导航:首页 > 创造发明 > 碳纤维发明

碳纤维发明

发布时间:2021-09-03 05:34:35

① 碳纤维是日本人谁发明

日本大阪工业试验所的【进藤昭男】发明了PAN基碳纤维

② 为什么超跑都用碳纤维它的优缺点有哪些

一般说到超级跑车追求轻量化的设计大家都会想到什么材质?没错就是碳纤维。不论是车身还是内饰,这种拥有诸多优点的高级材料已经被大量的应用在超级跑车上,即便不是超跑,一些追求运动性能的车型也会用到这种材料,来凸显高级感和运动感。今天我们就来看看碳纤维材质优点有哪些,为什么会如此昂贵。
什么是碳纤维材质?
碳纤维材质的英文名称为Carbon Fiber,也被简称为CF。目前全球碳纤维材质技术最成熟的国家是日本和美国,该材质于1880年被爱迪生发明出来,首次应用在汽车上是1953年的雪佛兰科尔维特C1车型上。碳纤维其实就是一种含碳量达到95%以上的纤维材料,可以理解为就是由碳组成。
碳纤维的优点:
重量轻:汽车的重量是影响性能的一个重要因素,为了能够极大的减轻重量,各大厂商的工程师们也是绞尽脑汁,而碳纤维材质也正是凭借着出色的轻量化特点被普遍应用在追求性能的车型上。同样的一个零部件,采用碳纤维材质打造能比钢材减少一半的重量,比铝合金材质减少三分之一的重量。另外碳纤维的轻量化特点也能为纯电动汽车提供更长的续航里程,从而达到节能的目的。
高强度:这一点从F1赛车上就能体现,每一款F1赛车都采用了大量的碳纤维材质,不仅仅是为了追求轻量化,同时也因为碳纤维材质的高强度特点,能够在车辆高速发生碰撞的情况下极大的保护车身的安全。大家如果了解F1应该知道,F1赛车的座舱非常坚固,往往在时速超过200km/h的情况下发生碰撞也依旧能够保证完整,从而不会对车身造成伤害。
耐用性:碳纤维材质不会出现其他金属材质会发生的腐蚀和生锈问题,同时碳纤维耐高温、低寒等特性也让它的使用寿命更长,并且用于高性能车型的关键部位还可以提升车辆的极限性能,比如应用在传动轴或半轴的部位,便可以承受更高的动力强度以及更好的传动效率。
碳纤维的缺点:
碳纤维材质当然也有不足的地方,在汽车领域目前碳纤维最大的缺点就是可塑性低,不同于普通金属车身具有一定的延展性,发生碰撞后可以用各种工艺进行修复,而碳纤维材质在发生碰撞后就只能整体更换新的部件了,无法修复。所以碳纤维材质的可回收性和使用成本都非常高。
今天我们简单的了解了一下碳纤维材质,对于汽车领域来讲碳纤维材质带来了许多突破性的贡献,不论是性能还是能耗都有了非常明显的提升,未来碳纤维技术还会继续发展,可能也会普及到我们日常的民用车型上,但首先需要突破的就是不可修复这个重要性质。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

③ 碳纤维是谁在什么时候发明的

碳纤维是1860年,由英国人在制作电灯灯丝时发明的。

碳纤维材料是一种既有碳材料性质,又兼具纺织纤维柔软和可加工性的新一代高性能增强纤维,被业界誉为“黑色黄金”。

据中国军网报道,碳纤维的起源最早可追溯至1860年,它是由英国人在制作电灯灯丝时发明的。这种材料呈黑色、质坚硬,虽然它比头发丝还细几倍,但其强度比钢大、密度比铝小,比不锈钢耐腐蚀、比耐热钢耐高温。在对其经特殊复合成型工艺加工后,可得到性能优异的碳纤维复合材料。碳纤维被广泛应用于航空、航天、能源、交通、军用装备等领域,是国防军工和民用生产生活的重要材料。

不过,由于碳纤维材料具有强度高、超轻、耐高温高压等特点,这导致碳纤维的回收再利用非常困难。但上海交通大学化学化工学院王新灵教授研究团队经过5年艰苦的技术攻关,开发了国内第一项拥有完全自主知识产权的、规模化的新型裂解回收技术和装备。据央广网介绍,这套技术对碳纤维复合材料废弃物的年处理能力超过200吨,与国际先进技术相比,这一技术既免除了废弃物切割、粉碎的工序,还保持了再生碳纤维的足够长度、提高了碳纤维再利用的价值。相信,随着碳纤维生产成本的下降,处理手段的逐渐完善,这种材料会逐渐成为我们日常生活中必不可少的原材料。

④ 碳纤维是谁先发明的

日本人 近藤昭男

⑤ 碳纤维是谁发明的

最早爱迪生用碳化棉丝做灯丝是碳纤维最早的应用。近代碳纤维各原料有不同发明者,近藤昭男发明的PAN基碳纤维。

⑥ 碳纤维简介

碳纤维(carbon fiber,简称CF),是一种含碳量在95%以上的高强度、高模量纤维的新型纤维材料。它是由片状石墨微晶等有机纤维沿纤维轴向方向堆砌而成,经碳化及石墨化处理而得到的微晶石墨材料。碳纤维“外柔内刚”,质量比金属铝轻,但强度却高于钢铁,并且具有耐腐蚀、高模量的特性,在国防军工和民用方面都是重要材料。它不仅具有碳材料的固有本征特性,又兼备纺织纤维的柔软可加工性,是新一代增强纤维。[1-4]
碳纤维具有许多优良性能,碳纤维的轴向强度和模量高,密度低、比性能高,无蠕变,非氧化环境下耐超高温,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小且具有各向异性,耐腐蚀性好,X射线透过性好。良好的导电导热性能、电磁屏蔽性好等。
碳纤维与传统的玻璃纤维相比,杨氏模量是其3倍多;它与凯夫拉纤维相比,杨氏模量是其2倍左右,在有机溶剂、酸、碱中不溶不胀,耐蚀性突出。

(1) 组成结构
碳纤维是含碳量高于90%的无机高分子纤维。其中含碳量高于99%的称石墨纤维。碳纤维的微观结构类似人造石墨,是乱层石墨结构。[5] 碳纤维各层面间的间距约为3.39到3.42A,各平行层面间的各个碳原子,排列不如石墨那样规整,层与层之间借范德华力连接在一起。[6]
通常也把碳纤维的结构看成由两维有序的结晶和孔洞组成,其中孔洞的含量、大小和分布对碳纤维的性能影响较大。[7]
当孔隙率低于某个临界值时,孔隙率对碳纤维复合材料的层间剪切强度、弯曲强度和拉伸强度无明显的影响。有些研究指出,引起材料力学性能下降的临界孔隙率是1%-4%。孔隙体积含量在0-4%范围内时,孔隙体积含量每增加1%,层间剪切强度大约降低7%。通过对碳纤维环氧树脂和碳纤维双马来亚胺树脂层压板的研究看出,当孔隙率超过0.9%时,层间剪切强度开始下降。由试验得知,孔隙主要分布在纤维束之间和层间界面处。并且孔隙含量越高,孔隙的尺寸越大,并显著降低了层合板中层间界面的面积。当材料受力时,易沿层间破坏,这也是层间剪切强度对孔隙相对敏感的原因。另外孔隙处是应力集中区,承载能力弱,当受力时,孔隙扩大形成长裂纹,从而遭到破坏。[8]
即使两种具有相同孔隙率的层压板(在同一养护周期运用不同的预浸方法和制造方式),它们也表现处完全不同的力学行为。力学性能随孔隙率的增加而下降的具体数值不同,表现为孔隙率对力学性能的影响离散性大且重复性差。由于包含大量可变因素,孔隙对复合材料层压板力学性能的影响是个很复杂的问题。这些因素包含:孔隙的形状、尺寸、位置;纤维、基体和界面的力学性能;静态或者动态的荷载。[8]
相对于孔隙率和孔隙长宽比,孔隙尺寸、分布对力学性能的影响更大些。并发现大的孔隙(面积>0.03mm2)对力学性能有不利影响,这归因于孔隙对层间富胶区的裂纹扩展的产生影响。[8]

(2)
物理性质
碳纤维兼具碳材料强抗拉力和纤维柔软可加工性两大特征,
碳纤维
是一种的力学性能优异的新材料。碳纤维拉伸强度约为2到7GPa,拉伸模量约为200到700GPa。密度约为1.5到2.0克每立方厘米,这除与原丝结构有关外,主要决定于炭化处理的温度。一般经过高温3000℃石墨化处理,密度可达2.0克每立方厘。再加上它的重量很轻,它的比重比铝还要轻,不到钢的1/4,比强度是铁的20倍。碳纤维的热膨胀系数与其它纤维不同,它有各向异性的特点。碳纤维的比热容一般为7.12。热导率随温度升高而下降平行于纤维方向是负值(0.72到0.90),而垂直于纤维方向是正值(32到22)。碳纤维的比电阻与纤维的类型有关,在25℃时,高模量为775,高强度碳纤维为每厘米1500。这使得碳纤维在所有高性能纤维中具有最高的比强度和比模量。同钛、钢、铝等金属材料相比,碳纤维在物理性能上具有强度大、模量高、密度低、线膨胀系数小等特点,可以称为新材料之王。[3] [9-11]
碳纤维除了具有一般碳素材料的特性外,
碳纤维编织布[12]
其外形有显著的各向异性柔软,可加工成各种织物,又由于比重小, 沿纤维轴方向表现出很高的强度,碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构材料中是最高的。[11] 碳纤维树脂复合材料抗拉强度一般都在3500兆帕以上,是钢的7到9倍,抗拉弹性模量为230到430G帕亦高于钢;因此CFRP的比强度即材料的强度与其密度之比可达到2000兆帕以上,而A3钢的比强度仅为59兆帕左右,其比模量也比钢高。与传统的玻璃纤维相比,杨氏模量(指表征在弹性限度内物质材料抗拉或抗压的物理量)是玻璃纤维的3倍多;与凯芙拉纤维相比,不仅杨氏模量是其的2倍左右。碳纤维环氧树脂层压板的试验表明,随着孔隙率的增加,强度和模量均下降。孔隙率对层间剪切强度、弯曲强度、弯曲模量的影响非常大;拉伸强度随着孔隙率的增加下降的相对慢一些;拉伸模量受孔隙率影响较小。[8]
碳纤维还具有极好的纤度(纤度的表示法之一是9000米长纤维的克数),一般仅约为19克,拉力高达300kg每微米。几乎没有其他材料像碳纤维那样具有那么多一系列的优异性能, 因此在旨度、刚度、重度、疲劳特性等有严格要求的领域。在不接触空气和氧化剂时,碳纤维能够耐受3000度以上的高温,具有突出的耐热性能,与其他材料相比,碳纤维要温度高于1500℃时强度才开始下降,而且温度越高,纤维强度越大。碳纤维的径向强度不如轴向强度,因而碳纤维忌径向强力(即不能打结)而其他材料的晶须性能也早已大大的下降。另外碳纤维还具有良好的耐低温性能,如在液氮温度下也不脆化。[3] [9] [13]
化学性质
碳纤维的化学性质与碳相识,它除能被强氧化剂氧化外,对一般碱性是惰性的。在空气中温度高于400℃时则出现明显的氧化,生成CO与CO2。[6-7] 碳纤维对一般的有机溶剂、酸、碱都具有良好的耐腐蚀性,不溶不胀,耐蚀性出类拔萃,完全不存在生锈的问题。[11] 有学者在1981年将PAN基碳纤维浸泡在强碱氢氧化钠溶液中,时间已过去30多年,它仍保持纤维形态。但其耐冲击性较差,容易损伤,在强酸作用下发生氧化,碳纤维的电动势为正值,而铝合金的电动势为负值。当碳纤维复合材料与与铝合金组合应用时会发生金属碳化、渗碳及电化学腐蚀现象。因此,碳纤维在使用前须进行表面处理。[4] 碳纤维还有耐油、抗辐射、抗放射、吸收有毒气体和减速中子等特性[3] [9] [13] 。

(3)分类

碳纤维按原料来源可分为聚丙烯腈基碳纤维、
1K碳纤制作的管
沥青基碳纤维、粘胶基碳纤维、酚醛基碳纤维、气相生长碳纤维;按性能可分为通用型、高强型、中模高强型、高模型和超高模型碳纤维;按状态分为长丝、短纤维和短切纤维;按力学性能分为通用型和高性能型。通用型碳纤维强度为1000兆帕、模量为100G帕左右。高性能型碳纤维又分为高强型(强度2000兆帕、模量250G帕)和高模型(模量300G帕以上)。强度大于4000兆帕的又称为超高强型;模量大于450G帕的称为超高模型。随着航天和航空工业的发展,还出现了高强高伸型碳纤维,其延伸率大于2%。用量最大的是聚丙烯腈PAN基碳纤维。[14] 市场上90%以上碳纤维以PAN基碳纤维为主。由于碳纤维神秘的面纱尚未完全揭开,人们还不能直接用碳或石墨来制取,只能采用一些含碳的有机纤维(如尼龙丝、腈纶丝、人造丝等)为原料,将有机纤维与塑料树脂结合在一起炭化制得碳纤维。[4] [15-17]
PAN基碳纤维
PAN基碳纤维的生产工艺主要包括原丝生产和原丝碳化两个过程:首先通过丙烯腈聚合和纺纱等一系列工艺加工成被称为“母体“的聚丙烯腈纤维或原丝, 将这些原丝放入氧化炉中在200到300℃进行氧化,还要在碳化炉中,在温度为1000到2000℃下进行碳化等工序制成碳纤维。[18] [19]
沥青基碳纤维
美国发明了纺织沥青基碳纤维用的含有基金属中间相沥青,原丝经稳定化和碳化后,碳纤维的拉伸强度为3.5G帕,模量为252G帕;法国研制了耐热和高导电的中间相沥青基碳纤维;波兰开发了新型金属涂覆碳纤维的方法,例如涂覆铜的沥青基碳纤维是用混合法制成,先用铜盐与各向同性煤沥青混匀,进行离心纺丝,在空气中稳定化并在高温氢气中处理,得到合金铜的碳纤维。 世界沥青基碳纤维的生产能力较小,国内沥青基碳纤维的研究和开发较早,但在开发、生产及应用方面与国外相比有较大的差距。[19-20]
碳纤维按产品规格的不同被划分为宇航级和工业级两类,亦称为小丝束和大丝束。通常把48K以上碳纤维称为大丝束碳纤维,包括360K和480K等。宇航级碳纤维初期以3K为主,逐渐发展为12K和24K,主要应用于国防军工和高技术,以及体育休闲用品,像飞机、导弹、火箭、卫星和钓鱼杆、球杆球拍

(4) 制备方式

工业化生产碳纤维按原料路线可分为聚丙烯腈(PAN)基碳纤维

、沥青基碳纤维和粘胶基碳纤维三大类,但主要生产前两种碳纤维。由粘胶纤维制取高力学性能的碳纤维必须经高温拉伸石墨化,碳化收率低,技术难度大,设备复杂,原料丰富碳化收率高,但因原料调制复杂、产品性能较低,亦未得到大规模发展;由聚丙烯腈纤维原丝制得的高性能碳纤维,其生产工艺较其他方法简单,产量约占全球碳纤维总产量的90%以上。[18] [22-23]
工艺流程
碳纤维可分别用聚丙烯腈纤维、沥青纤维、粘胶丝或酚醛纤维经碳化制得。应用较普遍的碳纤维主要是聚丙烯腈碳纤维和沥青碳纤维。碳纤维的制造包括纤维纺丝、热稳定化(预氧化)、碳化、石墨化等4个过程。其间伴随的化学变化包括,脱氢、环化、预氧化、氧化及脱氧等。[22-23]
从粘胶纤维制取高力学性能的碳纤维必须经高温拉伸石墨化,碳化收率低,技术难度大、设备复杂,产品主要为耐烧蚀材料及隔热材料所用;由沥青制取碳纤维,原料来源丰富,碳化收率高,但因原料调制复杂、产品性能较低,亦未得到大规模发展;由聚丙烯腈纤维原丝可制得高性能的碳纤维,其生产工艺较其它方法简单力学性能优良,自20世纪60年代后在碳纤维工业发展良好。[19]
聚丙烯腈基碳纤维的生产主要包括原丝生产和原丝碳化两个过程。[19] [21]
原丝生产过程主要包括聚合、脱泡、计量、喷丝、牵引、水洗、上油、烘干收丝等工序。[19] [21]
碳化过程主要包括放丝、预氧化、低温碳化、高温碳化、表面处理、上浆烘干、收丝卷绕等工序。[19] [21]
PAN基碳纤维的制备
聚丙烯腈碳纤维是以聚丙烯腈纤维为原料制成的碳纤维,主要作复合材料用增强体。无论均聚或共聚的聚丙烯腈纤维都能制备出碳纤维。为了制造出高性能碳纤维并提高生产率,工业上常采用共聚聚丙烯腈纤维为原料。对原料的要求是:杂质、缺陷少;细度均匀,并越细越好;强度高,毛丝少;纤维中链状分子沿纤维轴取向度越高越好,通常大于80%;热转化性能好。[6] [24]
生产中制取聚丙烯腈纤维的过程是:先由丙烯腈和其他少量第二、第三单体(丙烯酸甲醋、甲叉丁二脂等)共聚生成共聚聚丙烯腈树脂(分子量高于 6到8万),然后树脂经溶剂(硫氰酸钠、二甲基亚矾、硝酸和氯化锌等)溶解,形成粘度适宜的纺丝液,经湿法、干法或干湿法进行纺丝,再经水洗、牵伸、干燥和热定型即制成聚丙烯腈纤维。若将聚丙烯腈纤维直接加热易熔化,不能保持其原来的纤维状态。制备碳纤维时,首先要将聚丙烯腈纤维放在空气中或其他氧化性气氛中进行低温热处理,即预氧化处理。预氧化处理是纤维碳化的预备阶段。一般将纤维在空气下加热至约270℃,保温0.5h到3h,聚丙烯腈纤维的颜色由白色逐渐变成黄色、棕色,最后形成黑色的预氧化纤维。是聚丙烯腈线性高分子受热氧化后,发生氧化、热解、交联、环化等一系列化学反应形成耐热梯型高分子的结果。再将预氧化纤维在氮气中进行高温处理1600℃的碳化处理,则纤维进一步产生交联环化、芳构化及缩聚等反应,并脱除氢、氮、氧原子,最后形成二维碳环平面网状结构和层片粗糙平行的乱层石墨结构的碳纤维。[7] [24]
由PAN原丝制备碳纤维的工艺流程如下:PAN原丝→预氧化→碳化→石墨化→表面处理→卷取→碳纤维。[7] [24]
第一、原丝制备,聚丙烯腈和粘胶原丝主要采用湿法纺丝制得,沥青和酚醛原丝则采用熔体纺丝制得。制备高性能聚丙烯腈基碳纤维需采用高纯度、高强度和质量均匀的聚丙烯腈原丝,制备原丝用的共聚单体为衣康酸等。制备各向异性的高性能沥青基碳纤维需先将沥青预处理成中间相、预中间相(苯可溶各向异性沥青)和潜在中间相(喹啉可溶各向异性沥青)等。作为烧蚀材料用的粘胶基碳纤维,其原丝要求不含碱金属离子。[22] [25]
第二、预氧化(聚丙烯腈纤维200到300℃)、不融化(沥青200到400℃)或热处理(粘胶纤维240℃),以得到耐热和不熔的纤维,酚醛基碳纤维无此工序。[22] [25]
第三、碳化,其温度为:聚丙烯腈纤维1000到1500℃,沥青1500到1700℃,粘胶纤维400到2000℃。[22] [25]
第四、石墨化,聚丙烯腈纤维为2500到3000℃,沥青2500到2800℃,粘胶纤维3000到3200℃。[22] [25]
第五、表面处理,进行气相或液相氧化等,赋予纤维化学活性,以增大对树脂的亲和性。[22] [25]
第六、上浆处理,防止纤维损伤,提高与树脂母体的亲和性。所得纤维具有各种不同的断面结构。[22] [25]
技术要点
要想得到质量好碳纤维,需要注意一下技术要点:
(1)实现原丝高纯化、高强化、致密化以及表面光洁无暇是制备高性能碳纤维的首要任务。碳纤维系统工程需从原丝的聚合单体开始。原丝质量既决定了碳纤维的性质,又制约其生产成本。优质PAN原丝是制造高性能碳纤维的首要必备条件。[22]
(2)杂质缺陷最少化,这是提高碳纤维拉伸强度的根本措施,也是科技工作者研究的热门课题。在某种意义上说,提高强度的过程实质上就是减少、减小缺陷的过程。[22]
(3)在预氧化过程中,保证均质化的前提下,尽可能缩短预氧化时间。这是降低生产成本的方向性课题。
(4)研究高温技术和高温设备以及相关的重要构件。高温炭化温度一般在1300到1800℃,石墨化一般在2500到3000℃。在如此高的温度下操作,既要连续运行、又要提高设备的使用寿命,所以研究新一代高温技术和高温设备就显得格外重要。如在惰性气体保护、无氧状态下进行的微波、等离子和感应加热等技术。[22]

⑦ DCPET路用工程纤维怎么发明的

DCPET道路用纤维:
道路用纤维是一种专门用于路面的一种混合料加强材料,对混合料的高温抗车辙,低温抗裂,抵抗水损害,耐久性等性能都有很大的提高,是沥青混凝土路面专用的“加筋加强”材料。重庆中交科技推出的美络系列纤维,是一种沥青路面专用“加筋加强”纤维,其纤维性能优良,能明显改善混合料的性能,是沥青路面的“加筋加强”的最优选择。
纤维(美:Fiber;英:Fibre)是指由连续或不连续的细丝组成的物质。在动植物体内,纤维在维系组织方面起到重要作用。纤维用途广泛,可织成细线、线头和麻绳,造纸或织毡时还可以织成纤维层;同时也常用来制造其他物料,及与其他物料共同组成复合材料。
天然纤维
天然纤维是自然界存在的,可以直接取得纤维,根据其来源分成植物纤维、动物纤维和矿物纤维三类。

植物纤维
植物纤维是由植物的种籽、果实、茎、叶等处得到的纤维,是天然
复纳新材料 木质纤维
纤维素纤维。从植物韧皮得到的纤维如亚麻、黄麻、罗布麻等;从植物叶上得到的纤维如剑麻、蕉麻等。植物纤维的主要化学成分是纤维素,故也称纤维素纤维。
植物纤维包括:种子纤维、韧皮纤维、叶纤维、果实纤维。
种子纤维:是指一些植物种子表皮细胞生长成的单细胞纤维。如棉、木棉。
韧皮纤维:是从一些植物韧皮部取得的单纤维或工艺纤维。如:亚麻、苎麻、黄麻、竹纤维。
叶纤维:是从一些植物的叶子或叶鞘取得的工艺纤维。如:剑麻、蕉麻。
果实纤维:是从一些植物的果实取得的纤维。如:椰子纤维。

动物纤维
动物纤维是由动物的毛或昆虫的腺分泌物中得到的纤维。从动物毛发得到的纤维有羊毛、兔毛、骆驼毛、山羊毛、牦牛绒等;从动物腺分泌物得到的纤维有蚕丝等。动物纤维的主要化学成分是蛋白质,故也称蛋白质纤维。

动物纤维 (天然蛋白质纤维) 包括:毛发纤维和腺体纤维。
毛发纤维:动物毛囊生长具有多细胞结构由角蛋白组成的纤维。 如:绵羊毛、山羊绒、骆驼毛、兔毛、马海毛。
丝纤维:由一些昆虫丝腺所分泌的,特别是由鳞翅目幼虫所分泌的物质形成的纤维,此外还有由一些软体动物的分泌物形成的纤维。如:蚕丝。

矿物纤维
矿物纤维是从纤维状结构的矿物岩石中获得的纤维,主要组成物质为各种氧化物,如二氧化硅、氧化铝、氧化镁等,其主要来源为各类石棉,如温石棉,青石棉等。

化学纤维
化学纤维是经过化学处理加工而制成的纤维。可分为人造纤维(再生纤维),合成纤维和无机纤维。

人造纤维
复纳新材料 纤维
人造纤维也称再生纤维。
人造纤维是用含有天然纤维或蛋白纤维的物质,如木材、甘蔗、芦苇、大豆蛋白质纤维等及其他失去纺织加工价值的纤维原料,经过化学加工后制成的纺织纤维。主要用于纺织的人造纤维有:黏胶纤维、醋酸纤维、铜氨纤维。
再生纤维是指将天然高聚物制成的浆液高度纯净化后制成的纤维,如再生纤维素纤维、再生蛋白质纤维、再生淀粉纤维以及再生合成纤维。

合成纤维
合成纤维的化学组成和天然纤维完全不同,是从一些本身并不含有纤维素或蛋白质的物质如石油、煤、天然气、石灰石或农副产品,先合成单位,再用化学合成与机械加工的方法制成纤维。如聚酯纤维(涤纶)、聚酰胺纤维(锦纶或尼龙)、聚乙烯醇纤维(维纶)、聚丙烯腈纤维(腈纶)、聚丙烯纤维(丙纶)、聚氯乙烯纤维(氯纶)等。

无机纤维
无机纤维是以天然无机物或含碳高聚物纤维为原料,经人工抽丝或直接碳化制成。包括玻璃纤维,金属纤维和碳纤维。

其他
度与细度有棉型(38 ~ 51mm)、毛型(64 ~ 114mm)、丝型(长丝)、中长型(51 ~ 76mm)、超细型(<0.9dtex)之分。
面形态有普通圆形、中空和异形纤维以及环状或皮芯纤维。
曲有高卷曲、低卷曲、异卷曲、无卷曲之分。
化纤维;高性能纤维;功能或智能纤维。
工方式对天然纤维有不同初加工和改性的纤维。
纤维有高速纺丝、牵伸丝(DTY)、预或全取向丝(POY或FOY)、变形丝等。
维资源状态可分为大宗纤维和特种纤维。

⑧ 碳纤维概念股有哪些

方大炭素600516


据公开资料显示,公司已收购了方泰精密100%的股权,这使得公司业务向碳纤维的应用——复合材料领域扩展。而方泰精密成立于2009年,主营业务为碳纤维及复合材料的生产、销售,投产后主要产品为:1K、3K、6K、12K、24聚丙烯腈基碳纤维。


中钢吉炭 000928


公司持有30%的股份的江城碳纤维一期500吨/年的生产线预计11月份即可投产。江城碳纤维二期1500吨/年的生产线,预计将于一期工程投产后开工建设。


博云新材002297


公司的主导产品碳/碳复合材料(CFC)是“2004年国家技术发明一等奖”产业化项目的重要组成部分。公司在成功实现多项技术产业化的同时,继续保持了核心技术在粉末冶金复合材料应用领域的国际先进水平。成为继美国、英国、法国之后掌握该领域核心技术的国家,打破西方国家的技术垄断


金发科技600143


11年9月27日公司宣布以自有资金投资“年产2000吨碳纤维及1万吨碳纤维复合材料产业化项目”,第一期投资总额不超过3亿元,投资期限3年。预计到2012年底将正式建成。届时,金发科技将建成全国最大的碳纤维复合材料生产基地。


大橡塑600346


公司技术实力突出,是国资系统重点培育的化工机械企业,拥有制造“大丝束”碳纤维预浸料生产线的能力,打破该领域的国外企业的垄断。


吉林化纤000420


计划投产5000吨级碳纤维原丝生产线。


大元股份600146


公司业务主要包括碳纤维预浸料和复合材料产品业务,其控股60%的子公司嘉兴中宝碳纤维是国内三大碳纤维制品巨头之一,拥有产能300万平方米碳纤维预浸料生产线,其预浸布的销售毛利率在40%以上。

⑨ 碳纤维技术最早是美国宇航局发明的吗能介绍一下这项超高科技吗

不能说是发明吧?碳纤维的确是NASA首先研究,目的是在冷战期间解决导弹弹头耐高温耐腐蚀的问题

⑩ 短切碳纤维的起源

1880年,美国发明家爱迪生首先将竹子纤维碳化成丝,作为电灯泡内发光灯丝,开启了碳纤维(CarbonFiber,简称CF)的先河。碳纤维用于结构材料的首创者,则以美国UnionCarbide公司(U.C.C.)为代表,于1959年以螺距纤维为原料,经过数千网络的高温碳化后,得到弹性率约40GPa,强度约为0.7GPa的碳纤维;1965年该公司又用相同原料于3000℃高温下延伸,开发出丝状高弹性石墨化纤维,弹性率约500GPa,强度约为2.8GPa。1961年,日本大阪工业技术试验所进藤召男博士,以Polyacrylonitrile(简称PAN)聚丙烯腈为原料,经过氧化与数千度的碳化工序后,得到弹性率为
160GPa、强度为0.7GPa的碳纤维。
1962年,日本碳化公司(NipponCarbonCo.)用PAN为原料,制得低弹性系数(L.M.)碳纤维。东丽公司亦以PAN纤维为原料,开发了高强度CF,弹性率约为230GPa,强度约为2.8GPa,并于1966年起达到每月量产1吨的规模,与此同时他们还开发了碳化温度2000℃以上的高弹性率CF,弹性率约400GPa,强度约为2.0GPa。PAN系碳纤维产量于1992年已达6500吨/年,至2000年已超过1万t/a以上。
虽然碳纤维需求量逐渐扩大,但于1991年冷战结束后,军事用途使用量萎缩,又因经济萧条,供需失去平衡,产业受到冲击。然而,美国波音公司新锐机型B777的生产,加上土木、建筑、汽车与复合材料应用领域的扩大,使得碳纤维产业逐渐缓步成长。

阅读全文

与碳纤维发明相关的资料

热点内容
作业谁发明的名字 浏览:633
狮山工商局电话是多少 浏览:542
厦门工商局咨询电话 浏览:374
农民大爷发明秸秆炉 浏览:210
碘伏开口有效期 浏览:455
马鞍山二中卢大亮 浏览:583
建筑证书培训 浏览:62
马鞍山潘荣 浏览:523
2019年公需课知识产权考试答案 浏览:280
基本卫生公共服务项目实施方案 浏览:62
初中数学校本研修成果 浏览:30
长沙市知识产权局张力 浏览:369
荣玉证书 浏览:382
凌文马鞍山 浏览:34
石柱镇工商局 浏览:854
钢铁发明国 浏览:118
创造与魔法怎么卖人民币 浏览:101
知识产权专题答案 浏览:760
高发明巫溪 浏览:755
卫生室公共卫生服务考核标准 浏览:493