月23日清晨,高斯于睡梦中去世。
生平
高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。
高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。
哥廷根大学当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。
高斯的老师Bruettner与他助手 Martin Bartels 很早就认识到了高斯在数学上异乎寻常的天赋,同时Herzog Carl Wilhelm Ferdinand von Braunschweig也对这个天才儿童留下了深刻印象。于是他们从高斯14岁起,便资助其学习与生活。这也使高斯能够在公元1792-1795年在Carolinum学院(今天Braunschweig学院的前身)学习。18岁时,高斯转入哥廷根大学学习。在他19岁时,第一个成功的用尺规构造出了规则的17角形。
高斯于公元1805年10月5日与来自Braunschweig的Johanna Elisabeth Rosina Osthoff小姐(1780-1809)结婚。在公元1806年8月21日迎来了他生命中的第一个孩子约瑟。此后,他又有两个孩子。Wilhelmine(1809-1840)和Louis(1809-1810)。1807年高斯成为哥廷根大学的教授和当地天文台的台长。
虽然高斯作为一个数学家而闻名于世,但这并不意味着他热爱教书。尽管如此,他越来越多的学生成为有影响的数学家,如后来闻名于世的Richard Dedekind和黎曼。
哥德巴赫(Goldbach C.,1690.3.18-1764.11.20)是德国数学家;出生于格奥尼格斯别尔格(现名加里宁城);曾在英国牛津大学学习;原学法学,由于在欧洲各国访问期间结识了贝努利家族,所以对数学研究产生了兴趣;曾担任中学教师。1725年到俄国,同年被选为彼得堡科学院院士;1725年~1740年担任彼得堡科学院会议秘书;1742年移居莫斯科,并在俄国外交部任职。
1729年-1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。
在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:
"我的问题是这样的:
随便取某一个奇数,比如77,可以把它写成三个素数之和:
77=53+17+7;
再任取一个奇数,比如461,
461=449+7+5,
也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于5的奇数都是三个素数之和。
但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是个别的检验。"
欧拉回信说,这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和。但是这个命题他也没能给予证明。
不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成如下形式:
2N+1=3+2(N-1),其中2(N-1)≥4.
若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。
但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要求更高。
现在通常把这两个命题统称为哥德巴赫猜想
二百多年来,尽管许许多多的数学家为解决这个猜想付出了艰辛的劳动,迄今为止它仍然是一个既没有得到正面证明也没有被推翻的命题。
十九世纪数学家康托(Cantor G.F.L.P.,1845.3.3~1918.1.6)耐心地试验了1000以内所有的偶数,奥培利又试验了1000~2000的全部偶数,他们都肯定了在所试验的范围内猜想是正确的。1911年梅利指出,从4到9000000之间绝大多数偶数都是两个素数之和,仅有14个数情况不明。后来甚至有人一直验算到三亿三千万这个数,都肯定了猜想是正确的。
1900年,德国数学家希尔伯特(Hilbert D.,1862.1.23~1943.2.14)在巴黎国际数学家大会上提出了二十三个最重要的问题供二十世纪的数学家来研究。其中第八问题为素数问题;在提到哥德巴赫猜想时,希尔伯特说这是以往遗留的最重要的问题之一。
1921年,英国数学家哈代(Hardy G.H.,1877.2.7~1947.12.1)在哥本哈根召开的数学会议上说过,哥德巴赫猜想的困难程度可以和任何没有解决的数学问题相比。
近一百年来,哥德巴赫猜想吸引着世界上许多著名的数学家,并在证明上取得了很大的进展。
『贰』 小学质数表是谁研究出来的
100以内的质素表就是100以内的所有质数都放在一起,还要人发明吗?你问的应该是发明质数的人,质数以前就叫素数,有2、3、5、7、11、13等等
梅森素数的由来
马林·梅森(Marin Mersenne,1588-1648)是17世纪法国著名的数学家和修道士,也是当时欧洲科学界一位独特的中心人物。他与大科学家伽利略、笛卡尔、费马、帕斯卡、罗伯瓦、迈多治等是密友。虽然梅森致力于宗教,但它却是科学的热心拥护者,在教会中为了保卫科学事业做了很多有益的工作。他捍卫笛卡尔的哲学思想,反对来自教会的批评;也翻译过伽利略的一些著作,并捍卫了他的理论;还与炼金术、占星术等伪科学进行斗争。另外他曾建议用单摆作为时计以测量物体沿斜面滚下所需的时间,从而使惠更斯发明了单摆式时钟。
梅森对科学所做的主要贡献是他起了一个不平常的学术思想通道作用。17世纪时,学术刊物和国际会议等还远远没有出现,甚至连科学研究机构都没有创立,交往广泛、热情诚挚和德高望众的梅森就成了欧洲科学家之间的联系的桥梁。许多科学家都乐于将成果寄给他,然后再由他转告给更多人。因此,他被人们誉为“有定期学术刊物之前的科学信息交换站”。梅森和巴黎数学家笛卡尔、费马、罗伯瓦、迈多治等曾每周一次在梅森寓所聚会,轮流讨论数学、物理等问题,这种民间学术组织被称为“梅森学院”,它就是法兰西科学院的前身。
1640年6月,费马在给梅森的一封信中写道:“在艰深的数论研究中,我发现了三个非常重要的性质。我相信它们将成为今后解决素数问题的基础。”其中一个性质就是关于形如2^p—1的数(其中p为素数) 。早在公元前300多年,古希腊数学家欧几里得就开创了研究2^P—1的先河,他在《几何原本》第九章中论述完全数时指出:如果2^p—1是素数,则2^(p-1) (2^p—1)是完全数。另外,欧几里得还在这本不朽的名著中证明了素数有无穷多个(素数是指只能被1和自身整除的自然数,如2、3、5、7、11等等)。
意大利数学家卡塔尔迪首先对2^p—1进行了系统的研究;他在1603年宣布的结果中说,对于p=17、19、23、29、31、和37时,2^p—1是素数。前面的两个数(即17和19)是他本人验算的结果;而后面的4个数(即23、29、31和37)是他本人推测的结果。但是,1640年费马使用著名的费马小定理证明了卡塔尔迪关于p=23和37的结果是错误的,过后他又证明了关于p=31的结论是正确的。
梅森在欧几里得、卡塔尔迪、费马等人的有关研究的基础上对2^p—1作了大量的计算、验证工作,并于1644在他的《物理数学随感》(Cogitata Physica-Mathematica)一书中断言:对于P=2、3、5、7、13、17、19、31、67、127、257时,2^p—1是素数;而对于其他所有小于257的数时,2^p—1是合数(一个正整数,除了1和它本身以外,还能被其他正整数整除,这个数就叫作合数)。前面的7个数(即2、3、5、13、17和19)属于被证实的部分,是他整理前人的工作得到的;而后面的4个数(即31、67、127和257)属于被猜测的部分。不过,人们对其断言仍深信不疑,连大数学家莱布尼兹和哥德巴赫都认为它是对的。虽然梅森的断言中包含着若干错误,但他的工作极大地激发了人们研究2^p—1型素数的热情,使这种特殊素数摆脱作为“完全数”的附庸的地位。可以说,梅森的工作是素数研究的一个转折点和里程碑。由于梅森学识渊博、才华横溢、为人热情以及较为系统而深入地研究2^p—1型的数,为了纪念这位伟人,数学界就把这种数称为“梅森数”(Mersenne Number),并以Mp记之(其中M为梅森姓氏的首字母),即Mp=2^p—1。如果梅森数为素数,则称之为“梅森素数”(Mersenne Prime,则2^p—1型素数)。
梅森素数貌似简单,而研究难度却很大。它不仅需要高深的理论和纯熟的技巧,而且需要进行艰巨的计算。即使属于“猜测”部分中最小的M31=2^31—1=2147483647,也具有10位数。可以想象,它的证明是十分艰难的。正如梅森推测:“一个人,使用一般的验证方法,要检验一个15位或20位的数字是否为素数,即使终生的时间也是不够的。”是啊,枯燥、冗长、单调、刻板的运算会耗尽一个人的毕生精力,谁愿让生命的风帆永远在黑暗中颠簸!人们多么想知道梅森猜测的根据和方法啊,然而年迈力衰的他来不及留下记载,4年之后就去世了,人们的希望与梅森的生命一起泯灭在流逝的时光之中。看来,伟人的“猜测”只有等待后来的伟人来解决了。
『叁』 质数公式谁发明的
质数公式: 尽管整个素数是无穷的,仍然有人会问“100000以下有多少个素数?”,“一个随机的100位数多大可能是素数?”。素数定理可以回答此问题。 1、费马数2^(2^n)+1 被称为“17世纪最伟大的法国数学家”的费马,也研究过质数的性质。
『肆』 质数合数奇数偶数是谁发明的
数学家们!
『伍』 第一个发现质数的人欧文(数学家)是哪个国家的
第一个发现质数的人是商高,是中国人。
『陆』 质数是谁发现的
欧文...毕达哥拉斯(∏υθαγ ρα ,约前580年—前500年),古希腊哲学家、数学家和音乐理论家。
『柒』 质数和合数最早是谁提出来的
质数(对应的是合数)的发现应该很久的。公元前的欧几里得就提出质数有无穷多个。至于最早谁提出,我不知道了
『捌』 人类发现的最大质数是怎么计算得来的
用要验证是否为质数的数除以已知的质数,直到除数的平方大于被除数为止,如果结果中没有整数,那么此数为质数.应该是只能用电脑硬算的
『玖』 数学中质数最早由谁提出,是为了什么
质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。合数是由若干个质数相乘而得到的。所以,质数是合数的基础,没有质数就没有合数。这也说明了前面所提到的质数在数论中有着重要地位。历史上曾将1也包含在质数之内,但后来为了算术基本定理,最终1被数学家排除在质数之外,而从高等代数的角度来看,1是乘法单位元,也不能算在质数之内,并且,所有的合数都可由若干个质数相乘而得到。
哥德巴赫猜想
哥德巴赫猜想(Goldbach Conjecture)大致可以分为两个猜想(前者称“强”或“二重哥德巴赫猜想”后者称“弱”或“三重哥德巴赫猜想”):1、每个不小于6的偶数都可以表示为两个奇素数之和;2、每个不小于9的奇数都可以表示为三个奇质数之和。
黎曼猜想
黎曼猜想是一个困扰数学界多年的难题,最早由德国数学家波恩哈德·黎曼提出,迄今为止仍未有人给出一个令人完全信服的合理证明。即如何证明“关于质数的方程的所有意义的解都在一条直线上”。 此条质数之规律内的质数经过整形,“关于质数的方程的所有意义的解都在一条直线上”化为球体质数分布。
孪生质数猜想
1849年,波林那克提出孪生质数猜想(the conjecture of twin primes),即猜测存在无穷多对孪生质数。 猜想中的“孪生质数”是指一对质数,它们之间相差2。例如3和5,5和7,11和13,10016957和10016959等等都是孪生质数。 10016957和10016959是发生在第333899位序号质数月的中旬[18±1]的孪生质数。
『拾』 迄今为止人类已经发现了多少素数
素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任何其它两个整数的乘积。例如,15=3*5,所以15不是素数;又如,12=6*2=4*3,所以12也不是素数。另一方面,13除了等于13*1以外,不能表示为其它任何两个整数的乘积,所以13是一个素数。
有的数,如果单凭印象去捉摸,是无法确定它到底是不是素数的。有些数则可以马上说出它不是素数。一个数,不管它有多大,只要它的个位数是2、4、5、6、8或0,就不可能是素数。此外,一个数的各位数字之和要是可以被3整除的话,它也不可能是素数。但如果它的个位数是1、3、7或9,而且它的各位数字之和不能被3整除,那么,它就可能是素数(但也可能不是素数)。没有任何现成的公式可以告诉你一个数到底是不是素数。你只能试试看能不能将这
个数表示为两个比它小的数的乘积。
找素数的一种方法是从2开始用“是则留下,不是则去掉”的方法把所有的数列出来(一直列到你不想再往下列为止,比方说,一直列到10,000)。第一个数是2,它是一个素数,所以应当把它留下来,然后继续往下数,每隔一个数删去一个数,这样就能把所有能被2整除、因而不是素数的数都去掉。在留下的最小的数当中,排在2后面的是3,这是第二个素数,因此应该把它留下,然后从它开始往后数,每隔两个数删去一个,这样就能把所有能被3整除的数全都去掉。下一个未去掉的数是5,然后往后每隔4个数删去一个,以除去所有能被5整除的数。再下一个数是7,往后每隔6个数删去一个;再下一个数是11,往后每隔10个数删一个;再下一个是13,往后每隔12个数删一个。……就这样依法做下去。
你也许会认为,照这样删下去,随着删去的数越来越多,最后将会出现这样的情况;某一个数后面的数会统统被删去崮此在某一个最大的素数后面,再也不会有素数了。但是实际上,这样的情况是不会出现的。不管你取的数是多大,百万也好,万万也好,总还会有没有被删去的、比它大的素数。
事实上,早在公元前300年,希腊数学家欧几里得就已证明过,不论你取的数是多大,肯定还会有比它大的素数,假设你取出前6个素数,并把它们乘在一起:2*3*5*7*11*13=30030,然后再加上1,得30031。这个数不能被2、3、5、7、11、13整除,因为除的结果,每次都会余1。如果30031除了自己以外不能被任何数整除,它就是素数。如果能被其它数整除,那么30031所分解成的几个数,一定都大于13。事实上,30031=59*509。
对于前一百个、前一亿个或前任意多个素数,都可以这样做。如果算出了它们的乘积后再加上1,那么,所得的数或者是一个素数,或者是比所列出的素数还要大的几个素数的乘积。不论所取的数有多大,总有比它大的素数,因此,素
数的数目是无限的。
随着数的增大,我们会一次又一次地遇到两个都是素数的相邻奇数对,如5,7;11,13;17,19;29,31;41,43;等等。就数学家所能及的数来说,它们总是能找到这样的素数对。这样的素数对到底是不是有无限个呢?谁也不知道。数学家认为是无限的,但他们从来没能证明它。这就是数学家为什么对素数感兴趣的原因。素数为数学家提供了一些看起来很容易、但事实却非常难以解决的问题,他们目前还没能对付这个挑战哩。
迄今为止,人类发现的最大的素数是 224036583-1,这是第 41 个 梅森(Mersenne)素数。
素数也叫质数,是只能被自己和 1 整除的数,例如2、3、5、7、11等。2500 年前,希腊数学家欧几里德证明了素数是无限的,并提出少量素数可写成“2 的n次方减 1”的形式,这里 n 也是一个素数。此后许多数学家曾对这种素数进行研究,17 世纪的法国教士马丁·梅森(Martin Mersenne)是其中成果较为卓著的一位,因此后人将“2的n次方减1”形式的素数称为梅森素数。
第19~41个梅森素数
序号 素数 位数 发现人 时间
41 224036583-1 7235733 John Findley 2004
40 220996011-1 6320430 Michael Shafer 2003
39 213466917-1 4053946 Michael Cameron 2001
38 26972593-1 2098960 Nayan, Woltman, Kurowski 1999
37 23021377-1 909526 Clarkson, Woltman, Kurowski 1998
36 22976221-1 895932 Spence, Woltman 1997
35 21398269-1 420921 Armengaud, Woltman 1996
34 21257787-1 378632 Slowinski & Gage 1996
33 2859433-1 258716 Slowinski & Gage 1994
32 2756839-1 227832 Slowinski & Gage 1992
31 2216091-1 65050 David Slowinski 1985
30 2132049-1 39751 David Slowinski 1983
29 2110503-1 33265 Welsh & Colquitt 1988
28 286243-1 25962 David Slowinski 1982
27 244497-1 13395 Slowinski & Nelson 1979
26 223209-1 6987 L. Curt Noll 1979
25 221701-1 6533 Nickel & Noll 1978
24 219937-1 6002 Bryant Tuckerman 1971
23 211213-1 3376 Donald B. Gillies 1963
22 29941-1 2993 Donald B. Gillies 1963
21 29689-1 2917 Donald B. Gillies 1963
20 24423-1 1332 Alexander Hurwitz 1961
19 24253-1 1281 Alexander Hurwitz 1961
1995 年,美国程序设计师乔治·沃特曼整理有关梅森素数的资料,编制了一个梅森素数计算程序,并将其放置在因特网上供数学爱好者使用,这就是“因特 网梅森素数大搜索”计划。目前有6万多名志愿者、超过20万台计算机参与这项计划。该计划采取分布式计算方式,利用大量普通计算机的闲置时间,获得相当于 超级计算机的运算能力,第 37、38 和 39 个梅森素数都是用这种方法找到的。美国一家基金会还专门设立了 10 万美元的奖金,鼓励第一个找到超过千万位素数的人。