① 到底谁是“微分几何学之父”
应该是高斯,内蕴微分几何就是他一手创建,其中最重要的贡献就是高斯绝妙定理,还有整体微分几何的先声高斯-博内公式。嘉当首先用活动框架法和外微分研究微分几何,但是也是在高斯黎曼工作的基础上
② 微分几何是谁发明的
K.F.Gauss(Germany) 的工作是划时代的.之前其实知道的几何并不丰富,后来 Gauss 的学生 Riemann (Germany) 把 Gauss 的曲面论做到高维,创立 Riemann 几何; Henri Poincare (France) 创立的动力系统也是几何必需的,Poincare 对几何的巨大贡献还在于创立拓扑学,尤其是代数拓扑学,那些同调论简直就是几何必不可少的.后来的 Felix Klein (Germany) 把几何看成关于变换群的不变量的学问, E.Cartan (France) 的活动标架法和外微分法为微分几何注入新的血液,Shiing-shen Chern (Chinese American)的 Chern Class 是 E.Cartan 理论的发扬光大...听说现在又流行做辛几何,代表人当然是一个叫 Floer (Germany) 的人,当然这个天才 35 岁的时候自杀了...
③ 微分几何最早的著作是什么
十八世纪初,法国数学家蒙日首先把微积分应用到曲线和曲面的研究中去,并于1807年出版了它的《分析在几何学上的应用》一书,这是微分几何最早的一本著作。
④ 什么是微分几何
.微分几何是以微积分作为工具研究曲线和曲面的性质及其推广应用的几何学。"微分几何学"一词是1894年由毕安基提出的。
http://lxy.zjfc.e.cn/sxsys/ReadNews.asp?NewsID=229&BigClassName=%CA%FD%D1%A7%CC%EC%B5%D8&SmallClassName=%D1%A7%BF%C6%B7%D6%D6%A7
3.代数几何是现代数学的一个重要分支学科。它的基本研究对象是在任意维数的空间中,由若干个代数方程的公共零点所构成的集合的几何特征。这样的几何通常叫做代数簇,而这些方程叫做这个代数簇的定义方程组。代数簇的最简单例子就是平面中的代数曲线。当前代数几何研究的重点是正体问题,主要是代数簇的分类以及给定的代数簇中的子簇的性质。
代数几何与数学的许多分支学科有着广泛的联系。代数几何的发展和这些学科的发展起着相互促进的作用。同时作为一门理论学科,代数几何的应用前景也开始受到人们的注意。近年来人们在现代物理的最新超弦理论中,已广泛应用代数几何。
http://www.ikepu.com/datebase/briefing/maths/algebraic_geometry.htm
⑤ 高斯为微分几何的创立做了哪些贡献
高斯发明了还日光反射仪,可以将光束反射至450公里外的地方。但是要利用日光反射仪进行精确测量就必须解决曲面和投影的理论关系,高斯在这段时间开始了对曲面和投影的理论研究。这方面的研究成果为后来微分几何的创立奠定了基础。
⑥ 现代微分几何是谁开创的
微分几何是经过一系列的发展建立起来;最开始的时候是高斯研究曲线与曲面的内蕴几何学,并和罗巴切夫斯基等人分别发展了非欧几何;接下来是黎曼将几何学推广到高维空间,并引入流形的概念。之后嘉当将代数结构(诸如外代数,李代数)引入微分几何。之后他的学生陈省身将微分几何与代数拓扑,代数几何相结合,陈的学生丘成桐发展出了几何分析。
⑦ 微分几何的微分几何的历史
1827年,德国数学家高斯发表了《关于曲面的一般研究》的著作,这在微分几何的历史上有重大的意义,它的理论奠定了曲面论的基础。高斯抓住了微分几何中最重要的概念和根本性的内容,建立了曲面的内蕴几何学。其主要思想是强调了曲面上只依赖于第一基本形式的一些性质,例如曲面上曲线的长度、两条曲线的夹角、曲面上的某一区域的面积、测地线、测地曲率和总曲率等等。
1854年德国数学家黎曼(B. Riemann)在他的就职演讲(Habilitationsschrift)中将高斯的理论推广到n维空间,这就是黎曼几何的诞生。其后许多数学家,包括E. Beltrami, E. B. Christoffel,R. Lipschitz,L. Bianchi,T. Ricci开始沿着黎曼的思路进行研究。其中Bianchi是第一个将“微分几何”作为书名的作者。
1870年德国数学家克莱因(Felix Klein)在德国埃尔朗根大学作就职演讲时,阐述了他的《埃尔朗根纲领》,用变换群对已有的几何学进行了分类。在《埃尔朗根纲领》发表后的半个世纪内,它成了几何学的指导原理,推动了几何学的发展,导致了射影微分几何、仿射微分几何、共形微分几何的建立。特别是射影微分几何起始于1878年阿尔方的学位论文,后来1906年起经以威尔辛斯基为代表的美国学派所发展,1916年起又经以富比尼为首的意大利学派所发展。在仿射微分几何方面,布拉施克(W. Blaschke)也做出了决定性的工作。 法国数学家E·嘉当在微分几何中强调联络的概念,建立了外微分的概念。这是整体微分几何的奠基性的工作。随后,中国数学家陈省身从外微分的观点出发,推广了曲面上的高斯-博内定理。从此微分几何成为现代数学不可缺少的领域。
⑧ 现代微分几何 是哪位学者创建的
微分几何是经过一系列的发展建立起来;
最开始的时候是高斯研究曲线与曲面的内蕴几何学,并和罗巴切夫斯基等人分别发展了非欧几何;接下来是黎曼将几何学推广到高维空间,并引入流形的概念。
之后嘉当将代数结构(诸如外代数,李代数)引入微分几何。之后他的学生陈省身将微分几何与代数拓扑,代数几何相结合,陈的学生丘成桐发展出了几何分析。
⑨ 微分几何是什么
微分几何是运用微积分的理论研究空间的几何性质的数学分支学科
⑩ 谁是微分几何之父
陈省身是20世纪重要的微分几何学家,被誉为“微分几何之父”。
早在40年代,陈省身他结合微分几何与拓扑学的方法,完成了两项划时代的重要工作:高斯-博内-陈定理和Hermitian流形的示性类理论,为大范围微分几何提供了不可缺少的工具。这些概念和工具,已远远超过微分几何与拓扑学的范围,成为整个现代数学中的重要组成部分。
1827年,德国数学家高斯发表了《关于曲面的一般研究》的著作,这在微分几何的历史上有重大的意义,它的理论奠定了曲面论的基础。高斯抓住了微分几何中最重要的概念和根本性的内容,建立了曲面的内蕴几何学。
其主要思想是强调了曲面上只依赖于第一基本形式的一些性质,例如曲面上曲线的长度、两条曲线的夹角、曲面上的某一区域的面积、测地线、测地曲率和总曲率等等。
1854年德国数学家黎曼(B. Riemann)在他的教授职称论文(Habilitationsschrift)中将高斯的理论推广到n维空间,这就是黎曼几何的诞生。
其后许多数学家,包括E. Beltrami, E. B. Christoffel,R. Lipschitz,L. Bianchi,T. Ricci开始沿着黎曼的思路进行研究。其中Bianchi是第一个将“微分几何”作为书名的作者。
1870年德国数学家克莱因(Felix Klein)在德国埃尔朗根大学作就职演讲时,阐述了他的《埃尔朗根纲领》,用变换群对已有的几何学进行了分类。在《埃尔朗根纲领》发表后的半个世纪内,它成了几何学的指导原理,推动了几何学的发展,导致了射影微分几何、仿射微分几何、共形微分几何的建立。
特别是射影微分几何起始于1878年阿尔方的学位论文,后来1906年起经以威尔辛斯基为代表的美国学派所发展,1916年起又经以富比尼为首的意大利学派所发展。在仿射微分几何方面,布拉施克(W. Blaschke)也做出了决定性的工作。
(10)创造了微分几何的是扩展阅读:
微分几何的产生和发展是和微积分密切相连的。在这方面第一个做出贡献的是瑞士数学家欧拉(L.Euler)。1736年他首先引进了平面曲线的内在坐标这一概念,即以曲线弧长这一几何量作为曲线上点的坐标,从而开始了曲线的内在几何的研究。
十九世纪初,法国数学家蒙日(G. Monge)首先把微积分应用到曲线和曲面的研究中去,并于1807年出版了他的《分析在几何学上的应用》一书,这是微分几何最早的一本著作。在这些研究中,可以看到力学、物理学与工业的日益增长的要求是促进微分几何发展的因素。
微分几何学以光滑曲线(曲面)作为研究对象,所以整个微分几何学是由曲线的弧线长、曲线上一点的切线等概念展开的。
既然微分几何是研究一般曲线和一般曲面的有关性质,则平面曲线在一点的曲率和空间的曲线在一点的曲率等,就是微分几何中重要的讨论内容,而要计算曲线或曲面上每一点的曲率就要用到微分的方法。
在曲面上有两条重要概念,就是曲面上的距离和角。比如,在曲面上由一点到另一点的路径是无数的,但这两点间最短的路径只有一条,叫做从一点到另一点的测地线。
在微分几何里,要讨论怎样判定曲面上一条曲线是这个曲面的一条测地线,还要讨论测地线的性质等。另外,讨论曲面在每一点的曲率也是微分几何的重要内容。
在微分几何中,为了讨论任意曲线上每一点邻域的性质,常常用所谓“活动标形的方法”。对任意曲线的“小范围”性质的研究,还可以用拓扑变换把这条曲线“转化”成初等曲线进行研究。
在微分几何中,由于运用数学分析的理论,就可以在无限小的范围内略去高阶无穷小,一些复杂的依赖关系可以变成线性的,不均匀的过程也可以变成均匀的,这些都是微分几何特有的研究方法。