1. 几何画板是谁做出来的(创始人)
《几何画板》软件是由美国Key Curriculum Press公司制作并出版的优秀教育软件,1996年该公司授权人民教育出版社在中国发行该软件的中文版。正如其名“21世纪动态几何”,它能够动态地展现出几何对象的位置关系、运行变化规律,是数学与物理教师制作课件的“利剑”!
2. 求数学各种定理
欧拉公式
简单多面体的顶点数v、面数f及棱数e间有关系
v+f-e=2
这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。
认识欧拉
欧拉,瑞士数学家,13岁进巴塞尔大学读书,得到著名数学家贝努利的精心指导.欧拉是科学史上最多产的一位杰出的数学家,他从19岁开始发表论文,直到76岁,他那不倦的一生,共写下了886本书籍和论文,其中在世时发表了700多篇论文。彼得堡科学院为了整理他的著作,整整用了47年。
欧拉著作惊人的高产并不是偶然的。他那顽强的毅力和孜孜不倦的治学精神,可以使他在任何不良的环境中工作:他常常抱着孩子在膝盖上完成论文。即使在他双目失明后的17年间,也没有停止对数学的研究,口述了好几本书和400余篇的论文。当他写出了计算天王星轨道的计算要领后离开了人世。欧拉永远是我们可敬的老师。
欧拉研究论著几乎涉及到所有数学分支,对物理力学、天文学、弹道学、航海学、建筑学、音乐都有研究!有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。欧拉写的数学教材在当时一直被当作标准教程。19世纪伟大的数学家高斯(gauss,1777-1855)曾说过“研究欧拉的著作永远是了解数学的最好方法”。欧拉还是数学符号发明者,他创设的许多数学符号,例如π,i,e,sin,cos,tg,σ,f (x)等等,至今沿用。
欧拉不仅解决了彗星轨迹的计算问题,还解决了使牛顿头痛的月离问题。对著名的“哥尼斯堡七桥问题”的完美解答开创了“图论”的研究。欧拉发现,不论什么形状的凸多面体,其顶点数v、棱数e、面数f之间总有关系v+f-e=2,此式称为欧拉公式。v+f-e即欧拉示性数,已成为“拓扑学”的基础概念。那么什么是“拓扑学”? 欧拉是如何发现这个关系的?他是用什么方法研究的?今天让我们沿着欧拉的足迹,怀着崇敬的心情和欣赏的态度探索这个公式......
欧拉定理的意义
(1)数学规律:公式描述了简单多面体中顶点数、面数、棱数之间特有的规律
(2)思想方法创新:定理发现证明过程中,观念上,假设它的表面是橡皮薄膜制成的,可随意拉伸;方法上将底面剪掉,化为平面图形(立体图→平面拉开图)。
(3)引入拓扑学:从立体图到拉开图,各面的形状、长度、距离、面积等与度量有关的量发生了变化,而顶点数,面数,棱数等不变。
定理引导我们进入一个新几何学领域:拓扑学。我们用一种可随意变形但不得撕破或粘连的材料(如橡皮波)做成的图形,拓扑学就是研究图形在这种变形过程中的不变的性质。
(4)提出多面体分类方法:
在欧拉公式中, f (p)=v+f-e 叫做欧拉示性数。欧拉定理告诉我们,简单多面体f (p)=2。
除简单多面体外,还有非简单多面体。例如,将长方体挖去一个洞,连结底面相应顶点得到的多面体。它的表面不能经过连续变形变为一个球面,而能变为一个环面。其欧拉示性数f (p)=16+16-32=0,即带一个洞的多面体的欧拉示性数为0。
(5)利用欧拉定理可解决一些实际问题
如:为什么正多面体只有5种? 足球与c60的关系?否有棱数为7的正多面体?等
欧拉定理的证明
方法1:(利用几何画板)
逐步减少多面体的棱数,分析v+f-e
先以简单的四面体abcd为例分析证法。
去掉一个面,使它变为平面图形,四面体顶点数v、棱数v与剩下的面数f1变形后都没有变。因此,要研究v、e和f关系,只需去掉一个面变为平面图形,证v+f1-e=1
(1)去掉一条棱,就减少一个面,v+f1-e不变。依次去掉所有的面,变为“树枝形”。
(2)从剩下的树枝形中,每去掉一条棱,就减少一个顶点,v+f1-e不变,直至只剩下一条棱。
以上过程v+f1-e不变,v+f1-e=1,所以加上去掉的一个面,v+f-e =2。
对任意的简单多面体,运用这样的方法,都是只剩下一条线段。因此公式对任意简单多面体都是正确的。
方法2:计算多面体各面内角和
设多面体顶点数v,面数f,棱数e。剪掉一个面,使它变为平面图形(拉开图),求所有面内角总和σα
一方面,在原图中利用各面求内角总和。
设有f个面,各面的边数为n1,n2,…,nf,各面内角总和为:
σα = [(n1-2)·1800+(n2-2)·1800 +…+(nf-2) ·1800]
= (n1+n2+…+nf -2f) ·1800
=(2e-2f) ·1800 = (e-f) ·3600 (1)
另一方面,在拉开图中利用顶点求内角总和。
设剪去的一个面为n边形,其内角和为(n-2)·1800,则所有v个顶点中,有n个顶点在边上,v-n个顶点在中间。中间v-n个顶点处的内角和为(v-n)·3600,边上的n个顶点处的内角和(n-2)·1800。
所以,多面体各面的内角总和:
σα = (v-n)·3600+(n-2)·1800+(n-2)·1800
=(v-2)·3600. (2)
由(1)(2)得: (e-f) ·3600 =(v-2)·3600
所以 v+f-e=2.
欧拉定理的运用方法
(1)分式:
a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)
当r=0,1时式子的值为0
当r=2时值为1
当r=3时值为a+b+c
(2)复数
由e^iθ=cosθ+isinθ,得到:
sinθ=(e^iθ-e^-iθ)/2i
cosθ=(e^iθ+e^-iθ)/2
(3)三角形
设r为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:
d^2=r^2-2rr
(4)多面体
设v为顶点数,e为棱数,f是面数,则
v-e+f=2-2p
p为欧拉示性数,例如
p=0 的多面体叫第零类多面体
p=1 的多面体叫第一类多面体
(5) 多边形
设一个二维几何图形的顶点数为v,划分区域数为ar,一笔画笔数为b,则有:
v+ar-b=1
(如:矩形加上两条对角线所组成的图形,v=5,ar=4,b=8)
(6). 欧拉定理
在同一个三角形中,它的外心circumcenter、重心gravity、九点圆圆心nine-point-center、垂心orthocenter共线。
其实欧拉公式是有很多的,上面仅是几个常用的。
使用欧拉定理计算足球五边形和六边形数
问:足球表面由五边型和六边型的皮革拼成,计算一共有多少个这样的五边型和六边型?
答:足球是多面体,满足欧拉公式f-e+v=2,其中f,e,v分别表示面,棱,顶点的个数
设足球表面正五边形(黑皮子)和正六边形(白皮子)的面各有x个和y个,那么
面数f=x+y
棱数e=(5x+6y)/2(每条棱由一块黑皮子和一块白皮子共用)
顶点数v=(5x+6y)/3(每个顶点由三块皮子共用)
由欧拉公式,x+y-(5x+6y)/2+(5x+6y)/3=2,解得x=12
所以共有12块黑皮子
所以,黑皮子一共有12×5=60条棱,这60条棱都是与白皮子缝合在一起的
对于白皮子来说:每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,另3条边则与其它白色皮子的边缝在一起,所以白皮子所有边的一半是与黑皮子缝合在一起的
那么白皮子就应该一共有60×2=120条边,120÷6=20
所以共有20块白皮子 在动力学里,欧拉旋转定理阐明,一个刚体在三维空间里,如果做至少有一点是固定点的位移,则此位移必相等于一个绕着 包含那固定点的固定轴 的旋转。这定理是以瑞士数学家莱昂哈德·欧拉命名的。用数学的术语,在三维空间内,任何共原点的两个座标系之间的关系,是一个绕着 包含原点的固定轴 的旋转。这并且意味着,两个旋转矩阵的乘积还是旋转矩阵。一个不是单位矩阵的旋转矩阵必有一个实数的本征值,而这本征值是 1 。 对应于这本征值的本征矢量与旋转所环绕的固定轴同线[1]。目录[隐藏] 1 应用 1.1 旋转生成元 1.2 四元数 2 参阅 3 参考文献 [编辑] 应用 [编辑] 旋转生成元 主要项目:旋转矩阵,旋转群 假若我们设定单位矢量 为固定轴,并且假设我们绕着这固定轴,做一个微小的角值 Δθ 的旋转; 取至第一次方近似值,旋转矩阵可以表述为:。 绕着固定轴做一个 角值的旋转,可以被视为许多绕着同样固定轴的连续的小旋转;每一个小旋转的角值为 ,是一个很大的数字。这样,绕着固定轴 角值的旋转,可以表述为:。 我们可以看到欧拉旋转定理基要的阐明: 所有的旋转都可以用这形式来表述。乘积 是这个旋转的生成元。用生成元来分析通常是较简易的方法,而不是用整个旋转矩阵。用生成元来分析的学问,被通认为旋转群的李代数。[编辑] 四元数 根据欧拉旋转定理,任何两个座标系的相对定向,可以由一组四个数字来设定;其中三个数字是方向余弦,用来设定特征矢量(固定轴);第四个数字是绕着固定轴旋转的角值。这样四个数字的一组称为四元数。如上所描述的四元数,并不介入复数。如果四元数被用来描述二个连续的旋转,则必须使用由威廉·卢云·哈密顿导出的非可换代数以复数来计算。在航空学的应用方面,通过四元数的方法来演算旋转,已经替待了方向余弦的方法。这是因为它们能减少所需的工作,以及它们能使舍入误差减到最小。并且,在 电脑图形学 里,四元数与四元数之间,简易执行 spherical linear interpolation 的能力是很有价值的。
3. 如何有效的把信息技术运用到数学课堂教学中
一、信息技术具有直观性,能突破视觉的限制,多角度地观察对象,并能够突出要点,有助于概念的理解和方法的掌握
在讲“平移和旋转”这节课时,本文作者设计了这样的一个问题:平移和旋转这两种运动方式除了在游乐场里出现过,其实在我们平时的生活中也有很多平移与旋转的现象。下面就请同学们结合自己的感受,联系生活实际,判断下面的画面哪些是平移运动、哪些是旋转运动?屏幕出现几种生活中的平移与旋转现象,(直梯升降、风车转动……)录像中播放情景都是学生们在日常生活中经常看到的,有汽车的行进,溜溜球在旋转,风车在转动,推拉窗的移动,电梯的移动等。这些情景都是学生们生活中再熟悉不过的了,可能平时他们并没有在意这些现象,更不会想到这些现象能和我们今天的数学知识联系起来,通过这段影像的播放便加深了他们对这两种运动方式的认识。接着教师提问“谁还能来说一说你在生活中曾见到过哪些平移与旋转的现象?由于有了前面屏幕上展示的平移或旋转的实际录像,学生们说出了很多生活中出现这两种运动方式的现象。
二、信息技术具有图文并茂性,能多角度调动学生的情绪、注意力和兴趣
例如在教学《垂径定理》这一节时,课本中对垂径定理的证明学生根本不理解,于是我制作了一个FLASH动画,按课本中的证明过程进行动画演示以后,很多学生就能尝试着进行证明,与课本中的证明过程几乎差不多。
利用多媒体计算机的快速绘图、动画、视频、发声等功能,可以快速模拟某些发明、发现的过程,使传统教学难以实现的“发现法”教学可能经常实施。例如在教学《位似》这一节时,我用几何画板制作一个课件,画出两个位似图形,在我的引导下,利用软件的测量功能让学生很快就将对应边、对应角、对应顶点到位似中心的距离之间的关系等自己找出来了,再通过调整任一顶点或位似中心的位置观察图形的变化,学生对这一内容都有了更深的理解。因为这一节不比其他章节,其图形不是想画就能随便画出一个来,要花费一定的时间,常规模式的教学效果是一定好不起来的。
三、 信息技术具有动态性,能有效地突破教学难点,有利于反映概念及过程
例如:在教学九年级《抛物线》一课时,学生对抛物线的认知就是一条光滑的曲线,但我们利用多媒体播放火箭队和湖人队的一场比赛,展示出篮球运动员姚明投篮时篮球的运动轨迹,学生就会对抛物线有更直观的认识。由于用电脑演示,手段新颖,学生的注意力集中,给学生留下深刻的印象,教学效果明显。
四、 信息技术具有交互性,能让学生有更多的参与,学习更为主动,并通过创造反思的环境,有利于学生形成新的认知结构
大家知道,在传统的教学过程中一切都是由教师决定。从教学内容、教学策略、教学方法、教学步骤甚至学生做的练习都是教师事先安排好的,学生只能被动地参与这个过程,即处于被灌输的状态。而在多媒体计算机这样的交互式学习环境中学生则可以按照自己的学习基础、学习兴趣来选择自己所要学习的内容,可以选择适合自己水平的练习,如果教学软件编得更好,连教学模式也可以选择,。例如,平行线等分线段定理是平面几何中的一个重要知识点,是全等三角形、平行四边形、梯形等知识点的延伸,同时又是学习平行线截线段成比例的基础。正确理解平行线等分线段定理是教学关键,学会尺规等分已知线段也是本节的重点。教材中直接给出定理内容及证明方法,如若采用传统教学方法讲解,机械的步骤和静止的图形给学生以枯燥、乏味的感觉,并且只能向学生展示知识的结论,不便于揭示问题探索的过程。这样使学生对平行线等分线段定理只知其然不知其所以然,在学生知识的认知结构中出现断层,不利于能力的培养。为了使学生参与问题的探索过程,正确理解平行线分线段成比例定理,结合这节教材的具体内容,我利用《几何画板》制作了课件,利用课件的测算、动画、隐藏等功能,加强学生的感性认识,引导学生参与问题的探索,培养学生分析问题的能力,让学生在电脑上亲自去度量线段的长,计算线段的比,然后验证线段的比是否相等,这样做,教学中发现了“定理”。另外,通过平行移动图中线段的位置,学生很容易“发现”该定理的两个推论,即它的两个变示图形。这样的教学方法设计,突出了学生的主体地位和探索观察的实验意识,从一般到特殊,从形象到抽象,学生经过这样一番试验、观察、猜想、证实之后,再引导学生给出证明,这样较难讲清的问题,就在学生的试验中解决了。
五、信息技术具有补充性,能通过多媒体实验实现了对普通实验的扩充,并通过对真实情景的再现和模拟,培养学生的探索、创造能力
譬如,在上中位线性质时,可用《几何画板》设计如下课件让学生实验.画一个可以任意调节的四边形ABCD,顺次连接四边形的中点得到一个内接四边形EFGH。实验:(1)任意拖动四边形ABCD,观察内接四边形是什么图形(平行四边形);(2)当四边形ABCD为矩形时,观察内接四边形是什么图形(菱形);(3)当四边形ABCD为菱形时,观察内接四边形是什么图形(矩形);(4) 调节四边形ABCD使其对角线相等,观察内接四边形是什么图形(菱形);
(5)调节四边形ABCD使其对角线互相垂直时,观察内接四边形是什么图形(长方形);(6)调节四边形ABCD使其对角线互相垂直且相等时,观察内接四边形是什么图形(正方形)。学生在教师的指导下,通过上述实验,大胆猜想并加以证明,最后得出结论。应用《几何画板》的动态展示,便能把一个难以讲清楚的问题,让学生在实验中解决了.
六、信息技术具有大容量性,能节约空间和时间,提高了教学效率
当教师的都有这样的经历:为节省上课板书时间,课前准备了大量纸条,把板书内容逐条写上;为增加课堂练习量,把各式习题都抄在小黑板上。其弊端是给教师加大了工作量,若遇到天气不好坐在后排的学生看不清黑板上的字,影响教学效果。如“数据与图表复习课”中有关统计表、统计图设计的题目,可以利用多媒体的信息量大。使学生信息量不足,接受起来比较困难。CAI介入课堂教学较好的解决了这一难题。由于多媒体技术“动”性强,因而传递信息量大、速度快,再加上交互性强,使高密度、大容量的训练和信息交流成为可能。这样,教师可以精心组织课堂中学生的学习活动,优化了教师的教,也优化了学生的学。姚明投篮时篮球的运动轨迹,学生就会对抛物线有更直观的认识。由于用电脑演示,手段新颖,学生的注意力集中,给学生留下深刻的印象,教学效果明显。
总之,多媒体信息技术在数学教学中的作用不可低估,它在辅助学生认知的功能要胜过以往的任何技术手段。恰当地运用信息技术,起到了“动一子而全盘皆活”的作用,发挥出课堂教学的最佳效能,优化课堂教学结构的,提高课堂教学效率,可以减轻学习负担,使学生由被动变主动,符合现代化教育培养创造性人才的需要。客观合理的将多媒体信息技术用于课堂教学,积极探索多媒体信息技术与课堂教学的整合方法,才是现代教师在教学活动中应积极转变的观念。
4. 车轮为什么要做成圆形的快给我回答!
为什么车轮是圆的?你也许会说,这个问题还不简单,因为圆的轮子能滚动啊!这话虽然不错,但总不大能说服人,因为这只是凭我们的感觉和经验说的,并没有从圆的性质来找出根本原因。
圆有什么重要的性质呢?我们可以找支圆规来画个圆,画圆时圆锥扎的一点,叫圆心。让我们拿一根尺子量一量圆周上任何一点到圆心的距离吧,它们都是相等的。这相等的距离,就是半径。
如果把车轮做成圆形,车轴安在圆心上,当车轮在地面滚动的时候,车轴离开地面的距离,总是等于车轮半径的长度。因此,坐在车上的人,将平稳地被车子拉着走。假设这车轮子变了形,已经不成圆形了,轮缘上高一块低一块的,也就是说从轮缘到轮子圆心的距离都不相等,那么,这种车子行驶起来,一定非常颠簸。
人们什么时候认识了圆的性质呢?最初,是大自然给了人们启发,天上的太阳、十五的月亮,都是圆形的!从这儿,人们认识了圆的形象,并开始学着画圆。后来,人们从实践中知道了一个圆的半径都是相等的这个特点,才发明了圆规用来画圆。
5. 有没有免费的几何画板的软件啊
几何画板就是比较好的数学学习软件,它是美国人发明的,1996年被国家教委引入中国使用,故目前许多教科书上的图形和信息技术的应用都是它的作品。
几何画板中文完整版下载地址:
win版
http://wm.makeding.com/iclk/?zoneid=14448
mac版
http://wm.makeding.com/iclk/?zoneid=14449
后来美国一名学生的毕业论文设计就是一个软件,也在国际流行,就是GeoGebra,简称GGB。
6. Win10中有几何画板的替代工具吗
几何画板就是比较好的数学学习软件,它是美国人发明的,1996年被国家教委引入中国使用,故目前许多教科书上的图形和信息技术的应用都是它的作品。后来美国一名学生的毕业论文设计就是一个软件,也在国际流行,就是GeoGebra,简称GGB。
7. 求几何画板软件 下载
几何画板就是比较好的数学学习软件,它是美国人发明的,1996年被国家教委引入中国使用,故目前许多教科书上的图形和信息技术的应用都是它的作品。后来美国一名学生的毕业论文设计就是一个软件,也在国际流行,就是GeoGebra,简称GGB。
因为没有国家教委的推广,流行范围就不是很大,不过也是很好的数学学习软件。其他的还有一些,如果想要学习使用,建议还是几何画板吧。
8. 数学是什么
数学就是我,我就是数学.
9. 几何画板八卦阵的步骤
八卦阵学名为九宫八卦阵,是一种古代的汉族军事阵法,相传为诸葛亮发明。利用几何画板是可以制作八卦阵的,下图就是用几何画板画的八卦限,可以参考此课件来制作,希望对你有帮助。
10. 有什么免费软件可以替代几何画板
几何画板就是比较好的数学学习软件,它是美国人发明的,1996年被国家教委引入中国使用,故目前许多教科书上的图形和信息技术的应用都是它的作品。后来美国一名学生的毕业论文设计就是一个软件,也在国际流行,就是GeoGebra,简称GGB。
几何画板中文完整版下载地址:
win版
http://wm.makeding.com/iclk/?zoneid=14448
mac版
http://wm.makeding.com/iclk/?zoneid=14449
因为没有国家教委的推广,流行范围就不是很大,不过也是很好的数学学习软件。其他的还有一些,如果想要学习使用,建议还是几何画板吧。