❶ 急急急!最轻、最重、最软、最硬的金属分别是什么
在自然界,最轻的金属是锂。每立方厘米只有0.543克重,扔在水里会漂浮;如果用锂做一架飞机,两个人就能抬着它走、锂有漂亮的银白色的外表,个性活泼,有很强的化学反应能力,在工业生产和日常生活中用途很广。特别是不久之前,锂又和原子能工业结了缘。大家都听说过威力强大的氢弹。但是,氢弹里装的氢,是比普通氢重1倍的重氢(氘)或重2倍的超重氢(氚)、用锂能够生产出超重氢??氚,还能制造出氢化锂、氘化锂、氚化锂。1967年6月17日,我国成功爆炸的第一颗氢弹,“炸药”就是氢化锂和氘化锂。据计算,1千克氘化锂的爆炸力等于5万吨烈性梯恩梯炸药。因此,人们把锂叫做“高能金属”。
自然界最重的金属是锇。它存在于锇铱矿中,是一种灰蓝色金属,硬而脆,每立方厘米重达22.48克,为同体积锂的41.35倍重。锇铱合金可做金笔的笔尖,也可做钟表或贵重仪器的轴承,十分耐磨。
钨是熔点最高的金属,曾被人们称为“耐高温冠军”。它的熔点高达摄氏3410度,每立方厘米重达19克多。钨的硬度在金属中也名列前茅。令人惊奇的是,这种熔点高、硬度大的金属,却有少见的可塑性,一根1千克重的钨棒,可以拉成长达300多公里的细丝。这种细丝在摄氏3000度的高温环境中,仍具有一定强度,而且发光效率高,使用寿命长,是制造各种灯泡灯丝的好材料。
钨的最大用途,是制造钨钢。用钨钢打造工具,要比普通钢工具强度提高几倍、几十倍;用钨钢制造炮筒、枪筒,在连续射击时,即使筒身被弹丸摩擦得滚烫,仍能保持艮好弹性和机械强度。
熔点最低、质地最软的固体金属是铯,它在摄氏28.5度的条件下就开始熔化。如果把铯放在手里,它很快就会化成液体。它比石蜡还软,可以随意切成各种形状。铯的光电效应能力特别好,能使光信号变成电信号,是制造光电管的主要感光材料,电影、电视、无线电传真都离不开铯。所以,铯获得“光敏金属”、“带眼睛金属”等称号。
钛的比强度在目前所有金属材料中最高。许多新型的钛合金,抗拉强度每平方毫米都在100千克以上。钛既能经受摄氏500度以上高温的锻炼,又抗得住摄氏零下100多度低温的考验。因此,钛和钛合金是制造飞机、火箭、导弹、潜艇不可缺少的材料。一架超音速远程截击机,用钛量占其结构总重量的95%。目前,全世界约有一半以上的钛,用来制造飞机机体和喷气发动机的主要零件。所以人们称赞钛是“金属空间”。
素有“硬骨头”美称的铬,是自然界最硬的金属。铬呈银白色,化学性质稳定,在水和空气中基本不生锈。它的主要用途是制造合金,炼制不锈钢。不锈钢的问世,被公认为20世纪最大技术发明之一,具有划时代的意义。它不仅推动了医疗、仪表和国防工业的发展,而且也在食品加工、纺织印染、制烟造酒行业中大显身手,屡立战功。
铼是地球上最稀少的金属,可以用“凤毛麟角”四个字来形容。1925年,德国两位科学家诺达克和塔克用X射线从铂矿中首次找到铼。到了1930年,铼的世界总产量也只有3克。目前,全世界生产的铼加起来也仅有10吨,少得可怜。为什么?这是因为铼在地壳中的蕴藏量非常少、在辉钼矿中,铼的含量算是最高的了,但也仅仅为万分之一。铼虽然稀少,但作用巨大。它是坚硬的银白色金属,比重很大,约为铁的两倍。其熔点高达3180摄氏度,而且化学性质稳定,能够抵抗酸、碱、盐对它的腐蚀。在冶金工业中,铼作为合金添加刑,能够提高合金的性能,改善合金的组织机构。一般情况下,纯钨和纯钼在温度较低的环境中,会变得脆如玻璃,很难进行工艺加工,用途受到极大限制。但是,人们在钨或钼中加工适量的铼,制成钨铼合金或钼铼合金,合金就会具有良好的塑性,能够加工成各种结构材料,同时还会保持“三高”??高硬度、高强度、高耐温性。美国宇宙飞船上的很多零部件,都用这类铼合全制造。此外,铼还具有很高的硬度和机械强度,具有高电阻和其它电学特性。例如,一根比头发还细的铼合金丝,能承受7千克的重力;一般电器设备中的电触器,有时几昼夜就损坏,而铼制电触器可以使用数月甚至数年;普通钨灯丝表面涂上一层铼,使用寿命可延长10倍。
铌的抗腐蚀能力最强,把铌放在空气中十几年,表面也不会生锈。英国化学家哈契特在1801年,第一个发现铌元素。经过人们艰苦劳动,直到1929年才制得纯净的金属铌。铌不仅银装素裹,色泽可爱,而且质地坚硬,非常耐腐蚀。把铌放在浓热的硝酸中两个月,放在能够消融黄金、白金的王水中六昼夜,结果它仍然是“面不改色”,安然无恙!所以铌被人们誉为“抗腐蚀大王”,在化学工业中被广泛用来制造各种耐酸设备。……
某种金属的超群特性,过去曾引导人们开拓科学技术的新天地,现在和未来,仍将召唤人们向科学技术进军,惊人的“突破”将会层出不穷。
❷ 清华团队研发出液态金属外骨骼,这项发明会为人类带来哪些福利
这种液态金属外骨骼听上去非常脆弱,而且没有具体的形态,但是实际运作起来作用却是非常大的,这项发明能给人类带来三项福利。第一是可以帮助患者更好的恢复,而且没有副作用。这类液态金属骨骼有两种形态可以代替石膏原本的作用,也不会让患者有任何的不适感。第二是可以有效降低成本。虽然石膏这种物质并不是太过稀有的物质,但是这类可重复利用的液态金属外骨骼可以更好的降低资源的利用性。第三是可以减少医疗事物的损坏。由于这种外骨骼有两种形态,而且质地极佳,所以并不会由于任何外来冲撞而毁坏。
帮助患者更好恢复对于一些骨折后打石膏的患者来说,他们在日常生活中必然会有许多的不便,手臂的被束缚使得日常的一些小动作都无法完成。相比起来,石膏虽然固定性比较明显,但是中间部分实际上是有空隙的,这就使得患者再做一些动作的时候,手臂还是会有相关的活动,所以在恢复的时候自然就没有完全固定的液态金属外骨骼好。这类液态金属外骨骼在正常情况下比石膏更为紧致,可以更好的束缚住患者的小动作。
而以上三点,就是这项发明会为人类带来的福利。
❸ 世界上最轻硬度最大的超合金是什么
目前世界上所发现的是金刚石硬度最强,重量最轻的可用金属材料是锂合金,塑料是泡沫塑料, 希望对你有帮助;望采纳答案吧。顺便点击本团队名字,进入后给个好评吧!
❹ 世界上最轻又最硬的合金是什么
钛合金
❺ 世界上最轻最坚硬的金属是什么
做刀剑不一定要最硬的金属,过刚易折,
刀剑一般要硬,锋利,韧性好,不然容易断。
弹簧钢基本可以满足这方面的要求。
❻ 谁发现了世界上最轻的金属
说起金属中最轻的金属,那当然是锂。锂的比重只有0.535,是铝的1/5,水的1/2,用普通的小刀就能轻易地把它切成几块。它不仅能浮在水面上,甚至可以浮在煤油上;有人估计,如果用锂来做飞机,那么两个人就可以抬着走,实际上,锂根本不能制造飞机,甚至连筷、匙也不能做。因为锂很软,用小刀可以毫不费力地将它切开,而且化学性质又十分活泼,在热水中,它便与水发生反应,变成氢氧化锂而溶解于水了。锂在二氧化碳中也能燃烧,发出明亮的火光。
1817年,瑞典化学家阿·阿尔大维特桑在稀有的岩石中,发现了金属锂。但由于锂不能像普通金属那样用来制造各种物体,在它被发现的许多年中很少派上用场。直到第一次世界大战时,德国在工业生产中急需锡,却缺少锡的矿物原料。人们不得不去寻找代用品,锂这时才崭露头角,同时也开始大显身手。
现代技术需要的光学材料,不仅要能通过可见光,还要能透过紫外线、X射线,同时,还要具有良好的热稳定性,高的电阻率和低的介质损耗。锂质玻璃就具有这种宝贵的光学性能,因此电视机的荧光屏用的是锂玻璃。普通的望远镜很难捕捉遥远星体的辐射光,因此在天文观测中很少使用。而用氟化锂晶体制成的透镜,装在天文望远镜上,由于氟化锂对紫外线有最高的透明度,天文学家用它可以洞察到隐蔽在银河系最深外的奥秘。
锂还是制造高能电池的重要原料。1977年国际上出现了一种硬币形的锂电池,直径23毫米,厚2.5毫米,还不到5分硬币那么大,很适合微型、薄型化的电子仪器使用。这种锂电池用于耗电量低的液晶显示的桌式电子计算机,可以连续使用5~10年而不必更换。用锂电池来开动汽车,费用低,不会污染大气。
锂的一些有机化合物,如硬脂酸锂、软脂酸锂等,在环境温度变化时,性能可保持不变,是理想的润滑剂。这类润滑剂在汽车的易磨零件上加一次,就可永久使用。即使在南极大陆零下60摄氏度的冰原上,锂润滑剂照样能让汽车纵横驰骋,不会结冻。
锂是理想的火箭燃料。火箭需要很大的功率来克服地球引力,才能飞向外层空间。煤油曾经被认为是最有效的、使用液氧做氧化剂的燃料,它的发热量为2300千卡/公斤。现在,铍和锂被科学家认为是用做火箭燃料的最佳金属。锂金属燃料燃烧后释放出来的热量达102′70千卡/公斤。
最引人注目的是锂作为热核反应的燃料,被用来作氢弹的爆炸物。1967年6月17日我国成功地爆炸了第一颗氢弹,装的就是氘(重氢)化锂。1000克氘化锂相当于5万吨TNT炸药,比原子弹的威力大10倍。
❼ 地球上最轻最硬的物质材料是什么
金刚石俗称"金刚钻"。也就是我们常说的钻石的原身,它是一种由碳元素组成的矿物,是碳元素的同素异形体。金刚石是目前在地球上发现的众多天然存在中最坚硬的物质。
钻石就是我们常说的金刚石 ,它是一种由碳元素组成的矿物。金刚石是自然界中最坚硬的物质,因此也就具有了许多重要的工业用途,如精细研磨材料、高硬切割工具、各类钻头、拉丝模。还被作为很多精密仪器的部件。金刚石与石墨同属于碳的单质。是一种具有超硬、耐磨、热敏、传热导、半导体及透远等优异的物理性能,素有"硬度之王"和宝石之王的美称,金刚石的结晶体的角度是54度44分8秒。20世纪50年代,美国以石墨为原料,在高温高压下成功制造出人造金刚石。人造金刚石已经广泛用于生产和生活中,虽然造出大颗粒的金刚石还很困难(所以大颗粒的天然金刚石仍然价值连城),但是已经可以制成了金刚石薄膜。
在钻石晶体中,碳原子按四面体成键方式互相连接,组成无限的三维骨架,是典型的原子晶体。每个碳原子都以SP3杂化轨道与另外4个碳原子形成共价键,构成正四面体。由于钻石中的C-C键很强,所以所有的价电子都参与了共价键的形成,没有自由电子,所以钻石不仅硬度大,熔点极高,而且不导电。在工业上,钻石主要用于制造钻探用的探头和磨削工具,形状完整的还用于制造手饰等高档装饰品,其价格十分昂贵。
钻石的摩氏硬度为10;由于在自然界物质中硬度最高,钻石的切削和加工必须使用钻石粉来进行。钻石的密度为3.52g/cm,折射率为2.417,色散率为0.044。
❽ 人类使用金属的历史
人因为会制造和使用工具而从一般动物中分离出来,而成为唯一的智能群体。在人类文明发展史上,经历了一个由石器时代到金属时代的过渡。金属时代(包括青铜时代和铁器时代)的到来为人类文明带来了新的曙光,人们发现了七种至今仍然广泛应用着的七种金属,它们是金银铜铁锡铅汞。下面讲讲这七种金属的发现过程及对人类发展的影响。
黄金时代
大约在5000多年前,即公元前3000年,四大文明古国的埃及已经建立起来,首都开罗已经是一个繁华的城镇了。每逢赶集的时候,这里的人群熙熙攘攘。一天中午,安静而有序的城镇却出现了骚乱,人们争相涌向一个地方,透过围得密密的人群,人们发现开罗有名的旅行家里希尔正拿着一块黄灿灿的东西,里希尔说这是神赐予人类的宝物,他把它称作黄金。很快,开罗城拥有黄金的人都变得富有起来。人们纷纷去寻找金子,河滩上的沙地里站满了寻找金子的人群,开始只有很少几个幸运儿找到成块的金子,后来人们注意到沙子中混着一些金常�嗣蔷头⑾至恕芭�程越稹钡姆椒ā:罄慈嗣怯址⑾至似降鼐蚓��缮浇鸬姆椒ǎ�沟媒鹱拥牟�扛�罅恕?
就在里希尔发现金块后不久,他又发现了银子。一个寒冷的夜晚,里希尔和同伴围着一堆篝火聊天。第二天,就在他们快要启程的时候,里希尔扒拉一下火堆,他是一个细心的旅行家,每次出发前他总是要检查自己住的地方以免有东西丢失,这次检查他不但没有发现丢失的东西,火堆里的扒拉出来一些亮闪闪的东西却引起了他的注意,一个伟大的发现意外地产生了。里希尔发现这种新的金属与金子的特性十分类似,也是沉重而柔软,用手捏捏就能使它变形,他把这种金属命名为白银。后来人们沿用了里希尔意外发现的这个方法,即用篝火灼烧银矿石而得到银,这实际上是一个简单的化学还原反应,木炭把银矿石中的硫化银还原成银。
青铜时代
1939年正值我国抗日战争最艰苦的一年,这时考古界的一件重要发现在战火中诞生了,在安阳市武官村出土了一个殷代的庞然大物:司母戊大方鼎。这个大家伙重达875公斤,需要十二个强壮的成年男子才能抬得起来,可见当时铸造之不易。司母戊鼎是目前世界上出土的最大的青铜器。经检测,铜占84.11%,锡占11.64%,铅占2.79%。这个青铜器是我国青铜冶铸鼎盛时期的产物,从它的纹饰、构造等都反映了这个时代青铜冶铸的高超技术。
人类对铜的使用并非是从青铜而是从纯铜开始的。考古学家在伊朗西部的一些地区发现了大约公元前7000年前使用的小型铜器件,如小针、小珠和小锥等等。大英博物馆里收藏有5000年前苏美尔人铸造的铜牛头和3500年前埃及人制作的铜镜和铜制工具。在西亚地区,铜矿石裸于地表,人们在铜矿石上燃烧炭火,便会还原出与绿色矿石颜色不同的红色铜来。
由于纯铜硬度低,并不太适合于制作生产工具,后来,人们就有意识地在炼制铜矿石时掺入其他矿石,以制成铜的合金来提高工具的硬度。在我国,先秦的古籍《考工记》中记载了有名的“六齐”规则,即是青铜的六种配方,这套配方规定了铜和锡的不同比例造成的青铜的不同用途,其实质是比例不同硬度不同。据考古推测,这时人们已经能够制得纯铅和纯锡了。从商代的墓葬中先后发现了铅爵、铅戈和铅斛等纯铅制品。
铅属于重金属,因而铅及其化合物都有毒,古人开始因不了解这一点而大吃苦头。古罗马人曾经就喜欢用铅制的水管,考古发现古罗马人的尸骨上常常有黑色的硫化铅斑点,这就是由于使用了铅管里的水而导致的慢性中毒。后来人们渐渐认识到这一点,就不再使用铅制的器具作为饮食用具了。
锡由于其延展性好而易制成薄片,而且在常温下不易氧化,所以自古以来就被用来包裹器具。我国曾出土国几具殷代的虎面铜盔,其中一具很完整,内部红铜相当完好,外面镀了一层很厚的锡,锡层精美,至今仍光亮如新。这说明当时的人们不但认识到锡层美观,而且可以防腐。纯的锡器没有保存下来的,这是因为锡很怕冷,周围温度一旦低于13℃就会发生相变,变成粉末状的灰锡,这种现象被称为“锡疫”。
铁器时代
人类对铁的最早知识来源于从太空降下来的陨铁,埃及人称它为“天铁”,在西亚的一些游牧部落里还有一种有趣的传说,他们说铁既然是从天上降下来的,那么天空一定是个大铁盘。人们发现铁的硬度要比铜或青铜都大得多,尽管四处传说铁只有天上才有,但还是有一些不遵从祖训的年轻人企图在人间发现铁。大约在公元前2200 年,西亚的赫梯人已经会冶炼和使用铁器了。公元前1290年,埃及国王致信赫梯国王要求提供一些铁,赫梯国王回信答应给他提供一把钢剑,但要求用黄金来交换,可见当时铁还是一种贵重的金属。赫梯国王还在信中炫耀说:“在我们的国土上,铁和尘土一样平凡。”
早期的冶铁技术也大多是采用固体还原法,冶炼时,将铁矿石和木炭一层一层地堆放在炼铁炉中,点火燃烧,产生一氧化碳,从而使铁矿石中的氧化铁还原为单质铁。早期的铁由于冶炼温度很低而性能很差,是含大量碳氧杂质的合金,古人称之为“恶金”。我国在解放初期大炼钢铁的时候,由于地方上不少“土高炉”温度上不去,而生产了不少没有价值的 “恶金”。后来人们逐渐发现了升高炉温的方法而炼出了性能较好的生铁,继而发明了用退火的方法“柔化”生铁而得到低碳钢。后来人们进一步发明了熟铁和钢的冶炼方法,铁在生产中从得以广泛应用。
汞和炼金术
七种金属为人类文明带来了新的曙光,但也是这七种金属,使人类陷入了某种神秘的境地,古代的人们天真地认为世界上只有这七种金属。他们认为金属起源于水银(汞的俗名)和硫磺,实际上,水银是一种银白色的液体金属,颜色和外观与银类似,铜铁锡铅都能溶于水银形成与金银类似的合金——汞齐;水银与硫磺化合后会生成黄色的硫化汞,与黄金类似。
基于水银和金属的这些特性,同时人们也认识到水银的化合物并非金银,炼金家们认为应该有一种特别方法可以使便宜的金属铜铁锡等变成贵重金属金银,他们称转变的秘方是一种叫“哲人石”的东西,但千百年来,“哲人石”只是炼金家的一种幻想,谁也没有发现这种东西。俄国学者莫洛佐夫写了一首题名为《七种金属》的诗歌来描述炼金家的这种思想,诗的译文如下:
世界由七种金属造成
宇宙啊,她赋予我们
铜铁银 锡铅金
各种金属之父是硫磺
水银则是他们的母亲
这种被科学史界称为“化学萌芽”的炼金术虽然给化学发展积累了一些资料,但由于他们远离生活和实践,一味地靠逻辑推理,从而导致了这种科学探索的失败。一直到九十年代的今天,在我国仍然有不少人存在着一些关于科学的天真幻想,这就给一些科学骗子以得逞的机会。八十年代的永动机,九十年代的“水变油”,就是很明显的科学骗局。从历史到现实,都很好地说明了,科学不能以幻想为基础,而只能以正确理论指导下的实验为基础。