1. 几何学是谁创立的
几何之父——欧几里德
我们现在学习的几何学,是由古希腊数学家欧几里德(公无前330—前275)创立的。他在公元前300年编写的《几何原本》,2000多年来都被看作学习几何的标准课本,所以称欧几里德为几何之父。
欧几里德生于雅典,接受了希腊古典数学及各种科学文化,30岁就成了有名的学者。应当时埃及国王的邀请,他客居亚历山大城,一边教学,一边从事研究。
古希腊的数学研究有着十分悠久的历史,曾经出过一些几何学著作,但都是讨论某一方面的问题,内容不够系统。欧几里德汇集了前人的成果,采用前所未有的独特编写方式,先提出定义、公理、公设,然后由简到繁地证明了一系列定理,讨论了平面图形和立体图形,还讨论了整数、分数、比例等等,终于完成了《几何原本》这部巨著。
《原本》问世后,它的手抄本流传了1800多年。1482年印刷发行以后,重版了大约一千版次,还被译为世界各主要语种。13世纪时曾传入中国,不久就失传了,1607年重新翻译了前六卷,1857年又翻译了后九卷。
欧几里德善于用简单的方法解决复杂的问题。他在人的身影与高正好相等的时刻,测量了金字塔影的长度,解决了当时无人能解的金字塔高度的大难题。他说:“此时塔影的长度就是金字塔的高度。”
欧几里德是位温良敦厚的教育家。欧几里得也是一位治学严谨的学者,他反对在做学问时投机取巧和追求名利,反对投机取巧、急功近利的作风。尽管欧几里德简化了他的几何学,国王(托勒密王)还是不理解,希望找一条学习几何的捷径。欧几里德说:“在几何学里,大家只能走一条路,没有专为国王铺设的大道。”这句话成为千古传诵的学习箴言。一次,他的一个学生问他,学会几何学有什么好处?他幽默地对仆人说:“给他三个钱币,因为他想从学习中获取实利。”
欧氏还有《已知数》《图形的分割》等著作。
2. 几何学是谁发明的
在我国古代,这门数学分科并不叫“几何”,而是叫作“形学”。“几何”二字,在中文里原先也不是一个数学专有名词,而是个虚词,意思是“多少”。比如三国时曹操那首著名的《龟虽寿》诗,有这么两句:“对酒当歌,人生几何?”这里的“几何”就是多少的意思。那么,是谁首先把“几何”一词作为数学的专业名词来使用的,用它来称呼这门数学分科的呢?这是明末杰出的科学家徐光启。 ==简史==
几何学有悠久的历史。最古老的[[欧氏几何]]基于一组公设和定义,人们在公设的基础上运用基本的逻辑推理构做出一系列的命题。可以说,《[[几何原本]]》是公理化系统的第一个范例,对西方数学思想的发展影响深远。
一千年后,[[笛卡儿]]在《[[方法论]]》的附录《几何》中,将[[坐标]]引入几何,带来革命性进步。从此几何问题能以[[代数]]的形式来表达。实际上,几何问题的代数化在[[中国数学史]]上是显著的方法。笛卡儿的创造,是否有东方数学的影响在里面,由于东西方数学交流史研究的欠缺,尚不得而知。
欧几里得几何学的第五公设,由于并不自明,引起了历代数学家的关注。最终,由罗巴切夫斯基和黎曼建立起两种非欧几何。
几何学的现代化则归功于[[克莱因]]、[[希尔伯特]]等人。克莱因在普吕克的影响下,应用群论的观点将几何变换视为特定不变量约束下的变换群。而希尔比特为几何奠定了真正的科学的公理化基础。应该指出几何学的公理化,影响是极其深远的,它对整个数学的严密化具有极其重要的先导作用。它对数理逻辑学家的启发也是相当深刻的。
3. 创造几何图形的温州数学家是谁
自20世纪20年代至今的大半个世纪中,在中国江南水乡的温州,涌现了一大批卓有成就的数学家。温籍数学家群体在现代中国的数学研究,数学教育,以及数学活动的组织和传播方面都作出了重大贡献,产生了广泛的社会影响。以至作为这些数学家家乡的温州,被人们美称为“数学家之乡”。2003年10月,国际数学大师陈省身教授访问温州时,就曾为此题写了“数学家之乡”5个大字(见右)[1]。下面,就10位温籍数学家院士的主要成就,及其在现代中国数学界的影响作一概要介绍。
姜立夫
(1890—1978,中央研究院院士),浙江平阳(现温州苍南县)人。他1910年以庚子赔款赴美国入加利福尼亚大学伯克利分校学习数学,1915年获学士学位,1919年获美国哈佛大学哲学博士学位,1934年到德国汉堡大学进修,1935—1936年又转德国哥廷根大学作访问研究。先后担任南开大学,厦门大学,西南联合大学,岭南大学和中山大学数学教授,曾任“新中国数学会”会长(1940),中央研究院数学研究所所长(1947),1948年当选为中央研究院院士[2]。他专长用代数和分析方法来处理几何问题,特别在“圆素几何与矩阵理论方面”有精深研究。在数学教育方面,他1920年回国一人创办了南开大学算学系并任第一任系主任,培养了如刘晋年,陈省身,江泽涵,申又枨,吴大任和廖山涛等一批国内外著名的数学家[3]。培育高质量数学人才,是姜立夫的突出成就之一。在科研和教学之外,他还兼顾中国数学队伍的组织工作,如领导“新中国数学会”,筹建中央研究院数学研究所,积极联系推荐青年数学学者出国深造等。此外,他还担任数学名词审查委员会主席(1923),为中、英、德、日对应的数学名词的审定,出版《算学名词汇编》(1938)作出贡献。关于姜立夫在现代中国数学界的地位和影响,国际数学大师陈省身教授说:“在许多年的时间里,姜先生是中国数学界最主要的领袖①。苏步青院士评说:“他对中国现代数学事业功劳重大,影响至深,没有他,中国数学面貌将会是另一个样子”。[3]
①陈省身.在姜立夫教授诞辰100周年纪念会上的讲话,南开校友通讯,第一期(1990)。
苏步青
(1902—2003,中央研究院院士,中国科学院院士),浙江平阳(现温州平阳县)人。1920年进日本东京高等工业学校电机系学习,1923年入东北帝国大学数学系深造,1927年直接升入该校当研究生,1931年获理学博士学位。他先后担任浙江大学(1931)和复旦大学(1952)数学教授,创办了复旦大学数学研究所并任所长多年,曾任复旦大学校长(1980)和名誉校长(1983)。并且,是中国有史以来第一份数学杂志《中国数学会学报》的总编辑(1936),创办了国际性数学杂志《数学年刊》任第一任主编(1980),先后当选为中央研究院院士(1948)和中国科学院院士(1955,当时称学部委员,1994年改为院士)[2]。苏步青在微分几何和计算几何领域成就卓著,特别是专长仿射微分几何,射影微分几何和一般空间微分几何。他创立的中国微分几何学派,在国内外均具广泛影响。自1927年以来,他发表学术论文160余篇,出版专著和教材10多部。苏步青是一位杰出的数学教育家,1931年从日本回国后,担任了浙江大学数学系主任。除了和陈建功教授一起开设了多门近代数学的基础课程以外,还在中国首创开设数学讨论班,先后培养了张素诚,熊全治,方德植,白正国,杨忠道,谷超豪和胡和生等一批卓有成就的数学家。苏步青热心数学学术交流和普及工作,著有《谈谈如何学习数学》等科普册子。自1952年以后长期担任上海市数学会理事长,并任中国数学会副理事,1983年选为名誉理事长,多次组织上海和全国性的数学竞赛活动。他还是著名的社会活动家,曾任中国民主同盟中央参议委员会主任和第7届全国政协副主席。对于苏步青的成就和影响,1934年德国著名数学家布拉希克(W.Blaschke)就曾评价认为:“苏步青是东方第一个几何学家!”,1976年美国数学代表团在访问中国后总结指出:浙江大学曾建立了“以苏步青为首的中国微分几何学派”。1987年,在庆贺他85岁寿辰和执教60周年的科学报告会上,他的学生谷超豪教授说:“苏老是国际上公认的几何学权威,他对仿射微分几何和射影微分几何的高水平工作,至今在国际数学界占有无可争辩的地位。苏老对我国数学学科的建设建立了功勋,他在浙大、复旦为创建国内外有影响的学科,呕心沥血。他为我国文教事业的改革也作出了不可磨灭的贡献”。[3]“他是我国现代数学的奠基人之一”。[4]
柯召
(1910—2003,中国科学院院士),浙江温岭(1937,1954-1957,1958-1962温州专区温岭县,现台州温岭县)人。1926年考上厦门大学预科,1928年升入该校数学系,1931年转学清华大学算学系,1933年毕业,1935年以庚子赔款公费留学英国曼彻斯特大学,1937年获博士学位。先后任南开大学数学系助教,四川大学和重庆大学数学教授,重庆大学数学研究所所长(1949—1950),四川大学数学研究所所长(1953),校长。曾任《四川大学学报》主编和《数学年刊》副主编。1955年当选为中国科学院院士[2]。柯召是数论专家,在数论,组合论和代数等领域有杰出成就。1937年以来在国内外发表学术论文上百篇,出版专著3部。1940年担任四川大学数学系主任后,重视教师科研工作和学生能力的培养,发起创办有老师和同学共同参加的数学专题研究课。他提倡开展应用数学研究,推动了四川大学的泛函分析与控制论,偏微分方程和计算数学学科建设的快速发展。并且,亲自与中青年教师一道参加数学的应用与普及工作。柯召的贡献和影响不限于四川,他为中国的数学发展作过大量工作,1983年被推举为中国数学会名誉理事长。1990年,美国数学家斯托勒(J.A.Stoane)对柯召成果的评价是:“很惊异中国人那么早就己作出了巨大的成就”,还说“关于二次型的大作,棒极了!”。在四川大学的校史上则记载,柯召发起的专题研究课“造就了一批在数学上锐进不已的人才”[5]
徐贤修
(1912—2002,中央研究院院士(台湾)),浙江永嘉(现温州永嘉县)人。1935年毕业于清华大学数学系,1946年赴美国就读布朗大学,1948年获应用数学博士学位,1949年在普林斯顿文学研究院一年,暑期在麻省理工学院攻读博士后,中央研究院院士(台湾)。他先后受聘任美国普渡大学工程科学教授,伊利诺理工学院应用数学讲座教授,普渡大学航空系教授,以及台湾大学,清华大学(新竹)和交通大学(新竹)兼任教授。徐贤修是一位应用型学者,他1973一1980年主管台湾的“国家科学委员会”,1979—1989年任“工业研究院”董事长,建议设立了台湾新竹科学工业园,为台湾的现代科技和工业发展作出巨大贡献。同时,他1961年为新竹清华大学创办数学系,1962年起每年举办暑期数学研讨会,1970—1975年任新竹清华大学校长。他积极推动台湾数学教育,使大学的水平和规模取得迅速发展。鉴于徐贤修1955—1963年以及1968—1978年两度为普渡大学作出突出贡献,1980年普渡大学颁授他杰出贡献奖,1993年又授予他名誉博士学位。同时,由于他对台湾的科技和教育所作出的特殊贡献,1989年台湾当局还颁给他景星奖章。[6]
项黼宸
(1916—1990,中央研究院院士(台湾)),浙江瑞安(现温州瑞安市)人。1944年毕业于厦门大学数学系,1944—1946年任浙江大学数学研究所助理研究员,后赴美国加利福尼亚大学伯克利分校访问研究,1970年当选为中央研究院院士(台湾)。1947年起任台湾大学数学系讲师,副教授,教授,并曾任系主任以及台湾中央研究院数学研究所所长。项黼宸专长分析数学,成果累累,著述丰富。特别是,在富里埃级数和泛函分析的研究方面取得突出成就。他在数学教学方面对学生谆谆善诱,诲人不倦,成绩卓著。曾先后在美国纽约州立大学布法罗分校,日本仙台东北大学,马来西亚大学,新加坡南洋大学和荷兰的荷兰大学任教数学,还曾兼任台湾的东吴大学和淡江大学数学教授,可谓桃李满天下。为表彰他的杰出成就,1958—1968年荣获台湾第一届中山奖和台湾当局教育部的第一届著作奖。②
②蔡韵箫 项黼宸教授 台湾大学数学系资料,No.272(2002).
杨忠道
(1923— ,中央研究院院士(台湾)),浙江平阳(现温州苍南县)人。1946年毕业于浙江大学数学系,1948年任中央研究院数学研究所助理员,1949年进美国杜伦大学学习,1954年获数学博士学位,同年去伊利诺大学攻读博士后,1954年在美国普林斯顿高级研究院作访问研究。长期担任美国宾夕法尼亚大学数学教授,曾兼任数学系研究生部主任4年,数学系主任5年,1968年当选为中央研究院院士(台湾)。杨忠道专长代数拓扑和拓扑变换群。主要成就有建立了拓扑学中的“杨忠道定理”,证明了代松(F.J.Dyson)猜测和最后解决了布拉希克(W.Blaschke)猜测等,还曾与众多国外著名数学家合作研究取得了许多重要成果。先后发表学术论文上百篇和出版拓扑学方面的著作多部。他在宾夕法尼亚大学任教35年,培养了一批数学人才,如担任马萨诸塞大学数学系主任多年的拉利·马文(larryMawn)即出自他的门下。[7]自1989年以来,他多次回国讲学,为中国培养现代数学人才作出贡献。
谷超豪
(1926— ,中国科学院院士),浙江温州(现温州鹿城区)人。1948年毕业于浙江大学数学系,1957年赴前苏联莫斯科大学数学力学系进修,1959年获物理一数学科学博士学位,1980年当选为中国科学院院士[3]。先后任教浙江大学数学系(1948)和复旦大学数学系(1952),曾任复旦大学数学研究所所长,研究生院院长和副校长,中国科技大学校长(1988)和温州大学校长(1999)。他的研究领域遍及微分几何,偏微分方程和数学物理。在无限连续变换拟群,双曲型方程组和混合型偏微分方程,以及规范场的数学结构方面取得国际数学界瞩目的成就。自1951年以来,发表论文一百余篇,专著多部。为表彰他在科学研究上的突出成就,2003年上海市授予他第一届科技功臣称号。他带领的偏微分方程课题组现已发展成为在国内外享有声誉的研究室,同时培养了新一代在国内外有影响的数学家。曾任中国数学会副理事长和上海数学会理事长。他先后应邀访问美国,墨西哥,西德,法国,意大利,日本,英国,苏联,保加利亚等国进行学术交流,并在国内许多大学和台湾讲学。他的博士论文《论变换拟群的某些通性及其在微分几何中的应用》,评述人认为是“继近代最有名的微分几何大师嘉当(E.Cartan)之后,在这一领域里第一个做出了有实质性发展和推进的”工作。著名美国数学家弗里特里克斯(Friedrichs)评价:“谷超豪的工作实现了他想把正对称方程进一步用于混合型方程的夙愿”。谷超豪的卓越成就饮誉国内外。
项武忠
(1935— ,中央研究院院士(台湾)),浙江乐清(现温州乐清市)人。1953年入台湾大学数学系学习,1957年获学士学位,1962年获美国普林斯顿大学博士学位。1980年当选为中央研究院院士(台湾),1989年当选美国国家艺术与科学学院院士。先后任美国耶鲁大学和普林斯顿大学数学教授,以及加利福尼亚大学伯克利分校,斯坦福大学,荷兰阿姆斯特丹大学和德国波恩大学访问教授。1982—1985年曾任普林斯顿大学数学系主任③。项武忠是著名拓扑学家,在低维拓扑学方面多有建树,成就卓著。由于他在拓扑学研究方面不断取得突出成果,1970年和1983年曾两次被邀请在法国尼斯和波兰华沙举行的国际数学家大会上作45分钟和1小时的邀请报告。可见,他的成就享誉国际数学界。他还是美国出版的国际性期刊《数学年刊》等多份学术杂志的编辑委员。
③美国普林斯顿大学资料(2004)。
姜伯驹
(1937— ,中国科学院院士),浙江平阳(现温州苍南县,出生于天津)人,著名数学家姜立夫之子。1953年进北京大学数学力学系学习,1978—1979年为美国普林斯顿高等研究所访问学者,1980一1981年在加利福尼亚大学伯克利分校和洛杉矶分校讲学,1980年当选为中国科学院士,1985年当选为第三世界科学院院士。他自1957年起一直任职北京大学,1985—1992年兼任南开数学研究所副所长,1995—1998年任北京大学数学科学学院第一任院长,1989—1997年担任北京数学会理事长[注6]。姜伯驹主攻拓扑学,在不动点理论领域做出杰出贡献。由于他的一系列卓越成就,曾获得全国科学大会奖,多次获国家自然科学奖等奖项。特别是,还曾获第一届陈省身数学奖(1988)和何梁何利基金科学技术进步奖(1996)。姜伯驹以发展中国的数学事业为己任,总是把教学和指导研究生工作放在第一位,讲课精益求精,多年来主持数学教改小组积极参与数学教育改革。他热心数学普及工作,积极参与中学生数学竞赛和数学讲座,还出版多册科普数学著作,在青少年中产生很大影响。
李邦河
(1942— ,中国科学院院士),浙江乐清(现温州乐清市)人。1965年毕业于中国科学技术大学应用数学系,同年到中国科学院数学研究所工作,曾担任该所基础数学研究室主任,现任中国科学院数学与系统科学研究院研究员。2003年,他当选为中国科学院院士。李邦河的研究领域相当广泛,在微分拓扑,低维拓扑,偏微分方程,广义函数,非标准分析,以及代数几何和代数机械化诸方向均取得重要成果或重大突破。先后发表研究论文90余篇。例如,在偏微分方程解的定性研究中,他否定了俄国科学院院士奥列尼克关于间断线条数可数的论断,解答了美国科学院院士拉克斯和格利姆关于通有性和分片解析性的三个猜想。前苏联科学院通讯院士伊万诺夫对他在非标准分析用于广义函数方面的工作曾评说:“对广义函数的乘法,以前只在很少的情况下成功,李邦河运用非标准分析得到了一系列结果”。他关于微分拓扑的工作曾获第二届陈省身数学奖(1989),他的许多研究结果被国内外学者所引用,在国际上产生了较大影响。在20世纪,温州曾孕育了众多著名数学家。为了发扬温州重视数学基础教育传统,在21世纪培育出更多数学英才,温州市于2002年创立了旨在培养青少年新苗的“数学家摇篮工程。”相信在这一数学史上不多见的创新举措下,温州在造就数学人才方面将再创辉煌,为在21世纪把中国建为数学大国做出贡献!
4. 中国古代数学家简介
祖冲之(429年-500年),字文远,范阳郡遒县(今河北省涞水县)人,南北朝时期杰出的数学家、天文学家。
出身范阳祖氏。一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上;
首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。
人物评价:
祖冲之父子的数学研究成就汇集于他的数学专著《缀术》中。这本书极其高深,以至于“学官莫能究其深奥,故废而不理”。在唐朝官学中,《缀术》也被列为必读的十部算经之一,且需学习4年,年限为各经之首。
后来,《缀术》传至朝鲜,但10世纪以后,《缀术》渐渐在各国失传了。尽管今天已无从知道《缀术》的具体内容,但从该书在唐代官学中的学习年限及史书中相关的零星记载,我们仍可以想见其学术价值。
5. 中国古代著名的数学家有谁
1、刘徽(约225年—约295年),汉族,山东滨州邹平市 人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。
2、赵爽,又名婴,字君卿,中国数学家。东汉末至三国时代吴国人。他是我国历史上著名的数学家与天文学家。生平不详,约182---250年。
据载,他研究过张衡的天文学著作《灵宪》和刘洪的《乾象历》,也提到过“算术”。他的主要贡献是约在222年深入研究了《周髀》,该书是我国最古老的天文学著作,唐初改名为《周髀算经》该书写了序言,并作了详细注释。
3、祖冲之(429年—500年),字文远,出生于建康(今南京),祖籍范阳郡遒县(今河北涞水县),中国南北朝时期杰出的数学家、天文学家。
祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。
4、祖暅(456年—536年),一作祖暅之,字景烁,范阳遒县(今河北涞水)人。中国南北朝时期数学家、天文学家,祖冲之之子。同父亲祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式,并据此提出了著名的“祖暅原理”。
5、张丘建,清河(今邢台市清河县)人,我国著名的大数学家。他从小聪明好学,酷爱算术。一生从事数学研究,造诣很深。“百鸡问题”是中古时期,关于不定方程正整数解的典型问题,邱建对此有精湛和独到的见解。
著有《张邱建算经》3卷。后世学者北周甄鸾、唐李淳风相继为该书作了注释。刘孝孙为算经撰了细草。算经的体例为问答式,条理精密,文词古雅,是中国古代数学史上的杰作,也是世界数学资料库中的一份遗产。
6. 中国古代伟大数学家及数学发明
中国古代数学,和天文学以及其他许多科学技术一样,也取得了极其辉煌的成就。可以毫不夸张地说,直到明代中叶以前,在数学的许多分支领域里,中国一直处于遥遥领先的地位。中国古代的许多数学家曾经写下了不少著名的数学著作。许多具有世界意义的成就正是因为有了这些古算书而得以流传下来。这些中国古代数学名著是了解古代数学成就的丰富宝库。
例如现在所知道的最早的数学著作《周髀算经》和《九章算术》,它们都是公元纪元前后的作品,到现在已有两千年左右的历史了。能够使两千年前的数学书籍流传到现在,这本身就是一项了不起的成就。
开始,人们是用抄写的方法进行学习并且把数学知识传给下一代的。直到北宋,随着印刷术的发展,开始出现印刷本的数学书籍,这恐怕是世界上印刷本数学著作的最早出现。现在收藏于北京图书馆、上海图书馆、北京大学图书馆的传世南宋本《周髀算经》、《九章算术》等五种数学书籍,更是值得珍重的宝贵文物。
从汉唐时期到宋元时期,历代都有著名算书出现:或是用中国传统的方法给已有的算书作注解,在注解过程中提出自己新的算法;或是另写新书,创新说,立新意。在这些流传下来的古算书中凝聚着历代数学家的劳动成果,它们是历代数学家共同留下来的宝贵遗产。
《算经十书》是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书。十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》。
这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪)。《周髀算经》不仅是数学著作,更确切地说,它是讲述当时的一派天文学学说——“盖天说”的天文著作。就其中的数学内容来说,书中记载了用勾股定理来进行的天文计算,还有比较复杂的分数计算。当然不能说这两项算法都是到公元前一世纪才为人们所掌握,它仅仅说明在现在已经知道的资料中,《周髀算经》是比较早的记载。
对古代数学的各个方面全面完整地进行叙述的是《九章算术》,它是十部算书中最重要的一部。它对以后中国古代数学发展所产生的影响,正像古希腊欧几里得(约前330—前275)《几何原本》对西方数学所产生的影响一样,是非常深刻的。在中国,它在一千几百年间被直接用作数学教育的教科书。它还影响到国外,朝鲜和日本也都曾拿它当作教科书。
《九章算术》,也不知道确实的作者是谁,只知道西汉早期的著名数学家张苍(前201—前152)、耿寿昌等人都曾经对它进行过增订删补。《汉书·艺文志》中没有《九章算术》的书名,但是有许商、杜忠二人所著的《算术》,因此有人推断其中或者也含有许、杜二人的工作。1984年,湖北江陵张家山西汉早期古墓出土《算数书》书简,推算成书当比《九章算术》早一个半世纪以上,内容和《九章算术》极相类似,有些算题和《九章算术》算题文句也基本相同,可见两书有某些继承关系。可以说《九章算术》是在长时期里经过多次修改逐渐形成的,虽然其中的某些算法可能早在西汉之前就已经有了。正如书名所反映的,全书共分九章,一共搜集了二百四十六个数学问题,连同每个问题的解法,分为九大类,每类算是一章。
从数学成就上看,首先应该提到的是:书中记载了当时世界上最先进的分数四则运算和比例算法。书中还记载有解决各种面积和体积问题的算法以及利用勾股定理进行测量的各种问题。《九章算术》中最重要的成就是在代数方面,书中记载了开平方和开立方的方法,并且在这基础上有了求解一般一元二次方程(首项系数不是负)的数值解法。还有整整一章是讲述联立一次方程解法的,这种解法实质上和现在中学里所讲的方法是一致的。这要比欧洲同类算法早出一千五百多年。在同一章中,还在世界数学史上第一次记载了负数概念和正负数的加减法运算法则。
《九章算术》不仅在中国数学史上占有重要地位,它的影响还远及国外。在欧洲中世纪,《九章算术》中的某些算法,例如分数和比例,就有可能先传入印度再经阿拉伯传入欧洲。再如“盈不足”(也可以算是一种一次内插法),在阿拉伯和欧洲早期的数学著作中,就被称作“中国算法”。现在,作为一部世界科学名著,《九章算术》已经被译成许多种文字出版。
《算经十书》中的第三部是《海岛算经》,它是三国时期刘徽(约225—约295)所作。这部书中讲述的都是利用标杆进行两次、三次、最复杂的是四次测量来解决各种测量数学的问题。这些测量数学,正是中国古代非常先进的地图学的数学基础。此外,刘徽对《九章算术》所作的注释工作也是很有名的。一般地说,可以把这些注释看成是《九章算术》中若干算法的数学证明。刘徽注中的“割圆术”开创了中国古代圆周率计算方面的重要方法(参见本书第98页),他还首次把极限概念应用于解决数学问题。
《算经十书》的其余几部书也记载有一些具有世界意义的成就。例如《孙子算经》中的“物不知数”问题(一次同余式解法,参见本书第106页),《张丘建算经》中的“百鸡问题”(不定方程问题)等等都比较著名。而《缉古算经》中的三次方程解法,特别是其中所讲述的用几何方法列三次方程的方法,也是很具特色的。
《缀术》是南北朝时期著名数学家祖冲之的著作。很可惜,这部书在唐宋之际公元十世纪前后失传了。宋人刊刻《算经十书》的时候就用当时找到的另一部算书《数术记遗》来充数。祖冲之的著名工作——关于圆周率的计算(精确到第六位小数),记载在《隋书·律历志》中(参见本书第101页)。
《算经十书》中用过的数学名词,如分子、分母、开平方、开立方、正、负、方程等等,都一直沿用到今天,有的已有近两千年的历史了。
中国古代数学,经过从汉到唐一千多年间的发展,已经形成了更加完备的体系。在这基础上,到了宋元时期(公元十世纪到十四世纪)又有了新的发展。宋元数学,从它的发展速度之快、数学著作出现之多和取得成就之高来看,都可以说是中国古代数学史上最光辉的一页。
特别是公元十三世纪下半叶,在短短几十年的时间里,出现了秦九韶(1202—1261)、李冶(1192—1279)、杨辉、朱世杰四位著名的数学家。所谓宋元算书就指的是一直流传到现在的这四大家的数学著作,包括:
秦九韶著的《数书九章》(公元1247年);
李冶的《测圆海镜》(公元1248年)和《益古演段》(公元1259年);
杨辉的《详解九章算法》(公元1261年)、《日用算法》(公元1262年)、《杨辉算法》(公元1274—1275年),
朱世杰的《算学启蒙》(公元1299年)和《四元玉鉴》(公元1303年)。
《数书九章》主要讲述了两项重要成就:高次方程数值解法和一次同余式解法(分别参见本书第119页和第110页)。书中有的问题要求解十次方程,有的问题答案竟有一百八十条之多。《测圆海镜》和《益古演段》讲述了宋元数学的另一项成就:天元术(用代数方法列方程,参见本书第121页);也还讲述了直角三角形和内接圆所造成的各线段间的关系,这是中国古代数学中别具一格的几何学。杨辉的著作讲述了宋元数学的另一个重要侧面:实用数学和各种简捷算法。这是应当时社会经济发展而兴起的一个新的方向,并且为珠算盘的产生创造了条件。朱世杰的《算学启蒙》不愧是当时的一部启蒙教科书,由浅入深,循序渐进,直到当时数学比较高深的内容。《四元玉鉴》记载了宋元数学的另两项成就:四元术(求解高次方程组问题,参见本书第123页)和高阶等差级数、高次招差法(参见本书第131页)。
宋元算书中的这些成就,和西方同类成果相比:高次方程数值解法比霍纳(1786—1837)方法早出五百多年,四元术要比贝佐(1730—1783)①早出四百多年,高次招差法比牛顿(1642—1727)等人早出近四百年。
宋元算书中所记载的辉煌成就再次证明:直到明代中叶之前,中国科学技术的许多方面,是处在遥遥领先地位的。
宋元以后,明清时期也有很多算书。例如明代就有著名的算书《算法统宗》。这是一部风行一时的讲珠算盘的书。入清之后,虽然也有不少算书,但是像《算经十书》、宋元算书所包含的那样重大的成就便不多见了。特别是在明末清初以后的许多算书中,有 不少是介绍西方数学的。这反映了在西方资本主义发展进入近代科学时期以后我国科学技术逐渐落后的情况,同时也反映了中国数学逐渐融合到世界数学发展总的潮流中去的一个过程。
中国数学发展的历史表明:中国数学曾经为世界数学的发展作出过卓越的贡献,只是在近代才逐渐落后了。我们深信,经过努力,中国数学一定能迎头赶上世界
7. 谁被称为第一位数学家及论证几何学鼻祖
刘徽是中国古代最伟大的数学家,在世界数学史上,也享有较高的声誉。他生于公元250年左右,生年履历不详。他出身清贫,一生未任官职,以数学研究为己任,刻苦探求真理,为我们的民族留下了无价之宝。
欧几里得(希腊文:Ευκλειδης ,公元前330年-公元前275年),古希腊数学家。他活跃于托勒密一世(公元前364年-公元前283年)时期的亚历山大里亚。被称为"几何之父",数学巨著《几何原本》的作者,亦是世界上最伟大的数学家之一。
8. 中国历史上第一个数学家是谁
引言:数千年的中国数学发展史,很多著名的数学家给我们留下了宝贵的数学财富,同时也使中国古代数学在世界数学史上占据不可忽视的地位。
商 高
商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。
在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”
商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。
由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫作“商高定理”。
关于勾股定理的发现,《周髀算经》上说:“故禹之所以治天下者,此数之所由生也。”“此数”指的是“勾三股四弦五”,这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。
刘徽
刘徽(生于公元250年左右),他的生活年代主要是在三国时期。其出生地大约为今山东淄博市淄川人。刘徽是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.
九章算术》约成书于东汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了“割圆术”,即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果.刘徽在割圆术中提出的“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”,这可视为中国古代极限观念的佳作.
《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目.
刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推理的方式来论证数学命题的人.
刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富.
张邱建
张邱建,北魏数学家,贝州清河人。他从小聪明好学,酷爱算术。一生从事数学研究,造诣很深。“百鸡问题”是中古时期,关于不定方程整数的典型问题,邱建对此有精湛和独到的见解。著有《张邱建算经》3卷。后世学者北周甄鸾、唐李淳风相继为该书作了注释。刘孝孙为算经撰了细草。算经的体例为问答式,条理精密,文词古雅,是中国古代数学史上的杰作,也是世界数学资料库中的一份遗产。
贾 宪
贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。
他的主要贡献是创造了“贾宪三角”和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。
秦九韶
秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术”(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。关于一次同余组解法问题,西方到18,19世纪才获得相同的定理;至于求高次方程的数值解法,英国数学家霍纳在1819年才发表与‘正负开方法’一样的霍纳法。秦九韶在多元一次方程组和几何测量方面也有创新。他是世界上最伟大数学家之一,《数书九章》标志着中国的古代数学达到了一个新的高峰。
李冶
李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》十二卷,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。最大的贡献是发现了列方程的方法中所起的作用,使地开方式与现代求解方程的方法一致。在欧洲,直到16世纪才出现类似的代数学方法。
朱世杰
朱世杰是元朝一位杰出的数学科学家。
朱世杰,字汉卿,号松庭,燕山(今北京)人氏。他长期从事数学研究和教育事业。他的主要著作有《算学启蒙》三卷和《四元玉鉴》三卷。
朱世杰在数学科学上,全面地继承了秦九韶、李冶、杨辉的数学成就,并给予创造性的发展,写出了《算学启蒙》、《四元玉鉴》等著名作品,把我国古代数学推向更高的境界,形成宋元时期中国数学的最高峰。
《算学启蒙》这部书从乘除运算起,一直讲到当时数学发展的最高成就“天元术”,全面介绍了当时数学所包含的各方面内容。它的体系完整,内容深入浅出,通俗易懂,是一部很著名的启蒙读物。这部著作后来流传到朝鲜、日本等国,出版过翻刻本和注释本,产生过一定的影响。
而《四元玉鉴》更是一部成就辉煌的数学名著。它受到近代数学史研究者的高度评价,认为是中国古代数学科学著作中最重要的、最有贡献的一部数学名著。
《四元玉鉴》成书于大德七年(1303),共三卷,24门,288问,介绍了朱世杰在多元高次方程组的解法——四元术,以及高阶等差级数的计算——垛积术、招差术等方面的研究和成果。
朱世杰和他的著作《四元玉鉴》享有巨大的国际声誉。近代日本、法国、美国、比利时以及亚、欧、美许多国家都有人向本国介绍《四元玉鉴》。在世界数学史上起到了不可估量的作用。
除了以上成就外,朱世杰还在他的著作中提出了许多值得注意的内容:
1.在中国数学史上,他第一次正式提出了正负数乘法的正确法则;
2.他对球体表面积的计算问题作了探讨,这是我国占代数学典籍中唯一的一次讨论。结论虽不正确,但创新精神是可贵的;
3.在《算学启蒙》中,他记载了完整的“九归除法”口诀,和现在流传的珠算归除口诀几乎完全一致。
朱世杰继承和发展了前人的数学成就,为推进我国古代数学科学的发展做出了不可磨灭的贡献。朱世杰不愧是我国乃至世界数学史上负有盛名的数学家。
由于朱世杰和其他同时代数学家的共同努力,使宋元时期的数学达到了光辉的高度,在很多方面都居于世界前列。
祖冲之和其子祖暅
祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。
祖冲之在数学上的杰出成就,是关于圆周率的计算.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值。祖冲之计算得出的密率,
外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把 π 叫做"祖率".
祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:“幂势既同,则积不容异。”意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".
他在以下三方面对我国古代数学有着巨大的推动::
一是圆周率的计算.他算得 3.1415926<π<3.1415927且取为密率。的取值范围及密率的计算都领先国外千余年.
二是球体积的计算.祖冲之与他的儿子祖恒一起找到了球体积的计算公式.这其中所用到的“祖恒原理”,“幂势既同则积不容异”,即等高处横截面积都相等的两个几何体的体积必相等.直到一千一百年后,意大利数学家卡瓦利里(B.Cavalieri)才提出与之有相仿意义的公理.
三是注解《九章算术》,并著《级术》.《缀术》在唐代做为数学教育的课本,以“学官莫能究其深奥”而著称,可惜这部珍贵的典籍早已失传.
祖冲之在数学上的这些成就,使得这个时期在数学的某些方面“中国人不仅赶上了希腊人”,甚至领先他们一千年.
杨 辉
杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。
他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。
宋元数学四大家之一的杨辉,他是世界上第一个排出丰富的纵横图和讨论其构成规律的数学家。杨辉可以说是世界上第一个给出了如此丰富的纵横图和讨论了构成规律的数学家。杨辉除此成就之外,还有一项重大贡献,就是“杨辉三角”。
杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决。他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。
他非常重视数学教育的普及和发展,在《算法通变本末》中,杨辉为初学者制订的"习算纲目"是中国数学教育史上的重要文献。
赵 爽
赵爽,又名婴,字君卿,东汉末至三国时代的吴国数学家。他在数学上的最大贡献是研究《周髀算经》中取得的成就。他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。
赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式
在《日高图注》中利用几何图形面积关系,给出了“重差术”的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。
黄宗宪
黄宗宪,字玉屏,号小谷,中国清代湖南新化人。他是丁取忠的学生,亦是以丁取忠为首的白芙堂数学学术团体的重要成员。在他多部著作中以《求一术通解》(1874)最为重要,由左潜参定。在该书中,黄宗宪对秦九韶的「求一术」作了进一步的阐述,他不仅解答了一次同余式组问题,还用「求一术」解决了二元一次不定方程问题。
徐光启
徐光启(1562.4.24—1633.11.8),字子先,号玄扈,上海人。他在介绍西方自然科学和发展我国农业、水利、天文、数学等方面都有相当大的贡献,是我国明末杰出的科学家。
徐光启在数学方面的重要贡献是翻译了欧几里得的《几何原本》前六卷。他的译文质量很高,许多数学上的专门名词和术语,如几何、点、线、面、平行线、钝角、锐角、三角形、四边形等等,都是由他首先使用,并沿用至今。另外,他还有《测量异同》和《勾股义》等数学著作。他把中西测量方法和数学方法进行了一些比较,并运用《几何原本》中的定理把我国古代一些证明方法严格化。还创造了一些新的证明系统,为我国后来的数学研究作出了很大的贡献。
9. 中国古代数学家成就及其贡献
早期中国数学和世界其它地方的数学有很大的不同,因此可以合理的认为是独立发展的。现存最古老的中国数学文献是《周髀算经》,成书年代有很多说法,从公元前 1200 年到公元前 100 年都有。中国现存最古老的几何学作品来自《墨经》,由墨子的弟子编撰。《墨经》涉及了很多物理科学的领域,也讲解了少量的几何定理。
《九章算术》为现存最古老的中国数学著作之一。该书完整的标题首次出现在公元 179 年,但在这之前也有文献提到过该书的部分。《九章算术》包括了 246 个应用题,包含了农业、商业、求塔的高度、工程学和测绘学。它还证明了勾股定理,以及高斯消元的公式。勾股定理即为西方的毕达哥拉斯定理,描述了直角三角形中三条边长度的关系。
三国时代数学家刘徽的割圆术是中国古代数学中一个重要的成就。刘徽是中国数学史上最早创造出一个从数学上计算圆周率到任意精确度的迭代程序。他自己通过分割圆为 192 边形,计算出圆周率在 3.14 与 3.142704 之间。后来刘徽发明一种快捷算法,可以只用 96 边形得到和 1536 边形同等的精确度,得到圆周率近似为 3.1416。因为刘徽割圆术简单而又严谨,富于程序性,可以继续分割下去,而求得更精确的圆周率。南北朝时期著名数学家祖冲之用刘徽割圆术计算 11 次,分割圆为 12288 边形,得圆周率 3.1415926,成为此后千年世界上最准确的圆周率。刘徽割圆术虽然不是世界最早,却是数学史上最严谨简洁的割圆术。比阿基米德割圆术更简洁,比托勒密 (Claudius Ptolemaeus) 割圆术更严谨。
中国数学的最高峰出现在 13 世纪宋朝,此时代数学得到了极大的发展。其中最重要的著作是朱世杰的《四元玉鉴》。书中记载了研究一元高次方程组的解的方法,后称为秦九韶算法,即后世欧洲的霍纳算法 (Horner's method)。前苏联数学史家尤什克维奇说 “这是中国传统数学最伟大成就之一”。
中国古代数学被世界所公认的最卓越发现是孙子定理,在全世界的代数学教科书中亦称为中国剩余定理 (Chinese remainder theorem)。中国南北朝时期 (公元5世纪) 的数学著作《孙子算经》卷下第二十六题,叫做 “物不知数” 问题,原文如下:
有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?
即:一个整数除以三余二,除以五余三,除以七余二,求这个整数。《孙子算经》中首次提到了这种一元线性同余方程组的问题,以及以上具体问题的解法。而这种同余问题直到 1801 年才被伟大的天才德国数学家高斯在其名著 《算术研究》中研究并用来计算复活节的日期。
10. 中国古代有哪些著名数学家
贾宪:《黄帝九章算经细草》
中国古典数学家在宋元时期达到了高峰,这一发展的序幕是“贾宪三角”(二项展开系数表)的发现及与之密切相关的高次开方法(“增乘开方法”)的创立。贾宪,北宋人,约于1050年左右完成《黄帝九章算经细草》,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因能传世。杨辉《详解九章算法》(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是著名的“贾宪三角”,或称“杨辉三角”。《详解九章算法》同时录有贾宪进行高次幂开方的“增乘开方法”。
贾宪三角在西方文献中称“帕斯卡三角”,1654年为法国数学家 B·帕斯卡重新发现。
秦九韶:《数书九章》
秦九韶(约1202~1261),字道吉,四川安岳人,先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。他早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书共18卷,81题,分九大类(大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易)。其最重要的数学成就──“大衍总数术”(一次同余组解法)与“正负开方术”(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。
李冶:《测圆海镜》──开元术
随着高次方程数值求解技术的发展,列方程的方法也相应产生,这就是所谓“开元术”。在传世的宋元数学著作中,首先系统阐述开元术的是李冶的《测圆海镜》。
李冶(1192~1279)原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回家。1248年撰成《测圆海镜》,其主要目的就是说明用开元术列方程的方法。“开元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某”,可以说是符号代数的尝试。李冶还有另一部数学著作《益古演段》(1259),也是讲解开元术的。
朱世杰:《四元玉鉴》
朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法)。