导航:首页 > 创造发明 > 坐标是谁发明的

坐标是谁发明的

发布时间:2021-11-05 16:12:46

❶ 数轴是谁发明

啊,我是大绵羊哦~~~

数轴(number axis)
规定了原点(origin),正方向和单位长度的直线叫数轴。所有的有理数都可以用数轴上的点来表示。也可以用数轴来比较两个实数的大小。
1)从原点出发朝正方向的射线上的点对应正数,相反方向的射线上的点对应负数,原点对应零。
2)在数轴上表示的两个数,右边的数比左边的数大。
3)正数都大于0,负数都小于0,正数大于一切负数。
数轴三要素:原点,单位长度,正方向
如果要在数轴上的点表示虚数,则需要2条数轴组成直角坐标系.而实数与虚数的和,要表示在两条数轴之外的二维平面上.
任何一个有理数都可以用数轴上的一个点来表示.
一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。
用数轴比较大小
一般来说,当数轴方向朝右时,右边的数比左边的数大.
相反数
与原点距离相同的两个点所表示的两个数为相反数.
绝对值
任意一个数与原点的距离就是它的绝对值.同样,两个数在数轴上的距离也可以表示为两个数的差的绝对值.
地理方面【巧用数轴计算时间】
数轴,用数轴上的一段表示全球的经线,这条线段的两个端点表示180°经线,线段的中点表示0°经线,这样,全球所有地点的经度位置都可以表示在这条线段上。箭头方向代表地球自转方向,因此,从0°经线向东至180°经线是东经,最右边的时区是东十二区,时间最早;从0°经线向西至180°经线是西经,最左边的时区是西十二区,时间最迟,东、西十二区刚好相差24小时。在这条数轴上,越往右边,时间越早,其数值越大,这与数学上数轴的含义是一致的。因此,如果已知图1中乙地的时间,要求甲地的时间,甲地在乙地的右边,用加法,即甲地时间等于乙地时间加上甲、乙两地的时差;反之,要求乙地的时间,乙地在甲地的左边,用减法,可以记成“右加左减”,同时,由于数轴的方向代表地球自西向东的自转方向,从这个意义上来说,也可记成“东加西减”。这样,将加减法的选择和时间早晚与数轴的数学含义结合起来,就不易出错了。此外,用这条线段的两个端点来表示180°经线,可以避免跨越日界线,从而使计算简化。

不是谁发明的吧,应该是约定俗成。

> <!

不过好像是他!!!!!
自古希腊以来,数学的发展形成两大主流:一支主流是几何,它研究图形及其变换,像点、直线、平面、三角形、多面体等等,都在它的研究之列;一支主流是代数,它研究数学(或是代表它们的字母)的运算,以及怎样解方程等等,像有理数、虚数、指数、对数、一元二次方程、方程组等等,都在它的研究之列。但是,在笛卡儿之前,这两大主流各管各地发展,彼此很少相关。笛卡儿企图在这两大主流之间“挖”一条“运河”,将它们沟通。

首先,他发明了“坐标系”,这是从一个原点出发互相垂直的两条数轴,一条X轴,另一条叫Y轴。有了这么一个简单的坐标系(严格讲来,这样的坐标系应称为”平面直角坐标系”)之后,如果平面上有一点,已知它到此平面坐标系的距离,那么这一点的位置就可以确定;反过来,如果平面上一点的位置已确定,那么这一点的位置就可以用它到坐标系的距离来表示。这样,笛卡儿应用坐标系建立了平面上的点和有顺序的实数对(一个表示X,一个表示Y)之间的一一对应关系,从而把几何研究的点与代数研究的数结合起来了。不仅如此,笛卡儿还用代数方程来描述几何图形,用几何图形来表示代数方程的计算结

是笛卡儿提出的平面直角坐标系 (也就是互相垂直的两条数轴)说中有这么一个故事: 有一天,笛卡尔(1596—1650,法国哲学家、数学家、物理学家)生病卧床,但他头脑一直没有休息,在反复思考一个问题:几何图形是直观的,而代数方程则比较抽象,能不能用几何图形来表示方程呢?这里,关键是如何把组成几何的图形的点和满足方程的每一组“数”挂上钩。他就拼命琢磨。通过什么样的办法、才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会儿,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”,使笛卡尔思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置,不是都可以用这三根数轴上找到的有顺序的三个数来表示吗?反过来,任意给一组三个有顺序的数,例如3、2、1,也可以用空间中的一个点 P来表示它们。同样,用一组数(a,b)可以表示平面上的一个点,平面上的一个点也可以用一组二个有顺序的数来表示。于是在蜘蛛的启示下,笛卡尔创建了直角坐标系。 无论这个传说的可*性如何,有一点是可以肯定的,就是笛卡尔是个勤于思考的人。这个有趣的传说,就象瓦特看到蒸汽冲起开水壶盖发明了蒸汽机一样,说明笛卡尔在创建直角坐标系的过程中,很可能是受到周围一些事物的启发,触发了灵感。 直角坐标系的创建,在代数和几何上架起了一座桥梁。它使几何概念得以用代数的方法来描述,几何图形可以通过代数形式来表达,这样便可将先进的代数方法应用于几何学的研究。 笛卡尔在创建直角坐标系的基础上,创造了用代数方法来研究几何图形的数学分支——解析几何。他的设想是:只要把几何图形看成是动点的运动轨迹,就可以把几何图形看成是由具有某种共同特性的点组成的。比如,我们把圆看成是一个动点对定点O作等距离运动的轨迹,也就可以把圆看作是由无数到定点O的距离相等的点组成的。我们把点看作是留成图形的基本元素,把数看成是组成方程的基本元素,只要把点和数挂上钩,也就可以把几何和代数挂上钩。 把图形看成点的运动轨迹,这个想法很重要!它从指导思想上,改变了传统的几何方法。笛卡尔根据自己的这个想法,在《几何学》中,最早为运动着的点建立坐标,开创了几何和代数挂钩的解析几何。在解析几何中,动点的坐标就成了变数,这是数学第一次引进变数。 恩格斯高度评价笛卡尔的工作,他说:“数学中的转折点是笛卡尔的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学。” 坐标方法在日常生活中用得很多。例如象棋、国际象棋中棋子的定位;电影院、剧院、体育馆的看台、火车车厢的座位及高层建筑的房间编号等都用到坐标的概念。 随着同学们知识的不断增加,坐标方法的应用会更加广泛。 坐标系的发展历史 如果把坐标法理解为通过某一特定系统中的若干数量来决定空间位置的方法,那么战国时代魏人石申用距度(或入宿度)和去极度两个数据来表示恒星在天球上位置的星表,可以说是一种球面坐标系统的坐标法。古希腊的地理学家和天文学家也广泛地使用球面坐标法。西晋人裴秀(223-271)提出“制图六体”,在地图绘制中使用了相当完备的平面网络坐标法。 用坐标法来刻划动态的、连结的点,是它沟通代数与几何而成为解析几何的主要工具的关键。阿波罗尼在<<圆锥曲线论>>中,已借助坐标来描述曲线。十四世纪法国学者奥雷斯姆用“经度”和“纬度”(相当于纵坐标和横坐标)的方程来刻划动点的轨迹。十七世纪,费马和笛卡儿分别创立解析几何,他们使用的都是斜角坐标系:即选定一条直线作为X轴,在其上选定一点为原点,y的值则由那些与X轴成一固定角度的线段的长表示。 1637年笛卡儿出版了他的著作<<方法论>>,这书有三个附录,其中之一名为<<几何学>>,解析几何的思想就包含在这个附录里。笛卡儿在<<方法论>>中论述了正确的思想方法的重要性,表示要创造为实践服务的哲学。笛卡儿在分析了欧几里得几何学和代数学各自的缺点,表示要寻求一种包含这两门科学的优点而没有它们的缺点的方法。这种方法就是几何与代数的结合----解析几何。按笛卡儿自己的话来说,他创立解析几何学是为了“决心放弃那仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练习思想的问题。我这样作,是为了研究另一种几何,即目的在于解释自然现象的几何”。关于解析几何学的产生对数学发展的重要意义,这里可以引用法国著名数学家拉格朗日的一段话:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄。但当这两门科学结合成伴侣时,它们就互相吸取新鲜的活力,从而以快速的步伐走向完善”。 十七世纪之后,西方近代数学开始了一个在本质上全新的阶段。正如恩格斯所指出的,在这个阶段里“最重要的数学方法基本上被确立了;主要由笛卡儿确立了解析几何,由耐普尔确立了对数,由莱布尼兹,也许还有牛顿确立了微积分”,而“数学中的转折点是笛卡儿的变量。有了它,运动进入了数学,因而,辩证法进入了数学,因而微分和积分的运算也就立刻成为必要的了”。恩格斯在这里不仅指出了十七世纪数学的主要内容,而且充分阐明了这些内容的重要意义。 解析几何学的创立,开始了用代数方法解决几何问题的新时代。从古希腊时起,在西方数学发展过程中,几何学似乎一直就是至高无上的。一些代数问题,也都要用几何方法解决。解析几何的产生,改变了这种传统,在数学思想上可以看作是一次飞跃,代数方程和曲线、曲面联系起来了。 最早引进负坐标的英国人沃利斯,最早把解析几何推广到三维空间的是法国人费马,最早应用三维直角坐标系的是瑞士人约翰 贝努利。“坐标”一词是德国人莱布尼兹创用的。牛顿首先使用极坐标,对于螺线、心形线以及诸如天体在中心力作用下的运动轨迹的研究甚为方便。不同的坐标系统之间可以互换,最早讨论平面斜角坐标系之间互换关系的是法国人范斯库腾。 我们今天常常把直角坐标系叫做笛卡儿坐标系,其实那是经过许多后人不断完善后的结果

❷ 坐标这个概念的哪个国家的发明的呢

为确定天球上某一点的位置,在天球上建立的球面坐标系。有两个基本要素:①基本平面。由天球上某一选定的大圆所确定。大圆称为基圈,基圈的两个几何极之一,作为球面坐标系的极。②主点,又称原点。由天球上某一选定的过坐标系极点的大圆与基圈所产生的交点所确定。
平面坐标系分为三类:
绝对坐标:是以点O为原点,作为参考点,来定位平面内某一点的具体位置,表示方法为:A(X,Y);
相对坐标:是以该点的上一点为参考点,来定位平面内某一点的具体位置,其表示方法为:A(@△X,△Y);
相对极坐标:是指出平面内某一点相对于上一点的位移距离、方向及角度,具体表示方法为:A(@d<α)。

❸ 坐标是谁发明的

伟大的法国数学家笛卡儿(Descartes 1596-1650)创立了直角坐标系.他用平面上的一点到两条固定直线的距离来确定这个点的位置,用坐标来描述空间上的点.

❹ 谁发明的数轴

自古希腊以来,数学的发展形成两大主流:一支主流是几何,它研究图形及其变换,像点、直线、平面、三角形、多面体等等,都在它的研究之列;一支主流是代数,它研究数学(或是代表它们的字母)的运算,以及怎样解方程等等,像有理数、虚数、指数、对数、一元二次方程、方程组等等,都在它的研究之列。但是,在笛卡儿之前,这两大主流各管各地发展,彼此很少相关。笛卡儿企图在这两大主流之间“挖”一条“运河”,将它们沟通。

首先,他发明了“坐标系”,这是从一个原点出发互相垂直的两条数轴,一条X轴,另一条叫Y轴。有了这么一个简单的坐标系(严格讲来,这样的坐标系应称为”平面直角坐标系”)之后,如果平面上有一点,已知它到此平面坐标系的距离,那么这一点的位置就可以确定;反过来,如果平面上一点的位置已确定,那么这一点的位置就可以用它到坐标系的距离来表示。这样,笛卡儿应用坐标系建立了平面上的点和有顺序的实数对(一个表示X,一个表示Y)之间的一一对应关系,从而把几何研究的点与代数研究的数结合起来了。不仅如此,笛卡儿还用代数方程来描述几何图形,用几何图形来表示代数方程的计算结

是笛卡儿提出的平面直角坐标系 (也就是互相垂直的两条数轴)说中有这么一个故事: 有一天,笛卡尔(1596—1650,法国哲学家、数学家、物理学家)生病卧床,但他头脑一直没有休息,在反复思考一个问题:几何图形是直观的,而代数方程则比较抽象,能不能用几何图形来表示方程呢?这里,关键是如何把组成几何的图形的点和满足方程的每一组“数”挂上钩。他就拼命琢磨。通过什么样的办法、才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会儿,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”,使笛卡尔思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置,不是都可以用这三根数轴上找到的有顺序的三个数来表示吗?反过来,任意给一组三个有顺序的数,例如3、2、1,也可以用空间中的一个点 P来表示它们。同样,用一组数(a,b)可以表示平面上的一个点,平面上的一个点也可以用一组二个有顺序的数来表示。于是在蜘蛛的启示下,笛卡尔创建了直角坐标系。 无论这个传说的可*性如何,有一点是可以肯定的,就是笛卡尔是个勤于思考的人。这个有趣的传说,就象瓦特看到蒸汽冲起开水壶盖发明了蒸汽机一样,说明笛卡尔在创建直角坐标系的过程中,很可能是受到周围一些事物的启发,触发了灵感。 直角坐标系的创建,在代数和几何上架起了一座桥梁。它使几何概念得以用代数的方法来描述,几何图形可以通过代数形式来表达,这样便可将先进的代数方法应用于几何学的研究。 笛卡尔在创建直角坐标系的基础上,创造了用代数方法来研究几何图形的数学分支——解析几何。他的设想是:只要把几何图形看成是动点的运动轨迹,就可以把几何图形看成是由具有某种共同特性的点组成的。比如,我们把圆看成是一个动点对定点O作等距离运动的轨迹,也就可以把圆看作是由无数到定点O的距离相等的点组成的。我们把点看作是留成图形的基本元素,把数看成是组成方程的基本元素,只要把点和数挂上钩,也就可以把几何和代数挂上钩。 把图形看成点的运动轨迹,这个想法很重要!它从指导思想上,改变了传统的几何方法。笛卡尔根据自己的这个想法,在《几何学》中,最早为运动着的点建立坐标,开创了几何和代数挂钩的解析几何。在解析几何中,动点的坐标就成了变数,这是数学第一次引进变数。 恩格斯高度评价笛卡尔的工作,他说:“数学中的转折点是笛卡尔的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学。” 坐标方法在日常生活中用得很多。例如象棋、国际象棋中棋子的定位;电影院、剧院、体育馆的看台、火车车厢的座位及高层建筑的房间编号等都用到坐标的概念。 随着同学们知识的不断增加,坐标方法的应用会更加广泛。 坐标系的发展历史 如果把坐标法理解为通过某一特定系统中的若干数量来决定空间位置的方法,那么战国时代魏人石申用距度(或入宿度)和去极度两个数据来表示恒星在天球上位置的星表,可以说是一种球面坐标系统的坐标法。古希腊的地理学家和天文学家也广泛地使用球面坐标法。西晋人裴秀(223-271)提出“制图六体”,在地图绘制中使用了相当完备的平面网络坐标法。 用坐标法来刻划动态的、连结的点,是它沟通代数与几何而成为解析几何的主要工具的关键。阿波罗尼在<<圆锥曲线论>>中,已借助坐标来描述曲线。十四世纪法国学者奥雷斯姆用“经度”和“纬度”(相当于纵坐标和横坐标)的方程来刻划动点的轨迹。十七世纪,费马和笛卡儿分别创立解析几何,他们使用的都是斜角坐标系:即选定一条直线作为X轴,在其上选定一点为原点,y的值则由那些与X轴成一固定角度的线段的长表示。 1637年笛卡儿出版了他的著作<<方法论>>,这书有三个附录,其中之一名为<<几何学>>,解析几何的思想就包含在这个附录里。笛卡儿在<<方法论>>中论述了正确的思想方法的重要性,表示要创造为实践服务的哲学。笛卡儿在分析了欧几里得几何学和代数学各自的缺点,表示要寻求一种包含这两门科学的优点而没有它们的缺点的方法。这种方法就是几何与代数的结合----解析几何。按笛卡儿自己的话来说,他创立解析几何学是为了“决心放弃那仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练习思想的问题。我这样作,是为了研究另一种几何,即目的在于解释自然现象的几何”。关于解析几何学的产生对数学发展的重要意义,这里可以引用法国著名数学家拉格朗日的一段话:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄。但当这两门科学结合成伴侣时,它们就互相吸取新鲜的活力,从而以快速的步伐走向完善”。 十七世纪之后,西方近代数学开始了一个在本质上全新的阶段。正如恩格斯所指出的,在这个阶段里“最重要的数学方法基本上被确立了;主要由笛卡儿确立了解析几何,由耐普尔确立了对数,由莱布尼兹,也许还有牛顿确立了微积分”,而“数学中的转折点是笛卡儿的变量。有了它,运动进入了数学,因而,辩证法进入了数学,因而微分和积分的运算也就立刻成为必要的了”。恩格斯在这里不仅指出了十七世纪数学的主要内容,而且充分阐明了这些内容的重要意义。 解析几何学的创立,开始了用代数方法解决几何问题的新时代。从古希腊时起,在西方数学发展过程中,几何学似乎一直就是至高无上的。一些代数问题,也都要用几何方法解决。解析几何的产生,改变了这种传统,在数学思想上可以看作是一次飞跃,代数方程和曲线、曲面联系起来了。 最早引进负坐标的英国人沃利斯,最早把解析几何推广到三维空间的是法国人费马,最早应用三维直角坐标系的是瑞士人约翰 贝努利。“坐标”一词是德国人莱布尼兹创用的。牛顿首先使用极坐标,对于螺线、心形线以及诸如天体在中心力作用下的运动轨迹的研究甚为方便。不同的坐标系统之间可以互换,最早讨论平面斜角坐标系之间互换关系的是法国人范斯库腾。 我们今天常常把直角坐标系叫做笛卡儿坐标系,其实那是经过许多后人不断完善后的结果

❺ 经纬度是谁何时发明的

经纬度是克罗狄斯·托勒密于公元120年发明了简易的经纬度。

公元120年,一位青年也在这座古老的图书馆里研究天文学、地理学。他就是克罗狄斯·托勒密。托勒密综合前人的研究成果,认为绘制地图应根据已知经纬度的定点做根据,提出地图上绘制经纬度线网的概念。为此,托勒密测量了地中海一带重要城市和据点的经纬度,编写了8卷地理学著作。

其中包括8000个地方的经纬度。为使地球上的经纬线能在平面上描绘出来,他设法把经纬线绘成简单的扇形,从而绘制出一幅著名的“托勒密地图”。15世纪初,航海家亨利开始把“托勒密地图”付诸实践。但是,经过反复考察,却发现这幅地图并不实用。亨利手下的一些船长遗憾地说:“尽管我们对有名的托勒密十分敬仰,但我们发现事实都与他说的相反。”

(5)坐标是谁发明的扩展阅读:

在地球仪上,由经线和纬线就组成了经纬网;如果把经纬网地球仪展开,就形成了一幅平面的地图。确定位置,在航空、航天、航海以及气象等方面都有作用。“船在海上遇到危险时,如何去营救”等等,都要用到经纬网地图。经度 :为了区分地球上的每一条经线,人们给经线标注了度数,这就是经度。经度每15度1个时区。 实际上经度是两条经线所在平面之间的夹角。

国际上规定,把通过英国首都伦敦格林威治天文台原址的那一条经线定为0°经线,也叫本初子午线。从0°经线算起,向东、向西各分作180°,以东的180°属于东经,习惯上用“E”作代号,以西的180°属于西经,习惯上用“W”作代号。东经180°和西经的180°重合在一条经线上,那就是东西180°经线。纬度:从赤道向北量度为“北纬”(N);向南量度为“南纬”(S)。

在地图上判读经度时应注意:从西向东,经度的度数由小到大为东经度;从西向东,经度的度数由大到小,为西经度;除0°和180°经线外,其余经线都能准确区分是东经度还是西经度。

❻ 坐标系的起源

发明者:迪卡尔,他早上躺在床上自习时,无意中看到天花板上的虫子在方格中移动的过程中发现可以用方格位置确定虫子的位置。

❼ 发明轴的人是谁

你想了解的是数轴的发明人吗?

数轴:
发明数轴的是生于法国安德尔-卢瓦尔省图赖讷拉海的勒内·笛卡儿,1650年2月11日逝世于瑞典斯德哥尔摩,是法国著名的哲学家、数学家、物理学家。他是西方近代资产阶级哲学奠基人之一。 他对现代数学的发展做出了重要的贡献,因将几何坐标体系公式化而被认为是解析几何之父。他还是西方现代哲学思想的奠基人,是近代唯物论的开拓者且提出了“普遍怀疑”的主张。他的哲学思想深深影响了之后的几代欧洲人,开拓了所谓“欧陆理性主义”哲学。笛卡儿最早提出的平面直角坐标系(也就是互相垂直的两条数轴),据说还有一段有趣的故事: 有一天,笛卡尔(1596—1650,法国哲学家、数学家、物理学家)生病卧床,但他头脑一直没有休息,在反复思考一个问题:几何图形是直观的,而代数方程则比较抽象,能不能用几何图形来表示方程呢?这里,关键是如何把组成几何的图形的点和满足方程的每一组“数”挂上钩。他就拼命琢磨。通过什么样的办法、才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会儿,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”,使笛卡尔思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置,不是都可以用这三根数轴上找到的有顺序的三个数来表示吗?反过来,任意给一组三个有顺序的数,例如3、2、1,也可以用空间中的一个点 P来表示它们。同样,用一组数(a,b)可以表示平面上的一个点,平面上的一个点也可以用一组二个有顺序的数来表示。于是在蜘蛛的启示下,笛卡尔创建了直角坐标系。
无论这个传说的可靠性如何,有一点是可以肯定的,就是笛卡尔是个勤于思考的人。这个有趣的传说,就象瓦特看到蒸汽冲起开水壶盖发明了蒸汽机一样,说明笛卡尔在创建直角坐标系的过程中,很可能是受到周围一些事物的启发,触发了灵感。
直角坐标系的创建,在代数和几何上架起了一座桥梁。它使几何概念得以用代数的方法来描述,几何图形可以通过代数形式来表达,这样便可将先进的代数方法应用于几何学的研究。
笛卡尔在创建直角坐标系的基础上,创造了用代数方法来研究几何图形的数学分支——解析几何。他的设想是:只要把几何图形看成是动点的运动轨迹,就可以把几何图形看成是由具有某种共同特性的点组成的。比如,我们把圆看成是一个动点对定点O作等距离运动的轨迹,也就可以把圆看作是由无数到定点O的距离相等的点组成的。我们把点看作是留成图形的基本元素,把数看成是组成方程的基本元素,只要把点和数挂上钩,也就可以把几何和代数挂上钩。
把图形看成点的运动轨迹,这个想法很重要!它从指导思想上,改变了传统的几何方法。笛卡尔根据自己的这个想法,在《几何学》中,最早为运动着的点建立坐标,开创了几何和代数挂钩的解析几何。在解析几何中,动点的坐标就成了变数,这是数学第一次引进变数。
恩格斯高度评价笛卡尔的工作,他说:“数学中的转折点是笛卡尔的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学。”
坐标方法在日常生活中用得很多。例如象棋、国际象棋中棋子的定位;电影院、剧院、体育馆的看台、火车车厢的座位及高层建筑的房间编号等都用到坐标的概念。
随着同学们知识的不断增加,坐标方法的应用会更加广泛。 仔细观察生活,你会发现数轴已经运用到我们生活当中的方方面面!

❽ 坐标轴是谁发明的

不是谁发明的吧,应该是约定俗成.额 > >中,已借助坐标来描述曲线.十四世纪法国学者奥雷斯姆用“经度”和“纬度”(相当于纵坐标和横坐标)的方程来刻划动点的轨迹.十七世纪,费马和笛卡儿分别创立解析几何,他们使用的都是斜角坐标系:即选定一条直线作为X轴,在其上选定一点为原点,y的值则由那些与X轴成一固定角度的线段的长表示.1637年笛卡儿出版了他的著作,这书有三个附录,其中之一名为,解析几何的思想就包含在这个附录里.笛卡儿在中论述了正确的思想方法的重要性,表示要创造为实践服务的哲学.笛卡儿在分析了欧几里得几何学和代数学各自的缺点,表示要寻求一种包含这两门科学的优点而没有它们的缺点的方法.这种方法就是几何与代数的结合----解析几何.按笛卡儿自己的话来说,他创立解析几何学是为了“决心放弃那仅仅是抽象的几何.这就是说,不再去考虑那些仅仅是用来练习思想的问题.我这样作,是为了研究另一种几何,即目的在于解释自然现象的几何”.关于解析几何学的产生对数学发展的重要意义,这里可以引用法国著名数学家拉格朗日的一段话:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄.但当这两门科学结合成伴侣时,它们就互相吸取新鲜的活力,从而以快速的步伐走向完善”.十七世纪之后,西方近代数学开始了一个在本质上全新的阶段.正如恩格斯所指出的,在这个阶段里“最重要的数学方法基本上被确立了;主要由笛卡儿确立了解析几何,由耐普尔确立了对数,由莱布尼兹,也许还有牛顿确立了微积分”,而“数学中的转折点是笛卡儿的变量.有了它,运动进入了数学,因而,辩证法进入了数学,因而微分和积分的运算也就立刻成为必要的了”.恩格斯在这里不仅指出了十七世纪数学的主要内容,而且充分阐明了这些内容的重要意义.解析几何学的创立,开始了用代数方法解决几何问题的新时代.从古希腊时起,在西方数学发展过程中,几何学似乎一直就是至高无上的.一些代数问题,也都要用几何方法解决.解析几何的产生,改变了这种传统,在数学思想上可以看作是一次飞跃,代数方程和曲线、曲面联系起来了.最早引进负坐标的英国人沃利斯,最早把解析几何推广到三维空间的是法国人费马,最早应用三维直角坐标系的是瑞士人约翰 贝努利.“坐标”一词是德国人莱布尼兹创用的.牛顿首先使用极坐标,对于螺线、心形线以及诸如天体在中心力作用下的运动轨迹的研究甚为方便.不同的坐标系统之间可以互换,最早讨论平面斜角坐标系之间互换关系的是法国人范斯库腾.我们今天常常把直角坐标系叫做笛卡儿坐标系,其实那是经过许多后人不断完善后的结果 参考资料:等等 28

阅读全文

与坐标是谁发明的相关的资料

热点内容
金华质监局和工商局合并 浏览:334
卫生院公共卫生服务考核结果 浏览:693
专利权的内容有哪几项 浏览:750
学校矛盾纠纷排查表 浏览:294
内地音乐版权 浏览:208
公共卫生服务今后工作计划 浏览:457
公共卫生服务考核小组 浏览:872
疫情里的科研成果 浏览:519
工商局爱国卫生月及健康教育宣传月活动总结 浏览:942
三兴商标织造有限公司 浏览:657
加强和改进公共服务实施方案 浏览:991
迷你世界创造熔岩号角 浏览:479
爱奇艺激活码有效期 浏览:507
医疗纠纷官司南方周末 浏览:855
公共服务类大楼的物业管理方案 浏览:284
电影版权买卖合同范本 浏览:167
口罩在商标注册属于哪个类目 浏览:256
基本公共卫生服务质控小结 浏览:668
数字版权的权源 浏览:565
驻马店置地弘润山转让 浏览:146