1. 古希腊人是如何发明了几何学
相传四千年前,埃及的尼罗河,每年洪水泛滥会淹没很多土地。
为了重新测量土地以便于征税收,埃及人对几何图形的面积、角度的计算和测量研究得越来越深入。
在古籍《莱因德纸草书》中就记载了各种平面图形、立体面积和体积的计算方法。
随着历史的发展,古希腊人整理了历年来积累的知识和经验,逐渐将知识抽象化,建立了几何的基本理论和定理。
(1)古希腊发明扩展阅读
几何学的发展史
1、欧氏几何的创始
公认的几何学的确立源自公元300多年前,希腊数学家欧几里得著作《原本》。欧几里得在
《原本》中创造性地用公理法对当时所了解的数学知识作了总结。欧几里得的《原本》是数学史上的一座里程碑,在数学中确立了推理的范式。他的思想被称作“公理化思想”。
2、解析几何的诞生
解析几何是变量数学最重要的体现。解析几何的基本思想是在平面上引入“坐标”的概念,并借助这种坐标在平面上的点和有序实数对(x,y)建立一一对应的关系,于是几何问题就转化为代数问题。
解析几何的真正创立者应该是法国数学家迪卡儿和费马。
3、非欧几何的诞生与发展
非欧几何的诞生源于人们长久以来对欧几里得《原本》中第五公设即平行公设的探讨,直到数学家高斯、波约和俄国数学家罗巴切夫斯基进行推理而得出的新的一套几何学定理,并将它命名为非欧几何,一般称为“罗氏几何”。
1854年德国数学家黎曼发展了罗巴切夫斯基的几何思想,从而
建立了一种更为一般化的几何,称为“黎曼几何”。直到19世纪后期,数学家贝尔特拉米、克莱因、庞加莱在欧氏空间建立了非欧几何的模型,非欧几何才得到理解和承认。
4、射影几何的发展
文艺复兴时期的几何发展源于对宗教绘画的更高追求。
5、几何学的统一
非欧几何的创立打破了长久以来人们认为只有欧氏几何的观念。希尔伯特为统一几何学的提出了实施方法,即公理化方法。这种公理系统透彻的阐述了几何学的逻辑关系和包含内容,完整的统一了几何学。
2. 古希腊神话的起源
古希腊神话或传说大多来源于古希腊文学,包括如《荷马史诗》中的《伊利亚特》和《奥德赛》,赫西奥德(Hesiod/Ἡσίοδος)的《工作与时日》和《神谱》,古风时期托名的《荷马颂歌》等经典作品,以及埃斯库罗斯、索福克勒斯和欧里庇得斯的戏剧。
希腊神话是原始氏族社会的精神产物,欧洲最早的文学形式。大约产生于公元前8世纪,它在古希腊原住民长期口头相传并借鉴了流传到希腊和其它各国的神话的基础上形成基本规模。
后来在荷马的《荷马史诗》和赫西俄德的《神谱》及古希腊的诗歌、戏剧、历史、哲学等著作中记录下来,后人将它们整理成现在的古希腊神话故事,分为神的故事和英雄传说两部分。
最早的几部参考文献当推荷马的两部史诗:《伊利亚特》和《奥德赛》。除此之外的这方面的史诗都被归结到了《史诗集成》。有一组或赞美诸神,或歌唱神明事迹的史诗体诗歌被称为“荷马赞歌/荷马颂诗”(Homeric Hymns)。
(2)古希腊发明扩展阅读
神话由人民集体口头创作,表现对超能力的崇拜、斗争及对理想追求及文化现象的理解与想象的故事,属民间文学的范畴,具有较高的哲学性、艺术性。千百年来一直是文人墨客与民间艺人进行创作的不朽源泉,对后世影响深远。
神话并非现实生活的科学反映,而是由于远古时代,人类开始思考与探索自然并结合自己的想象力所产生的。
宗教是人类社会发展到一定历史阶段出现的一种文化现象,属于社会特殊意识形态。旧时由于人对自然的未知探索,以及表达人渴望不灭解脱的追求;
进而相信现实世界之外存在着超自然的神秘力量或实体,使人对该一神秘产生敬畏及崇拜,从而引申出信仰认知及仪式活动体系,与民间神话一样,其也有自己的神话传说,彼此相互串联,其是一种心灵寄托。
宗教神话则是宗教在发展过程中吸收神话人物与事件而形成的传说,也属于特殊意识形态体现方式。
3. 古希腊文大概什么时候发明的
英国考古学家伊文思(Arthur John Evans)在希腊克里特岛发现的泥版残片,有两种文字形式,被专称为线形文字A和线属形文字B。线形文字B于1950年被文屈斯(Michael Ventris)破译,证明其为希腊语的一种古代形式,使用于迈锡尼文明时期。而线形文字A则至今未被破解。它的破解是考古学上的“圣杯”。
线形文字A
尽管这两种文字共用许多符号,使用线形文字B所表达的音节来套用线性文字A所得到的结果和任何已知的语言都没有关系。这种语言被命名为米诺斯语。使用时间对应于米诺斯文明先于约前1450年,迈锡尼人入侵的阶段,即前1800年至前1450年。
4. 古希腊人发明了什么文字
古希腊人发明了线形文字。
英国考古学家伊文思(Arthur John Evans)在希腊克里特岛发现的泥版残片,有两种文字形式,被称为线形文字A和线形文字B。线形文字B于1950年被文屈斯(Michael Ventris)破译,证明其为希腊语的一种古代形式,使用于迈锡尼文明时期。而线形文字A则至今未被破解。
创造希腊文的民族在公元前二千年从巴尔干半岛迁移到希腊半岛及其邻近地区。希腊文最后分化出四种方言:依奥利亚(Aeolic)、爱奥尼亚(Ionic)、阿卡狄亚-塞普路斯(Acado-Cyprian)、多利安(Doric)。约在公元前九世纪出现的荷马史诗《伊利亚特》和《奥德塞》,就是用爱奥尼亚方言写成的。在以后的几百年中,随着雅典城的兴起,一种叫雅典语的爱奥尼亚方言,产生了古典时期伟大的文学作品。雅典语成了希腊语的主要形式及共同语(Koine)的基础。雅典语的使用范围,远远超过现代希腊的疆界。在亚历山大大帝远征以后,雅典语的使用范围东边远达印度;后来罗马帝国信奉雅典语为第二语言。新约圣经用共同语(Koine)写成;时至今日,东正教还在用这部圣经。
根据腓尼基语改制的希腊字母表,约在公元前一千年就出现了。这是有元音字母、也有辅音字母的第一个字母表。闪米特语族诸语言的字母表与此不同,它们只有辅音字母。希腊字母最初也象闪米特字母那样,是从右到左书写的。但后来变成从右到左和从左到右交替地书写,后来又变成从左到右,成为这种样子。1952年曾解释叫做线形文字B的希腊早期文字,那时公元前一千五百年的遗物,但是到公元前一千二百年这种文字大部分废弃不用了。
从第四世纪到第十五世纪,希腊文是拜占庭帝国的官方方言;以后在土耳其统治期间,希腊人仍然讲希腊文。现代希腊文约在九世纪开始成型,到十九世纪成为希腊王国的官方语言。操希腊文的,约有一千万人,其中包括塞普路斯岛上的五十多万人。除了通俗的共同语外,还恢复了一种纯粹的古希腊语的模仿语,作为文学用语。
5. 概述古希腊的起源发展
公元前6~公元5世纪出现在希腊本土以及地中海沿岸,特别是小亚细亚西部、意大利南部的哲学学说。又称古希腊罗马哲学,是西方哲学最初发生和发展的阶段。
古典希腊哲学,或称早期希腊哲学集中在辩论与质询的任务。在很多方面,它同时为现代科学与现代哲学铺设了道路。早期希腊哲学家对后世产生的影响从未间断,从早期穆斯林哲学到文艺复兴,再到启蒙运动和现代的普通科学。
古希腊哲学的发展史古希腊哲学的发展,大体可以分为3个阶段。
自然哲学时期公元前6世纪,东方伊奥尼亚地方的一些哲学家开始提出世界的本原问题,他们反对过去流传的种种神话创世说,认为世界的本原是一些物质性的元素,如水、气、火等;他们最早用自然本身来解释世界的生成,是西方最早的唯物主义哲学家。著名的代表有米利都的泰利斯、阿那克西曼德、阿那克西米尼和爱非斯的赫拉克利特。与此同时,在意大利南部出现了具有另一种思想倾向的哲学学派,他们认为万物的本质不是物质性的元素,而是一些抽象的原则,毕达哥拉斯学派认为是“数”,以巴门尼德为代表的爱利亚学派认为是“存在”,并认为“存在”是不变的,不生不灭的,运动变化的只是事物的现象。他们提出的非物质性的抽象原则,对以后唯心主义哲学的产生影响很大。
古希腊哲学的影响 古典希腊哲学的影响在很多方面为现代科学与现代哲学铺设了道路。
在宗教方面,古典希腊哲学对早期不同宗教的希腊化发展都具有深远的影响。例如,犹太教的希腊化,著名犹太哲学家:亚里斯多布鲁斯(Aristobulus)和斐洛,便采用了寓意的解经方法。而在基督宗教当中,早期的教会父老(即教父)都融合了古希腊哲学的思想和解经方法。由于受著名的教父游斯丁、俄利根和特土良等所影响,形成了很多基督教传统教义。早期希腊哲学家对后世所产生的影响从未间断,从早期基督教神学、穆斯林哲学到文艺复兴,再到启蒙运动和现代的普通科学都可见得到。
古希腊哲学的代表人物 前苏格拉底时期
西方哲学的历史从古希腊开始,特别是一群通称为前苏格拉底时期的哲学家。这不是为了否认其他在古埃及、闪族以及巴比伦文化里出现的早期哲学家而作的谣传。诚然,每个文化中都存在伟大的思想家和作家,而我们有证据证明一些最早的希腊哲学家可能至少接触过某些古埃及和巴比伦思想的作品。然而,早期希腊思想家与他们的前人相比至少增加了一种元素,使他们与前人的思想区分开来。在历史上,我们首次在他们的作品中发现他们对于世界规律并不是教条式的主张,而包括了他们对这些理论的各种论点。
事实证明了,几乎所有早期希腊哲学家提出的各种宇宙论是极度和明确的谬误,但这并不会降低它们的重要性。因为即时以后的哲学家立刻抛弃了前人假设的答案,但他们不能逃避前人所提出的问题:
一切事物从哪来?
它到底是由什么制造的?
我们如何解释大量事物组成的本质?
为什么我们能用单一数学来描述它们?
而希腊哲学家所追随的形式和传达他们的答案方法,变得与他们所问的问题一样重要。前苏格拉底的哲学家拒绝传统的神话对他们周遭所见现象的解释,而赞同更理性的解释。换言之,他们依靠推论和观察来阐明围绕他们周围的真实自然界,而且他们使用合理的论点突出他们的观点来告诉他人。尽管哲学家对关于理性和观察相关重要性尺度有所争论,但2500年来他们基本上一致使用由前苏格拉底学派最早发明的方法。
争议常出现在确定前苏格拉底哲学家的思想,以及确定他们用以支持自己独特观点的论据的方式。这个问题并非来自他们自身或思想上的一些缺陷,纯粹是由于他们的历史与我们相隔太远的缘故。虽然多数前苏格拉底哲学家创作出标志性的著作,但我们并没有任何一本著作的完整版本。我们只有后世的哲学家和史学家对其作品的引用,与偶尔发现的原文片段。
希腊哲学总是围绕著“一”与“多”的问题在打转。在这个希腊哲学发展的最初期,已经有了“一”的观念。贤哲之士从实体的连续变化历程及生死的交替更迭中,想到宇宙有一共同的本原,看出了必有某种恒存之物,那就是最初的某物。因此,爱奥尼亚的哲学或宇宙论主要是想尝试决定万物的原始因素或原质(德语:Urstoff)。泰勒斯(Thales)宣称是水,阿那克西美尼(Anaximenes)说是气,赫拉克利特(Heraclitus)则说是火,他们虽然各执一辞,但都认为它是物质的,而且相信它只有一个。在这个决定的过程中用的不是科学或实验的方法,而是慎思明辨的理性,是直观到宇宙的同一。他们都飞越了经验观察所能指证的范围,但同时不以神话的假设为满足,而要寻求一个真正的同一原理,找出变化的原质。他们对“万物是一”及“原质(不管是水、气或火)”的肯定,是由理性或思想所指导的,而非仅仅出自想象或神话,因此被称为欧洲的第一批哲学家。
米利都学派
泰勒斯(希腊语:Θ?λη
6. 古希腊字母是如何发明的来源是什么
希腊字母大约形成于公元前11世纪,是世界上第一种元音—音素文字,它对专字母—音素文字的进一步发属展产生了重大的影响。希腊人自公元前9世纪末开始就认识了腓尼基字母,经过。不断改进,才将它变得易于使用。希腊字母文字传入东欧和意大利半岛之后,形成了斯拉夫字母体系和拉丁字母体系。而现代欧洲各国大多数的字母文字,如俄文、英文、意大利文等字母又是在希腊、拉丁字母文字的基础上演变发展过来的。
希腊字母来源于腓尼基,腓尼基是古代一个城邦国家,位于叙利亚沿岸,西临地中海,东倚黎巴嫩山,北接小亚细亚,南连巴勒斯坦。由于腓尼基地处西亚海陆交通的枢纽地区,所以航海和商业特别发达。
由于腓尼基人主要从事商业和航行事业,因此要经常坐着船到各地去做买卖。在做买卖记账时,觉得当时流行的楔形文字太繁难,需要有一种简便的文字作为记载和交往的工具,于是他们在埃及字母的基础上,创造出用22个辅音字母表示的文字。现在欧洲各国的拼音字母差不多都来源于腓尼基字母。
7. 古希腊发明了什么
体育
发明了奥运会这一体育盛会。
医学。
前3世纪初,在埃及亚历山大城作研究的希腊解剖学家希罗菲卢斯证明,脑是思维器官,人的一切感觉都是通过脑神经传递的。此外,他还提出血液循环理论,认为脉搏的轻重缓急可以说明一个人的健康程度。
地理学。
亚历山大军队的远征可谓是一次异国探秘,远征军中有一批工程师、哲学家、地理学家和测绘师等专门人才,他们随军收集资料,绘制地图,在地理学上取得辉煌成就,大大丰富了古希腊人的地理知识。前3世纪中叶,在埃及亚历山大城图书馆担任馆长的希腊学者埃拉托斯提尼利用古埃及地理测绘资料及希腊各地航海信息完成了地理学专著《地理概论》。
天文学。
古希腊的天文学在很大程度上源于巴比伦,同时也受到古埃及人的影响。古希腊天文学奠基人泰勒斯精心研究古埃及人、巴比伦人的数学和天文学后,在前人的研究成果基础上,预测出了日食和月食的发生时间。此外,希腊学者亚里斯托库斯根据巴比伦人的天文观测资料提出了“太阳中心说”。前1世纪中期,希腊学者尤利乌斯·凯撒引进埃及的太阳历,稍加改变后,成为用凯撒名字命名的“儒略历”。目前我们所使用的太阳历,也可以说是承袭了6000多年前埃及人的遗产。
数学。
古希腊的泰勒斯还是一位数学家,他研究埃及的土地测量法后,制定出测量公式。毕达哥拉斯曾游历埃及、两河流域等地,吸取了许多先进的东方科学文化思想。相传他和他的弟子总结了当时的数学知识,发现许多数学定理,如“勾股定律”等。其实在他之前,两河流域等地的数学家早已懂得勾股定律,毕达哥拉斯可能只是作了验证和普及一类的工作。前3世纪初,长期执教于埃及亚历山大城的希腊数学家欧几里德总结了当时的数学知识,根据公理、定义制定了一系列计算公式,创立了欧氏几何,成就卓越。
8. 古希腊罗马科技的古希腊、古罗马的科学
古希腊罗马的科学主要是自然哲学的形态,此外在天文学、数学、物理学等方面也有惊人的造诣。古希腊有很多领域属于思辨猜测,但在某些领域已进入理论科学的范围。 自然哲学为古希腊的理性科学奠定了基础。古希腊自然哲学中所提出的问题往往是带有普遍性的命题,对重要的自然现象进行根本性的说明,由于观察事实的不足,只能以想象和思辨的猜测得出结论,因而它不同于工艺操作的经验记述,也不同于理论科学,但还是与理论科学更为接近。不过,自然哲学的猜测毕竟要以事实的观测作为依据,所以当时自然哲学家就离不开对自然现象的研究,而是哲学和自然科学融为一体。对此,恩格斯指出:“在希腊哲学的多种多样的形式中,差不多可以找到以后各种观点的胚胎、萌芽。因此,如果理论自然科学想要追溯自己今天的一半原理发生和发展的历史,它也不得不回到希腊人那里去。”
最早的米利都学派对天文地理、数学物理以及生物方面的知识都有极大的兴趣。毕达哥拉斯学派则从数的和谐美研究了这些方面的知识。他们将自然数区分为奇数、偶数、素数以及完全数。据记载他们最早地证明了勾股定理,由此发现若等腰直角三角形的腰为1,则弦是来自一个不能公度的√2。这使他们费解,出现了数学史上的“第一次危机”,以后导致了无理数的发现。他们从数的观点构思了世界上最早的宇宙整体模型,认为十、圆、球、均速是最完美的,因此,除中心火、地球、太阳、月亮河五大行星之外,又设想一个星球“对地”,对求得天体的数目是10个。他们认为宇宙的中心是“中心火”,“对地”所处的位置是永远在中心火与地球的中央、地球永远只有一面对着中心火,人类居住在它的另一面,所以人们看不见中心火和对地。所有天体都是球形,围绕圆形轨道匀速运行,太阳和月亮都是由于反射中心火的光才能明亮的。这个模型虽属荒诞,对后世却有很大影响。他们还发现,同张力不同长度的琴弦,长度比为整数比时产生谐音,这不仅对物理学是一贡献,而且使他们对宇宙间数的和谐更加深信不疑。毕达哥拉斯派的医生阿尔克芒(公元前6世纪——公元前5世纪间)发现了视觉神经和欧式管,认识到大脑是感觉和思维的器官,被誉为古希腊医学之父。
持“四根说”的恩培多克勒开创了宇宙形成的漩涡学说,以后又被持原子论观点的留基伯所发展。诡辩派学者提出三个数学难题引起很多人的注意和研究,虽然没有得到解决,其副产品却是穷竭法的开端。柏拉图为寻求思维中的完善美,注意数学的证明方法,将研究数学的方向引入脱离实际的纯理论。偏离柏拉图研究方向的正是他的学生欧多克索(约公元前408——公元前355),他在几何学上颇有贡献,在对四边形面积和曲面体积进行计算中发展了穷竭法,预示了微积分学的萌芽。欧多克索在对天象的精细观测中提出了宇宙的整体几何模微积分学的萌芽。欧多克索在对天象的精细观测中提出了宇宙的整体几何模型——同心球模型,为解释行星视运动将其以地球为中心的同心球增加到27个。亚里士多德又发展了几个模型,将同心球的数目增加到55个。
亚里士多德是古希腊“最博学的人”。他除发展了同心球几何模型外,还完成了世界上第一部物理学专著《物理学》。由于历史的局限,有人说“亚里士多德的教的一切皆伪”,并且成为后来宗教利用的工具,不过他对机械运动的认真推理研究却是科学史上的一件大事。在生物学方面他采取了不同的研究方式。他所记载的500种动物中,亲手解剖观察的至少有50种,对动物作了分类,其方法多达8种,其中“级进分类法”注意到等级间的连续性,把整个生物界看成一个延续的系列。以后,被他的学生狄奥弗拉斯特(约公元前372——公元前286)所继承。 以植物以基干和枝条的状态为标准进行分类。塔里士多德突破了直观思维的方法,为自然科学从自然哲学中逐渐分化出来做了准备。
亚里士多德之后,古希腊还有很多领域属于思辨猜测,但在某些领域已进入理论科学的范围。自然哲学的思辨猜测、逻辑推理得出大量关于自然现象的定性结论,错误百出,甚至笑话荒诞,历史的局限也在所难免,但却促使人们更加重视理论思维,成为科学发展进程中的必经之路,也是古代科学中一种知识形态,为理论科学的诞生奠定了基础。 欧多克斯(约409-356BC)在柏拉图关于天体作匀速圆周运动的原则指导下提出了天体的同心球理论。他一共设置了27个同心球:恒星一个,五颗行星每颗四个,太阳和月亮各占三个。
亚里士多德之后,萨摩斯的阿利斯塔克(公元前310——公元前230)最早提出日心说。他根据三角形测量法测量得日月与地球的距离之比、并根据月食时地球投射到月球上的影子以及太阳和月球的视角估计了地球、太阳和月球的大小。他还作出与众不同的大胆猜想,出现了地球与行星围绕太阳旋转的最早的太阳中心说,并且认为太阳与恒星是不动的,地球还围绕自己的轴每天自转一周。这些观点已很接近哥白尼的日心说,但在当时的情况下,不符合世俗观点,又没有确凿证据进行论证,这种思想刚一出世,阿利斯塔克本人就受到控告,一种新鲜的思想被认为是渎神而被扼杀了,虽然如此,在一定程度上也动摇了同心球宇宙模型。阿利斯塔克还根据得到的日、月、地大小和距离数据,提出地球绕着太阳转动的地动说。对于因此而应该产生的但没有被观测到的恒星周年视差,他假定地球轨道半径与地球到恒星的距离相比是微不足道的。这一学说富有革命性但缺乏经验事实的支持。
不久,阿波罗尼乌斯(约公元前262——公元前190)提出了两个数学发明:偏心圆运动和本轮、均轮模型,为天文学家解决行星视运动问题提供了基础,本轮和均轮的运动可以从数学上解释行星的各种运动状态:留、逆行等。
这一模型被伊巴谷(约公元前190——公元前120)所继承。这是伊巴谷的本轮一均论模型,即天体都在自己固有的本轮上做了均速圆周运动,本轮的中心又在以地球为中心的均论上作不同速度大小和方向的均速圆周运动。模型的本身没有改变人们的习惯认识,模型有很好地解释了当时所观察到的日月距离的变化以及行星的视运动,因此,它很快被人们所接受,而后又被罗马时代的托勒密(约90—168)继承和完善。 伊巴谷本人的工作使人信服也是模型易使人们接受的一个原因。伊巴谷工作于罗特斯岛天文台35年,日夜进行着天象观测与精密构思,他所发明的天文仪器和研究方法都高人一等。他最先发现了岁差,测得一回归年和一朔望月的时间,以及月球半径和地球半径之比,月地距离与地球半径之比。伊巴谷被誉为古希腊成就最大的天文学家。
阿波罗尼乌斯的发明还被喜帕恰斯(约190-127BC)用来描述天文现象,从此希腊天文学走上了一条康庄大道。喜帕恰斯在构建日月和行星运动几何模型时采用了巴比伦几个世纪以来保存的观测数据。他的另一项重要发现就是春分点的退行即岁差现象,并提出了太阳运动模型,很好地解决了四季长度不等与匀速圆周运动之间的矛盾。 除天文学之外,希腊人在数学方面的成就是惊人的。他们把埃及人和巴比伦人的经验和智慧提炼和升华为一种新的体系,有了这一体系,后人便不再必须通过经验而只需通过书本和逻辑就能掌握几何学了。据说米利都的泰勒斯最先提出和证明直径等分圆、直径所对的圆周角是直角、等腰三角形底角相等、相似三角形对应边成比例等命题,还提出三角形全等的条件。这在今天都是中学几何学的内容,但在当时是了不起的科学发现。毕达哥拉斯及其学派证明了勾股定理和发现了根号2。到古希腊后期在科学理论上贡献最大的应推亚历山大城的欧几里得(约公元前323—公元前235)和西西里岛的阿基米德(约公元前287—公元前212)。
欧几里得是希腊数学的集大成者,古希腊数学家,被称为“几何之父”。他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展欧几里得几何,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品,是几何学的奠基人 。欧几里得通过早期对柏拉图数学思想,尤其是几何学理论系统而周详的研究,察觉到几何学理论的发展趋势,将缺乏系统性的片断、零碎的知识,缺乏联系性的公理、证明,缺乏逻辑性的公式和定理进行严格的逻辑论证和说明。系统地整理之前的几何学成果,从10个公设、公理出发,按严格的逻辑证明推出467个命题,形成了一个完整的几何学体系。欧几里得在 13卷的《几何原本》中所创立的数学方法,即在定义和公理基础上的抽象逻辑体系,不仅为几何学的研究和教学提供了蓝本,而且对整个自然科学的发展产生了巨大影响,它的明晰性和可靠性为后辈科学家所叹服。这是希腊人对数学发展完全独创性的贡献,几何学从此成为一门科学以及古代最成熟的学科。他的其他著作:《已知数》:指出若几何难题图形中的已知元素,内容与《几何原本》的前四卷有密切关系。《圆形的分割》:论述用直线将已知图形分为相等的部分或成比例的部分,内容与西罗的作品相似。《反射光学》:论述反射光在数学上的理论,尤其论述形在平面及凹镜上的图像。《现象》:是一本关于球面天文学的论文,这本书与奥托吕科斯所写的作品相似。 《光学》:早期几何光学著作之一,这本书主要研究透视问题,叙述光的入射角等于反射角等。
阿基米德(公元前287年—公元前212年),古希腊哲学家、数学家、物理学家。阿基米德到过亚历山大里亚,据说他住在亚历山大里亚时期发明了阿基米德式螺旋抽水机。阿基米德把观察和数学推理、理论研究和实际应用相结合,发现了杠杆原理和浮力定律,给出了求解复尽杂物体重心的方法。他的研究方法已接近现代的研究方法,被誉为“力学之父”。阿基米德流传于世的数学著作有10余种,多为希腊文手稿。他是把数学研究与力学研究相结合,把自然科学与工程技术相结合的杰出代表。他在力学问题的研究中,最著名的是杠杆原理和浮力定律,著作有《论杠杆》、《论平板的平衡》、《认重心》、《论浮力》等。传记作家普鲁塔克这样评论阿基米德的著作:“在整个几何学上不可能找到更困难更错综复杂的问题,也不可能找到更简单更清晰的解说。”在《论平板的平衡》中,有句著名的话叫做“给我一个支点和一根足够长的杠杆,我就能撬动整个地球。”该书系统地讨论了杠杆原理,揭示了重量、支点和力三者之间的关系,指出了加于杠杆支点两边的重量或作用之比等于两个力臂长度之反比,揭示了理论力学的萌芽。阿基米德利用公设、命题来表述的杠杆原理,其形式与近代理论自然科学颇为相似。在《论浮体》中,他用数学分析方法首先论证了浮力定律,证明了一物体浮在液体之中,其所受浮力等于所排开的液体的重量;沉于液体中时,其所失重量也与所排开的液体重量相等。出现阿基米德原理公式:浸在液体里的物体受到向上的浮力,浮力大小等于物体排开液体所受重力。即F浮=G液排=ρ液gV排(V排表示物体排开液体的体积F表示物体于气体和液体浮力),使用范围:气体和液体。在《论球和圆柱》中,他证明了:(命题13)任一正圆柱(不记上下底)的表面积等于一圆的面积,该圆半径是圆柱高与底直径的比例中项;(命题33)任一球面积等于其大圆面积的四倍;(命题34推论)以球的大圆为底以球直径为高的圆柱,其体积是球体积的3/2。其包括上下底在内的表面积是球面积的3/2。他对这条定理非常喜爱,以致遗言把它刻在墓碑上。
在数学上精心研究了圆周、球体、椎体、着重去探讨计算面积、体积的一般方法。他还发明了滑轮起重机、螺旋提水器、模仿日月、行星绕地球运动的水力推动仪器等,所以说他还是一位军械发明家。阿基米德在科学上取得的成就主要决定于阿基米德的科学研究思想和他建立的一整套研究方法,又使数学研究与实际应用紧密结合,得出一般方法。研究力学问题时首先注意实际观察和实验,从中得出公理和基本假定,继而用严密的逻辑推理、数学论证去探求其力学原理。数学、力学二者又互相联系,就像他本人所说,力学研究推进了他的数学研究;从他的力学著作中又能看到数学的分析如何促成他达到理论高度。最早给予力学原理艺术学表达式的也正是阿基米德。这也是他获得成就的主要原因之一,同时离不开社会时间的条件、社会生产的影响以及阿基米德为科学事业的献身精神。叙拉古城失陷时,他正在专心致志地研究问题,不幸被一罗马士兵刺死。 希腊医学中许多知识是直接来自埃及和两河流域的。符咒和驱邪曾是流行的治疗方法。大约在公元前五世纪,出现了以行医为业的医生,并逐渐形成一些医学派别。在医学领域,以医学兼解剖学家的赫罗菲拉斯(公元前4世纪)为创始人,建立了亚历山大城的一个医学派。赫罗菲拉斯较为重视实际经验,对人体很多器官进行了很好的描述,譬如他接受了阿尔克芒的观点,批判了亚里士多德吧心脏看作思维器官的说法。他是第一个区分动脉和静动脉的人。接着,埃拉西斯特拉塔(约公元前304—公元前250)考察了人体中动脉和静动脉的分布以及大脑的功能,第一个将生理学作为独立学科加以研究。他还提出所谓的“灵气”学说,认为空气被人吸进肺部之后进入心脏变为“活力灵气”,再通过动脉流向全身,“活力灵气”的一部分流入人脑变为“灵魂灵气”,再通过神经动脉流向全身。 欧德谟(公元前3世纪)研究面更广,通过解剖研究骨骼、神经、胰腺、甚至胚胎。这个学派为欧洲的医学奠定了基础。
希波克拉底被认为是古希腊的医学之父,有全集59篇,集古希腊医学之大成。该派的理论和医术走在了现代以前任何时代的见解前面。希波克拉底认为疾病是人体的自然过程,主张用观察和实验方法研究疾病并创立了“四体液说”,认为人体由血液、粘液、黄胆和黑胆四种体液组成,这四种体液的不同配合使人们有不同的体质。他把疾病看作是发展着的现象,认为医师所应医治的不仅是病而是病人;从而改变了当时医学中以巫术和宗教为根据的观念。主张在治疗上注意病人的个性特征、环境因素和生活方式对患病的影响。重视卫生饮食疗法,但也不忽视药物治疗,尤其注意对症治疗和预防。他对骨骼、关节、肌肉等都很有研究。
在生物学领域,阿那克西曼德曾想象人是由鱼变来的,因为人的胚胎很像鱼。亚里士多德采用的解剖和观察法在生物学史上是首创的。狄奥弗拉斯特(约公元前372—公元前286)继承和补充了他的老师亚里士多德的工作。
地理学在古希腊后期主要是亚历山大城图书馆馆长埃拉托色尼(约公元前273—公元前192)的工作了。他著有《对地球大小的修正》和《地理论述》,记载了许多地方的地形、气候和矿产,记载了地球周长,其值与今天测得的赤道周长仅差385.13千米。他用巧妙的办法确定了地球上山川的位置,绘制了世界上最早的经纬网格表示的地图。
在物理学领域,泰勒斯认为磁石吸铁,磁石有灵魂。阿那克西曼德和阿那克西美尼分别对风和虹的形成作了大致正确的说明。恩培多克勒也正确地认为,听觉是声音造成的,声音是空气振动造成的。毕达哥拉斯派研究了弦的长度和音律的关系。埃利亚的芝诺提出四大悖论。亚里士多德写了世界上最早的《物理学》专著,他研究的是最简单的机械运动现象。 罗马的文明实际上是希腊文明的继续。罗马位于意大利半岛,由于扩张的结果,成为横跨欧、亚、非三大洲的大帝国,公元1世纪—公元2世纪为其鼎盛时期,自公元3世纪走向衰落。
古罗马在理论科学上与古希腊相比,不仅仅是逊色的问题,而是一大倒退,这与罗马时代的社会及思想局限分不开。罗马本身是一个以农业为基础发展起来的军事帝国,长期的军事行动使之着重于军事掠夺,即使在帝国建立初期的稳定时期也只是在掠夺的基础上追求奢侈豪华的生活,从表面上显示自己的权威,丝毫不存在继承和发展希腊科学成就的思想,因而,第一次战争就焚毁亚历山大城珍藏的手稿50万份;以后为镇压不信仰基督教的异端又焚毁书稿30万份。他们认为古希腊的数学仅仅是一种“方术”,扼杀了刚刚踏入门槛的数学推理,还有奴隶本身所决定的权力日益集中,贫富分化加剧,是科学发展失去动力。因此,古罗马盛期的繁荣只是重实际轻理论的暂时现象。古希腊科学在古罗马时期走向衰落,但在天文学和医学仍有重要进展。托勒密的《至大论》集古代天文学之大成,运用数学模型方法建立了地心说体系。盖伦医生提出了“灵气论”学说。托勒密地心说和盖伦医学统治西方科学长达1500年之久。
托勒密(约100-170AD)继伊巴谷之后进行了细致的天文观测,更完善了宇宙几何模式本轮一均轮体系。他将天体运行的圆形轨道增加到80个,使其与观测结果更好的相符。虽然他已认为这样庞大复杂的系统没有客观实在性,只有数学上处理的意义,但因摆脱不了旧轨,他还是奴隶不懈地进行研究,得出比较满意的结果,最后著成《至大论》一书,其影响延至16世纪哥白尼心体系建立之后。
自然学家普林尼(23-79)同时也是医药网络学家,记录了包括从蔬菜到动物、矿物制成的药品,提供了那个年代的公共卫生方面的资料,汇集成为《自然史》。公元一世纪塞尔苏斯的网络全书中的医学部分被保存下来,他深信希波克拉底的病理学观点,并有所进步。详细叙述了对外伤、骨折的治疗,总结了炎症的四个主要症状:红、肿、热、痛。
盖伦(129-199)生于小亚细亚爱琴海边一个建筑师家庭,早年跟随当地柏拉图学派的学者学习,十七岁时跟随一位精通解剖学的医生学习医学知识,是古罗马时期最著名最有影响的医学大师,被认为是仅次于希波克拉底的第二个医学权威。盖伦是最著名的医生和解剖学家。一生专心致力于医疗实践解剖研究(罗马人统治时期严禁人体解剖,盖伦通过解剖动物来了解人体)、写作和各类学术活动。一生写了131部著作,其中《论解剖过程》、《论身体各部器官功能》两书阐述了他自己在人体解剖生理上的许多发现。
值得指出,古希腊哲学的影响形成了古罗马唯物主义与唯心主义的两大派别。以卢克莱修(约公元前99—公元前55)为代表的唯物主义派别继承和完善了伊壁鸠鲁的原子论思想;唯心主义学派继承了斯多葛派的泛神论和柏拉图的灵魂转世说,二者的结合成为古罗马炼金术的思想基础,使炼金术在古罗马流行300年,虽属荒唐,但为化学科学的起源积累了知识。总的来看,古罗马时代理论科学的主流没有什么大的建树,只是古希腊部分理论科学的系统和完善。
9. 古希腊人发明了什么对世界有影响的东西
爱琴海是古希腊文明的摇篮,古代希腊作为一个文明古国,曾经在科技、数回学、医学、答哲学、文学、戏剧、雕塑、绘画、建筑等方面做出巨大的贡献,成为后代欧洲文明发展的源头.希腊文明对我们如今的社会产生的影响是巨大的.可以说,如果没有希腊文明,就几乎没有我们今天现代社会的一切.现代的许多科学学科、技术发明以及民主制度,早在古希腊时代就已经产生出了其雏形.古希腊文明更是直接催生了中世纪欧洲的文艺复兴,导致近代科学的产生、民主制度的萌芽.这是希腊文明对整个人类世界做出的最重要最关键的一个贡献
10. 古希腊科技之神
阿基米德是伟大的古希腊哲学家、网络式科学家、数学家、物理学家、力回学家,静态力答学和流体静力学的奠基人,并且享有“力学之父”的美称,阿基米德发现了杠杆原理与浮力定律,利用浮力定律发明了螺旋式水车,被后世科学家们誉为“科学之神”.“给我一个支点,我将撬动整个地球.”是阿基米德杠杆原理的夸张说法.
故选A.