1. 中国人发明的游标卡尺现在存放在了哪里
游标卡尺是一种测量长度、内外径、深度的量具,对于工业设计来说,游标卡尺的出现是具有划时代意义的;在形形色色的计量器具家族中,游标卡尺作为一种被广泛使用的高精度测量工具,它是刻线直尺的延伸和拓展。
当然,这只是开个玩笑罢了,可笑如今的人宁愿相信游标卡尺是王莽穿越后带过去的,也不肯相信自己古人的智慧和能力,这种自尊心和自信心的丧失,的确是让人可悲、可叹。
2. 古代人和现代人是如何测量时间的,测量工具是如何发展变化的 简便一点
日晷
是我国古代利用日影测得时刻的又一种计时仪器。通常由铜制的指针和石制的圆盘组成。铜制的指针叫做“晷针”, 石制的圆盘叫做“晷面”。使用时,观察日影投在盘上的位置,就能分辨出不同的时间。日晷的计时精度能准确到刻(15分钟)。
漏壶(漏刻)
即用一个在壶底或靠近底部凿有小孔的盛水工具,利用孔口流水使铜壶的水位变化来计算时间。 我国发明的铜壶滴漏比外国制作的滴水计时器要早的多,应用也普遍,成为历代计时的重要工具。
圭表
是一种既简单又重要的测天仪器,它由垂直的表(一般高八尺)和水平的圭组成。它利用了立竿见影的道理来测量日影长度。主要功能是测定冬至日所在,并进而确定回归年长度。此外,通过观测表影的变化可确定方向和节气。
3. 测量工具的发展史
首先,我们见到的最古老的测量仪器是最早发明的一部分经纬仪,水准仪。其实关于测绘的发展可以说是历史悠久,甚至是可以开始说最初的尺规也是属于测绘学仪器的,直到17世纪,伟大的意大利科学家伽利略发明了望远镜,测绘学的发展开始迈入一个全新的领域,各种根据望远镜发明的光学测绘仪器开始问世,这里我们看到了最初的水准仪,经过初步的观察我们开始分析水准仪的工作原理,在分析水准仪的工作原理之初,我们首先要先分析水准仪的工作目的,一切的仪器都是从自己的所需要的工作目的出发进行设计的,仪器的结构也必须要符合他所要达到的实验目的。
我们通过对水准仪的观察和了解我们知道了水准仪的工作目的是测量地面两点之间高差的仪器。这里我们观察到了最初发明的水准仪,是17世纪制作的。可以说是望远镜带了变革中诞生的伟大的仪器。最初的水准仪是望远镜与水准器的结合。通过对两点之间的高程的观测从而能够确定两点之间的高差。因为望远镜的光路是一条直线,所以通过望远镜能够达到与观测点之间形成一条直线,这样能够方便的进行观测。由此我们分析最初的水准仪的工作原理应该是这样的:借助于微倾螺旋获得水平视线的一种常用水准仪。作业时先用圆水准器略整平,每次读数前再借助微倾螺旋,使符合水准器在竖直面内俯仰,直到符合水准气泡精确居中,使视线水平。微倾的精密水准仪同普通水准仪比较,前者管水准器的分划值小、灵敏度高,望远镜的放大倍率大,明亮度强,仪器结构坚固,特别是望远镜与管水准器之间的联接牢固,装有光学测微器,并配有精密水准标尺,以提高读数精度。由此我们可以发现最初的水准仪器是不是很精确的,而影响水准仪器观测的主要仪器的整平,可以说仪器的整平直接影响到了水准仪的观测。我们可以知道望远镜的观测主要是因为光线的直线传播,可是如果没有将水准仪整平,也就是水准仪的望远镜部位就是倾斜的,内么所观测的到的高程也必定是有误差的。所以我们后来发明了自动整平的水准仪。这个从一定的条件上解决了水准仪的精度问题。这个就是水准仪的一场变革,在制出内调焦望远镜和符合水准器的基础上生产出微倾水准仪大体出现在20世纪初,可以说这个是一项将水准仪的精度提升的巨大举措,直到进入50年代之时,出现了自动安平水准仪1。后来随着激光技术的发明与完善,测绘学在60年代将激光技术引入测绘仪器的制作之中,由此测绘仪器也有光学仪器成功进入了激光仪器的时代,对光学仪器的一系
4. 测量仪器由机械发展为光学式是由什么发明推动的
机械式液压助力转向
机械式液压助力系统主要包括齿轮齿条转向结构和液压系统(液压助力泵、液压缸、活塞等)两部分。工作原理是通过液压泵(由发动机皮带带动)提供油压推动活塞,进而产生辅助力推动转向拉杆,辅助车轮转向
5. 时间是人类发明的测量工具,还是说本来不存在,是人在变老还是时间使人变老
时光这个东西是真的存在吗?目前还没有人给出一个令人信服的答案!!
我认为他们是同步的,正是因为时间的流去,使我们变老!也是因为我们变老,时间才会流去!!
而时间这个词并非创造,他只是人们赋予这种东西的一个词!!
如果你想知道时间的答案,那你可能需要一生的时间去寻找,永远记住 真理的代价是昂贵的!!!
也许时间犹如一阵春风,人类犹如石块,风向我们迎面吹来,将花掉10万年左右的时间将我们风化掉!!
像这样的问题你不应去问被人,你应该问你自己!!
6. 游标卡尺是谁发明的
游标卡尺是由法国人约尼尔·比尔发明的。
在他的数学专著《新四分圆的结构、利用及特性》中记述了游标卡尺的结构和原理,而他的名字Vernier变成了英文的游标一词沿用。而这把赫赫有名的游标卡尺没有见到,因此有人质疑他是否制成了游标卡尺。
19世纪中叶,美国机械工业快速发展,美国夏普机械有限公司创始人于1985年秋,成功加工出了世界上第一批四把0-4英寸的游标卡尺,其精度达到了0.1毫米。
1854年荷、法、德、英、都普遍用上了游标卡尺,1856年日本也普及了游标卡尺,游标卡尺的制造技术逐渐更新迅速提高,使之成为了通用性的长度。
(6)量具发明人扩展阅读
使用游标卡尺的注意事项:
1、游标卡尺是比较精密的测量工具,要轻拿轻放,不得碰撞或跌落地下。使用时不要用来测量粗糙的物体,以免损坏量爪,避免与刃具放在一起,以免刃具划伤游标卡尺的表面,不使用时应置于干燥中性的地方,远离酸碱性物质,防止锈蚀。
2、测量前应把卡尺揩干净,检查卡尺的两个测量面和测量刃口是否平直无损,把两个量爪紧密贴合时,应无明显的间隙,同时游标和主尺的零位刻线要相互对准。这个过程称为校对游标卡尺的零位。
3、移动尺框时,活动要自如,不应有过松或过紧,更不能有晃动现象。用固定螺钉固定尺框时,卡尺的读数不应有所改变。在移动尺框时,不要忘记松开固定螺钉,亦不宜过松以免掉了。
7. 为了精确测量,科学家发明了什么等各种各样的测量工具
为了精确测量,科学家发明了(刻度尺、电流表、秒表、天平、电压表、电能表、游标卡尺、千分尺)等各种各样的测量工具
8. 一行发明了的测量工具有什么实用价值
一行还创造了一种测量北极出地高度(即所测地的地理纬度)的专用新仪器——“覆矩”(又叫“覆矩图”)。关于覆矩的式样,史料没有详细记载。
根据我们的考证,“矩”在中国古代天算典籍中有两种含义:一是形似木工曲尺的平面区域,即所谓的“积矩”;一是勾股形中的勾边加股边夹一直角构成的直角折线,即所谓的“矩线”。“覆矩”当理解为将积矩开口向下。
《旧唐书·天文志》有“以覆矩斜视,北极出地”多少度的记载,又说:“以图(即覆矩图)校安南,日在天顶北二度四分”。这说明一行的覆矩是一种用“角度”表示地平高度的测量工具。在覆矩的直角顶点系以重锤,在两直角边间安装一个0度到91.31度(因中国古代历法多取圆周为365.25度,故直角当为91.31度)的量角器。使用时,把覆矩的一个特定边指向北极,使此边恰好在人眼和北极的连线上,则重锤线即能在量角器上直接读出北极的地平高度。
一行发明的覆矩是一种简便的测量北极高度的仪器,它在一行领导的开元年间天文大地测量活动中,起到了非常重要的作用。
一行受诏改历后组织发起了一次大规模的天文大地测量工作。这次测量,用实测数据彻底地否定了历史上的“日影一寸,地差千里”的错误理论,提供了相当精确的地球子午线一度弧的长度。
一行发起这次大规模的天文测量主要目的有二。
其一,中国古代有一种传统理论:“日影一寸,地差千里。”刘宋时期的天算家何承天根据当时在交州(今越南河内一带)的测量数据,开始对此提出了怀疑,但长期未能得到证实。
隋朝天算家刘焯则提出了用实测结果来否定这一错误说法的具体计划,他说:“交爱之州,表北无影,计无万里,南过戴日,是千里一寸,非其实差。”他建议:“请一水工,并解算术士,取河南北平地之所,可量数百里,南北使正。审时以漏,平地以绳,随气至分,同日度影。得其差率,里即可知。则天地无所匿其形,辰象无所逃其数,超前显圣,效象除疑。”但这个建议在隋朝没有被采纳。一行的测量则实现了这一计划。
其二,当时发现,观测地点不同,日食发生的时刻和所见食象都不同,各节气的日影长度和漏刻昼夜分也不相同。这种现象是过去的历法所没有考虑到的。这就需要到各地进行实地测量。
这次测量过程中,由太史监南宫说及太史官大相元太等人分赴各地,“测候日影,回日奏闻”。而一行“则以南北日影较量,用勾股法算之”。可见,一行不仅负责组织领导了这次测量工作,而且亲自承担了测量数据的分析计算工作。
当时测量的范围很广,北到北纬51度左右的铁勒回纥部(今蒙古乌兰巴托西南),南到约北纬18度的林邑(今越南的中部)等十三处,超出了现在中国南北的陆地疆界。这样的规模在世界科学史上都是空前的。
其中最值得注意的是由南宫说亲自率领的测量队,按刘焯的计划在黄河两岸平原地区测量的四个点,由北向南有滑州白马(今河南滑县)、汴州浚仪太岳台(今开封西北)、许州扶沟(今河南扶沟)、豫州上蔡武津馆(今河南上蔡)。其中白马在黄河北,其他三点都在黄河以南。它们均介于东经114.2度—114.5度之间,差不多在同一经度上(即刘焯所说的“南北使正”)。总计白马至上蔡526里270步,北极高度相差1.5度,从而得出大约三百五十一里八十步,北极高度相差一度的结论。这实际上给出了地球子午线一度的长度。
由于对唐尺数值的大小,人们目前的看法还不一致,故评价一行这次子午线测量的精度受到限制。初步的估计结果是,一行的测量值与现代值相比,相对误差大约为11.8%。
国外最早的子午线实测是在公元814年,由天文学家阿尔·花剌子米(约783—850)参与组织,在幼发拉底河平原进行了一次大地测量,测算结果得出子午线一度长为111.815公里(现代理论值为110.6公里),相当精确。但这已在一行之后九十年了。
中国古代历法从东汉《四分历》开始,就有各节气初日晷影长度和太阳去极度的观测记录,漏刻、晷影成为古代历法的重要计算项目。隋朝刘焯发明二次等间距插值法之后,李淳风首先将二次插值法引入到漏刻计算中,由每气初日的漏刻、晷影长度数求该气各日的漏刻、晷影数。
但是,各历法中所记载和计算的漏刻和晷影大多是阳城(今河南登封东南告成镇)的数值。一行在编制《大衍历》时,曾进行了大规模的天文测量,通过观测知道,随去极度变化的影长,又因地方而异,但同太阳的天顶距有固定的对应关系。一行在《大衍历》中发明了求任何地方每日影长和去极度的计算方法,叫做“九服晷影”。
历法中已给出阳城各气初日的太阳去极度,则各气的去极度差即为已知,同样各气的太阳天顶距差亦为已知,而这个差数对于任一地点都是相等的。
这样一来,对于任一地方,只要知道某一节气(如夏至)的太阳天顶距,其他各气的太阳天顶距都可以通过加减这个差数求出。剩下还要解决以下两个问题:其一,如何求某地夏至(或冬至)的太阳天顶距;其二,已知天顶距如何换算出晷影长。这两个问题都可以通过建立一个影长与太阳天顶距的对应数表来解决。
如果列出一张以天顶距为引数,每隔一度的影长的数值表,则以上两个问题都可以解决:先在所测地测出(冬)夏至晷影长度(在一行领导的大地测量中,在每处都进行了这样的测量),由影长查表得出太阳天顶距,再加减一个如前所述的差数即可求出该地各气的天顶距,返回再查表得影长。
一行在《大衍历》“步晷漏术”中就建立了这样一个从0度到80度的每度影长与太阳天顶距对应数表,这是世界数学史上最早的一张正切函数表。
在国外,大约920年左右,阿拉伯学者阿尔·巴坦尼(约858年—929年)根据影长与太阳仰角之间的关系,编制了0度—90度每隔一度时12尺竿子的影长表,这实际上是一个12ctgα的数表。另一位阿拉伯学者阿尔·威发(940—998)在980年左右编成了正切和余切函数表,每隔15度和10度给出一个值。他还首次引进了正割和余割函数。
一行和阿尔·巴坦尼差不多沿着相同的途径编成正切和余切函数表。一行用太阳天顶距,阿尔·巴坦尼用太阳仰角,两者互为余角,所以他们两人的发现是相同的。而一行的正切函数表比阿尔·巴坦尼的余切函数表早近两百年,比阿尔·威发的正切表要早二百五十年。尽管一行的正切函数表只从0度到80度,误差也相应大一些,但它毕竟是世界上最早的正切函数表。
9. 诺贝尔获得者居里夫人设计了一种测量仪器,对以后的器械发明给予哪些帮助
诺贝尔获得者居里夫人设计了一种测量仪器,对以后的器械发明给予莫大的帮助,突破了该领域的空白,为今后的发明与进步做出了铺垫。