Ⅰ 谁首先创造"对数"
虽然我们现在所用的对数表是由苏格兰著名的数学家纳皮尔发明的,但它应该追溯到1484年的丘凯和斯蒂费尔。
对数
对数是一种计算方法,它最大的优越性就在于,应用对数,乘法和除法可以归结为简单的加法和减法运算。虽然我们现在所用的对数表是由苏格兰著名的数学家纳皮尔发明的,但它应该追溯到1484年的丘凯和斯蒂费尔。
那时,人们对数,特别是一些大数的计算,感到非常的不便。2484年,丘凯和斯遇尔两人潜心研究,想能不能找到一种比较简便的方法,使大数计算起来更加方便呢,最后他们注意到了下面两个数列的关系。
n0,1,2,3,4,5,6,7,8,9,10,…
2 n1,2,4,8,16,32,64,128,256,512,1024,……
如果想求第二得任意两个数的积,只要计算与这两个数对应的第一行的数之各,就可从和数中找出对应的答数。若示主的是商,只要把上述的“和”改为“差”就行了。后来,斯蒂费尔把这种关系推广到负指数和分数指数一来。
后来英格兰数学家纳皮尔致力于研究球面三角和除法运算。随着三角学的迅速发展,各种三角函数表大量出现,这是他发明对数的直接原因。因为当时还没有十进位小数的运算,要对天文学、航海竺方面进行研究,就必须制表,而人们只有用愈来愈加大圆半径的办法,来满足制表的要求。因此当务之急就是找到简单有效的编表计算方法。
纳皮尔最初的目的是想简化一些角运算。当他见到丘凯和斯蒂费尔的研究成果时,他茅塞顿开。他的思路是沿着公式
sinA·sinB={cos(A-B)-cos(A+B)}/2
而来的。他在对数的理论上面至少花费了20年。
考虑线段AB和无穷射线DE,令点C和F同时分别从A和D,沿着这两条线,以同样的初速度开始移动,假定C总是以数值等于距离CB的速度移动,而F以匀速移动,于是,纳皮尔定义DF为CB的对数。也就是说,设DF=X和CB=Y,
X=Naplogy
为了避免出现分数的麻烦,纳皮尔取AB的长为10 7,因为当时最好的正表有七位数字。在纳皮尔那里,没有底的概念。他从连续的几何量出发,得到了几何级数与算术级数的比较表。
1614年,纳皮尔发表了《奇妙的对数定理说明书》,在这本书中,发表了他关于对数的讲座。这书一发表就引起人们的广泛兴趣。后来他和布里格斯把对数做了改时,使得1的对数为0,10的对数为10的适当次幂,这样造出来的对数表更为有用。于是就有了我们今天的常用对数,为了纪念布里格斯,人们又把它称为布里格斯对数。这种对数实质上是以10为底数的,这样在数值计算上具有优越的效用。
1624年,布里格斯发表了他的《对数算术》,这是一本对数表,它包括从1到20000和90000到100000的14位常用对数表,后来在出版商的帮助下,又把从20000到90000的其他数补了上来。1620年,布里格斯的一位同事冈特发表了角的正弦和正切的常用对数表,直到20世纪三四十年代才被英国算出的20位对数表所代替。
logarithm(对数)这个词产意思是“比数”。纳皮尔最初并没有用这个词,而用的是artificialnumber(人造数),后来才使用对数这一词。到了布里格斯手里,又引进了mantissa这个词,它的意思为“附加”或“补缺”,到了16世纪对数这个术语由布里格斯提出来。
纳皮尔对数及布里格斯的对数表的发明,很快得到了人们的认可,尤其是天文学界,他们认为对数的发明延长了天文学者的寿命。伽利略甚至说,给他空间、时间及对数,他就可以创造一个宇宙。
关于对数的发明,我们还应该提起另一个人,他就是瑞士仪器制造者比尔吉。比尔吉是天文学家开普勒的助手。他根据斯蒂费尔的发现,整整用了8年时间,造成了一张反对数表。于1620年发表,比纳皮尔晚6年。
纳皮尔和比尔吉两人都致力于对数的研究,只不过纳皮尔用的是几何方法,比尔吉用的是代数法。现在,对数普遍被认为是指数。例如,如果n=b x,我们就可以说X是N的以B为底的对数。从这一定义出发,对数定律直接来自指数定律。对数的建立早于指数的建立,在数学史上成了一件珍闻。
以上谈的都是以10为底的对数,除此之外还有自然对数,这个名字是1610年伦敦的数学家司皮得尔在《新数学》里出现的。
我们知道,一般对数的底可以为任意不等于1的正数。即对数的底如果为超越数e(e=2.718)我们就把这样的对数叫作自然对数,用符号“LN”表示。在这里“1”是对数“logarithm"的第一个字母,“N”是自然“nature"的第一个字母,把两个字母合在一起,就表示自然对数。
自然对数的出现,给数学界带来了一场革命。
Ⅱ 谁发明了对数
虽然我们现在所用的对数表是苏格兰数学家——纳皮尔(J·Napier,1550~1617)男爵发明的,但它应该追溯到1484年的丘凯和斯蒂费尔
Ⅲ 对数是怎么发明的
数学史册上的对数发明者是两个人:英国的约翰·耐普尔和瑞士的乔伯斯特专·布尔属基。 布尔基原是个钟表技师,1603年被选入担承布拉格宫庭技师后,开始与著名的天文学家开普勒接触,了解到天文计算的一些具体情况。他体察天文学家的辛劳,并决定为他们提供简便的计算方法。 布尔基所提供的简便计算方法就是一张实用的对数表。从原则上说,史提非已经解决了将乘(除)运算转为加(减)运算的途径。但是,史提非所给出的两个数列中的数字十分有限,它不能付之于实用,实用的对数表必须包括所有要乘的数在内。 为了做到这一点,布尔基采取尽可能细密地列了等比数列的办法。他给出的等比数列及其相应的等差数列相当于: 1,1.0001,(1.0001)
Ⅳ 对数函数是谁发明的
对数函数的历史: 16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,於是数学家们为了寻求化简的计算方法而发明了对数。 德国的史提非(1487-1567)在1544年所著的《整数算术》中,写出了两个数列,左边是等比数列(叫原数),右边是一个等差数列(叫原数的代表,或称指数,德文是Exponent ,有代表之意)。 欲求左边任两数的积(商),只要先求出其代表(指数)的和(差),然后再把这个和(差)对向左边的一个原数,则此原数即为所求之积(商),可惜史提非并未作进一步探索,没有引入对数的概念。 纳皮尔对数值计算颇有研究。他所制造的「纳皮尔算筹」,化简了乘除法运算,其原理就是用加减来代替乘除法。 他发明对数的动机是为寻求球面三角计算的简便方法,他依据一种非常独等的与质点运动有关的设想构造出所谓对数方 法,其核心思想表现为算术数列与几何数列之间的联系。在他的《奇妙的对数表的描述》中阐明了对数原理,后人称为 纳皮尔对数,记为Nap.㏒x,它与自然对数的关系为 Nap.㏒x=107㏑(107/x) 由此可知,纳皮尔对数既不是自然对数,也不是常用对数,与现今的对数有一定的距离。 瑞士的彪奇(1552-1632)也独立地发现了对数,可能比纳皮尔较早,但发表较迟(1620)。 英国的布里格斯在1624年创造了常用对数。 1619年,伦敦斯彼得所著的《新对数》使对数与自然对数更接近(以e=2.71828...为底)。 对数的发明为当时社会的发展起了重要的影响,正如科学家伽利略(1564-1642)说:「给我时间,空间和对数,我可以创造出一个宇宙」。又如十八世纪数学家拉普拉斯( 1749-1827)亦提到:「对数用缩短计算的时间来使天文学家的寿命加倍」。 最早传入我国的对数著作是《比例与对数》,它是由波兰的穆尼斯(1611-1656)和我国的薛凤祚在17世纪中叶合 编而成的。当时在lg2=0.3010中,2叫「真数」,0.3010叫做「假数」,真数与假数对列成表,故称对数表。后来改用 「假数」为「对数」。 我国清代的数学家戴煦(1805-1860)发展了多种的求对数的捷法,著有《对数简法》(1845)、《续对数简法》(1846)等。1854年,英国的数学家艾约瑟(1825-1905) 看到这些著作后,大为叹服。 当今中学数学教科书是先讲「指数」,后以反函数形式引出「对数」的概念。但在历史上,恰恰相反,对数概念不是来自指数,因为当时尚无分指数及无理指数的明确概念。布里格斯曾向纳皮尔提出用幂指数表示对数的建议。1742年 ,J.威廉(1675-1749)在给G.威廉的《对数表》所写的前言中作出指数可定义对数。而欧拉在他的名著《无穷小 分析寻论》(1748)中明确提出对数函数是指数函数的逆函数,和现在教科书中的提法一致。赞同0| 评论
Ⅳ 最早的对数以谁为底
历史
对数方法是苏格兰的 Merchiston 男爵约翰·纳皮尔1614年在书《Mirifici Logarithmorum Canonis Descriptio》中首次公开提出的,(Joost Bürgi 独立的发现了对数;但直到 Napier 之后四年才发表)。这个方法对科学进步有所贡献,特别是对天文学,使某些繁难的计算成为可能。在计算器和计算机发明之前,它持久的用于测量、航海、和其他实用数学分支中。
约翰·纳皮尔/约翰·奈皮尔/约翰·内皮尔(John Napier,1550~1617),苏格兰数学家、神学家,对数的发明者。
Napier出身贵族,于1550年在苏格兰爱丁堡附近的小镇梅奇斯顿(Merchiston Castle,Edinburgh,Scotland)出生,是Merchiston城堡的第八代地主,未曾有过正式的职业。
年轻时正值欧洲掀起宗教革命,他行旅其间,颇有感触。苏格兰转向新教,他也成了写文章攻击旧教(天主教)的急先锋(主要文章于1593年写成)。其时传出天主教的西班牙要派无敌舰队来攻打,Napier就研究兵器(包括拏炮、装甲马车、潜水艇等)准备与其拚命。虽然Napier的兵器还没制成,英国已把无敌舰队击垮,他还是成了英雄人物。
他一生研究数学,以发明对数运算而著称。那时候天文学家Tycho Brahe(第谷,1546~1601)等人做了很多的观察,需要很多的计算,而且要算几个数的连乘,因此苦不堪言。1594年,他为了寻求一种球面三角计算的简便方法,运用了独特的方法构造出对数方法。这让他在数学史上被重重地记上一笔,然而完成此对数却整整花了他20年的工夫。1614年6月在爱丁堡出版的第一本对数专著《奇妙的对数表的描述》("Mirifici logarithmorum canonis descriptio")中阐明了对数原理,后人称为纳皮尔对数:Nap logX。1616年Briggs(亨利·布里格斯,1561 - 1630)去拜访纳皮尔,建议将对数改良一下以十为基底的对数表最为方便,这也就是后来常用的对数了。可惜纳皮尔隔年于1617年春天去世,后来就由Briggs以毕生精力继承纳皮尔的未竟事业,以10为底列出一个很详细的对数表。并且于1619年发表了《奇妙对数规则的结构》,于书中详细阐述了对数计算和造对表的方法。
纳皮尔对数字计算特别有研究,他的兴趣在于球面三角学的运算,而球面三角学乃因应天文学的活动而兴起的。他重新建立了用于解球面直角三角形的10个公式的巧妙记法——圆的部分法则("纳皮尔圆部法则")和解球面非直角三角形的两个公式——"纳皮尔比拟式",以及做乘除法用的"纳皮尔算筹"。此外,他还发明了纳皮尔尺,这种尺子可以机械地进行数的乘除运算和求数的平方根。
Ⅵ 发明对数的是谁
1614年,居住在爱丁堡的一位苏格兰贵族公布了他的一项重要发明的详情,这个消息很快传开了。
第二年,经过一些通信联系后,一位数学教授乘坐马车从伦敦出发,前往爱丁堡,去会见这位他无比崇敬的天才的苏格兰人。
这位数学教授在旅途日记中写道:这个苏格兰人的前额一定很高,因为他头脑发达,否则难以做出如此惊人的发明。
由于意外的事故,教授在路上延误了时间,正在爱丁堡焦急等待的苏格兰贵族终于失望了,他向一位朋友抱怨道:“教授不会来了。”
就在这时,教授出现在他的面前,他们在沉默中相互凝视了达一刻钟之久。
后来,教授说:“阁下,我经历了长途跋涉专程来看望你,就是想要知道你是怎样富有聪明才智的头脑,才使得你首先想出对于天文学的这一极好的帮助。阁下,你发现了它,现在看来很容易的,但是我很奇怪,在此之前为什么没有人能够发现它呢?”
这位教授作为贵宾在贵族的城堡里滞留了一个月之久。
这位苏格兰贵族就是梅尔契斯顿堡的耐普尔,去访问他的数学家就是伦敦格雷舍姆学院的几何学教授H布里格斯(Briggs,1561~1631),那项重要的发明就是节省大量人力的计算方法之一——对数,它无疑是数学史上的一个里程碑。
数学史上的四大发明包括印度—阿拉伯记号、十进制小数、对数和计算机,其中的对数是17世纪由耐普尔发明的。
耐普尔以其天才的四个成果被载入数学史,它们是:1.对数的发明;2.重新建立用于解球面直角三角形的十个公式的巧妙记忆法,称为圆的部分法则;3.用于解球面非直角三角形的四个三角公式中的至少两个公式;4.所谓耐普尔尺的发明,它用于机械地进行数的乘除法运算和求数的平方根。
其中对数的发明被整个欧洲积极采用;特别是天文学界,简直为这项发明而沸腾起来了。
拉普拉斯认为:“对数的发现以其节省劳力而延长了天文学家的寿命。”可以说对数的发现使现代化提前了至少200年。
Ⅶ 谁发明了对数log的符号
数学史册上的对数发明者是两个人:英国的约翰·耐普尔和瑞士的乔伯斯特·布尔基
Ⅷ 数学里的方程是谁发明的
大约2.71828 这里的e是一个数的代表符号,而我们要说的,便是e的故事。这倒叫人有点好奇了,要能说成一本书,这个数应该大有来头才是,至少应该很有名吧?但是搜索枯肠,大部分人能想到的重要数字,除了众人皆知的0及1外,大概就只有和圆有关的π了,了不起再加上虚数单位的i=√-1。这个e究竟是何方神圣呢? 在高中数学里,大家都学到过对数(logarithm)的观念,也用过对数表。教科书里的对数表,是以10为底的,叫做常用对数(common logarithm)。课本里还简略提到,有一种以无理数e=2.71828……为底数的对数,称为自然对数(natural logarithm),这个e,正是我们故事的主角。不知这样子说,是否引起你更大的疑惑呢?在十进位制系统里,用这样奇怪的数为底,难道会比以10为底更「自然」吗?更令人好奇的是,长得这麼奇怪的数,会有什麼故事可说呢? 这就要从古早时候说起了。至少在微积分发明之前半个世纪,就有人提到这个数,所以虽然它在微积分里常常出现,却不是随著微积分诞生的。那麼是在怎样的状况下导致它出现的呢?一个很可能的解释是,这个数和计算利息有关。 我们都知道复利计息是怎麼回事,就是利息也可以并进本金再生利息。但是本利和的多寡,要看计息周期而定,以一年来说,可以一年只计息一次,也可以每半年计息一次,或者一季一次,一月一次,甚至一天一次;当然计息周期愈短,本利和就会愈高。有人因此而好奇,如果计息周期无限制地缩短,比如说每分钟计息一次,甚至每秒,或者每一瞬间(理论上来说),会发生什麼状况?本利和会无限制地加大吗?答案是不会,它的值会稳定下来,趋近於一极限值,而e这个数就现身在该极限值当中(当然那时候还没给这个数取名字叫e)。所以用现在的数学语言来说,e可以定义成一个极限值,但是在那时候,根本还没有极限的观念,因此e的值应该是观察出来的,而不是用严谨的证明得到的。 包罗万象的e 读者恐怕已经在想,光是计算利息,应该不至於能讲一整本书吧?当然不,利息只是极小的一部分。令人惊讶的是,这个与计算复利关系密切的数,居然和数学领域不同分支中的许多问题都有关联。在讨论e的源起时,除了复利计算以外,事实上还有许多其他的可能。问题虽然都不一样,答案却都殊途同归地指向e这个数。比如其中一个有名的问题,就是求双曲线y=1/x底下的面积。双曲线和计算复利会有什麼关系,不管横看、竖看、坐著想、躺著想,都想不出一个所以然对不对?可是这个面积算出来,却和e有很密切的关联。我才举了一个例子而已,这本书里提到得更多。 如果整本书光是在讲数学,还说成是说故事,就未免太不好意思了。事实上是,作者在探讨数学的同时,穿插了许多有趣的相关故事。比如说你知道第一个对数表是谁发明的吗?是纳皮尔(John Napier)。没有听说过?这很正常,我也是读到这本书才认识他的。重要的是要下一个问题。你知道纳皮尔花了多少时间来建构整个对数表吗?请注意这是发生在十六世纪末、十七世纪初的事情,别说电脑和计算机了,根本是什麼计算工具也没有,所有的计算,只能利用纸笔一项一项慢慢地算,而又还不能利用对数来化乘除为加减,好简化计算。因此纳皮尔整整花了二十年的时间建立他的对数表,简直是匪夷所思吧!试著想像一下二十年之间,每天都在重复做同类型的繁琐计算,这种乏味的日子绝不是一般人能忍受的。但纳皮尔熬过来了,而他的辛苦也得到了报偿——对数受到了热切的欢迎,许多欧洲甚至中国的科学家都迅速采用,连纳皮尔也得到了来自世界各地的赞誉。最早使用对数的人当中,包括了大名鼎鼎的天文学家刻卜勒,他利用对数,简化了行星轨道的繁复计算。 在《毛起来说e》中,还有许多我们在一般数学课本里读不到的有趣事实。比如第一本微积分教科书是谁写的呢?(假如你曾受微积分课程之苦,也会想知道谁是「始作俑者」吧?」)是罗必达先生。对啦,就是罗必达法则(L'Hospital's Rule)的那位罗必达。但是罗必达法则反倒是约翰.伯努利先发现的。不过这无关乎剽窃的问题,他们之间是有协议的。 说到伯努利可就有故事说了,这个家族实在不得了,别的家族出一位天才就可以偷笑了,而他们家族的天才是用「量产」形容。伯努利们前前后后在数学领域中活跃了一百年,他们的诸多成就(不仅止於数学领域),就算随便列一列,也有一本书这麼厚。不过这个家族另外擅长的一件事就不太敢恭维了,那就是吵架。自家人吵不够,也跟外面的人吵(可说是「表里如一」)。连爸爸与儿子合得一个大奖,爸爸还非常不满意,觉得应该由自己独得,居然气得把儿子赶出家门;和现代的许多「孝子」们比起来,这位爸爸真该感到惭愧。 e的「影响力」其实还不限於数学领域。大自然中太阳花的种子排列、鹦鹉螺壳上的花纹都呈现螺线的形状,而螺线的方程式,是要用e来定义的。建构音阶也要用到e,而如果把一条链子两端固定,松松垂下,它呈现的形状若用数学式子表示的话,也需要用到e。这些与计算利率或者双曲线面积八竿子打不著的问题,居然统统和e有关,岂不奇妙? 数学其实没那麼难! 我们每个人的成长过程中都读过不少数学,但是在很多人心目中,数学似乎是门无趣甚至可怕的科目。尤其到了大学的微积分,到处都是定义、定理、公式,令人望之生畏。我们会害怕一个学科的原因之一,是有距离感,那些微积分里的东西,好像不知是从哪儿冒出来的,对它毫无感觉,也觉得和我毫无关系。如果我们知道微积分是怎麼演变、由谁发明的,而发明之时还发生了些什麼事(微积分是谁发明的这件事,争论了许多年,对数学发展产生重大的影响),发明者又是什麼样的人等等,这种距离感就应该会减少甚至消失,微积分就不再是「陌生人」了。
Ⅸ 谁发明了对数log的符号
对数发明者是两个人:英国的约翰·耐普尔、瑞士的乔伯斯特·布尔基。
Ⅹ 是谁发明拉对数呢
纳皮尔
纳皮尔(John Napier ,1550~1617)曾译纳白尔。1550年生于苏格兰爱丁堡附近,1617年4月4日卒于爱丁堡.他是一位男爵,早年从事神学工作,但他对数学也有着浓厚的兴趣.他以欧几里得的方式证明了罗马教皇是反基督者、世界的末日就在1786年.他自认为《圣约翰启示录中的一个平凡发现》一书是他最重要的贡献,继这项神学工作之后,他于1594年开始进行改革数值计算实用方法的工作.他躲在南苏格兰爱丁堡附近的默奇斯通城堡中从事这一工作达20年之久.对数的发现,才是他对人类真正不朽的贡献.现在“纳皮尔对数”已为每个中学生所知.
纳皮尔的对数表最初是在他的著作《论述对数的奇迹》(Mirifici Logarithmorum Canonis Descriptio,1614)一书中出现的,他在此书中仅对于如何在计算中使用这些数表作了介绍,至于计算这些数表本身所用的方法,以及它们所依据的推理的简单说明,则总结在他的另一著述《作出对数的奇迹》(Mirifici Logarithmorum Canonis Constructic, 1619)一书中,可惜这一著作直到他死后方才出版.
使用对数可以把复杂的乘法和除法转化为比较简单的加法和减法,这些优点十分明显.开普勒发现行星运动的第三定律,曾得益于纳皮尔的对数表,运用对数使庞大的计算大为简化.
值得令人注意的是,在那个时代分数幂和指数表示法都还没有引入,而且也没有普遍采用小数点命数制,由于纳皮尔系统地使用小数点,这才大大地促进了17世纪的人们普遍采用小数点表示法.
现在,我们认为(以a为底的)数x的对数logax是这样一个数y,它使得a的y次幂ay等于x.我们也把对数看成是一个函数,并且看成是指数函数的反函数,然而,当时对一般的函数概念尚未建立,纳皮尔的计算是根据具体对应关系进行操作的.
几何学教授布里格斯(Briggs, 1561~1631)曾专程访问纳皮尔,建议取10作为底数,约定1的对数为零.布里格斯对以后的对数传播作了贡献.他于1624年发表的著作中给出了三万个数的常用对数表,精确到小数14位