导航:首页 > 创造发明 > 数学是怎么被创造出来的

数学是怎么被创造出来的

发布时间:2021-09-02 08:43:16

1. 数学是怎样创造出来的

一个人从小学到大学都离不开数学课,就连现在所有大学里的文科专业也开设了高等数学课,甚至幼儿园的小朋友都要学习从计数开始的数学。从人类久远的古代计数所产生的自然数和从具有某种特定形状的物体所产生的点、线、面等,就已经是经过人们高度抽象化了的概念。

数学,这门古老而又常新的科学,已大步迈进了21世纪。数学科学的巨大发展,比以往任何时代都更牢固地确立了它作为整个学科技术的基础地位。数学正突破传统的应用范围向几乎所有的人类知识领域渗透,并越来越直接地为人类物质生产与日常生活作出贡献。同时,数学作为一种文化,已成为人类文明进步的标志。因此,对于当今社会每一个文化人而言,不论他从事何种职业,都需要学习数学、了解数学和运用数学。现代社会对数学的这种需要,在未来无疑将更加与日俱增。

数学是怎样创造出来的?能够做出数学命题和系统的头脑是怎样的头脑?几何学家或代数学家的智力活动比之音乐家、诗人、画家和棋手又怎么样?在数学的创造中哪些是关键因素?是直觉还是敏锐感?是计算机似的精确性吗?是特强的记忆力吗?还是追随复杂的逻辑次序时可敬畏的技巧?或者是极高度的用心集中吗?

数学的思考模式,就是把具体的事物抽象化,把抽象的事物公式化,把复杂的事物简单化,做任何事都首先能有一个提纲挈领的全盘思考然后再去做,效果肯定是事半功倍的。这既是成功人士的思维习惯,也是快乐人生的思维习惯。

陶哲轩是个天才,他6岁时在家看手册自学了计算机BASIC语言并开始为数学问题编程;8岁时,他写的“斐波那契”程序的导言就因为“太好玩”而被数学家克莱门特完全引用;20岁时,他获得普林斯顿大学博士学位;24岁被洛杉矶加州大学聘为正教授;31岁获数学领域的世界最高奖。

童年的陶哲轩始终是活泼的、有创造力的、有时爱做恶作剧的孩子,父母总是给他时间让他玩,让他有时间想自己的东西,因为他们担心不这样做,儿子的创造力就会慢慢枯竭。

他曾谦虚地说:“我到现在也没摸清作文的窍门,我比较喜欢明确一些定理规则然后去做事。”他童年时写《我的家庭》时,他就把家里从一个房间写到另一个房间,记下一些细节,并排了一个目录。不理解他的人会认为——他真的不会写作,理解他的人会知道——他已经掌握了用数学模式思考所有问题的能力,这就是数学家与普通人的思维方式的区别。

数学是人创造出的最简单也是最系统的学科,小到生活里的各种计算,大到对国家的科技贡献。也许你会认为,科学与艺术、数学与哲学,这些学科的分界越往上越模糊,但你要记住:所有的知识到了最后都是相同的,而他们一开始的基础也是一样的,那就是用最准确的方式描述出事物的特征和规律。而数学就是让我们学习找到这种特征和规律的方法,即用数学的模式去思考、去判断、去解决,由繁到简、由难到易,这不仅是思维的飞越,更是能力的飞越。一个能够体验“我思故我乐”的孩子,他的人生也一定是不同寻常的!

数学创造力

2. 阿拉伯数字是怎么创造出来的

阿拉伯数字由0,,2,3,4,5,6,7,8,9共10个计数符号组成,阿拉伯数字最初由古印度人发明,后由阿拉伯人传向欧洲,之后再经欧洲人将其现代化,人们以为是阿拉伯发明,所以人们称其为“阿拉伯数字”。


后来,阿拉伯人把这种数字传入西班牙。公元10世纪,又由教皇热尔贝·奥里亚克传到欧洲其他国家。公元1200年左右,欧洲的学者正式采用了这些符号和体系。至13世纪,在意大利比萨的数学家费婆拿契的倡导下,普通欧洲人也开始采用阿拉伯数字,15世纪时这种现象已相当普遍。那时的阿拉伯数字的形状与现代的阿拉伯数字尚不完全相同,只是比较接近而已,为使它们变成1、2、3、4、5、6、7、8、9、0的书写方式,又有许多数学家花费了不少心血。

3. 解析几何是怎么被创造出来的

1617年,荷兰奥伦治公爵的军队里来了一名22岁的博士生,他就是伟大的数学家笛卡尔。

一天,部队开到布雷达城,无所事事的笛卡尔漫步在大街上,忽然看见一群人围在一起议论纷纷,原来在一堵墙上贴着一张几何难题的悬赏启事。启事上说,谁能够解开此题谁就能获得本城最优秀的数学家称号。笛卡尔出于好奇心抄下题目,回到军营,专心致志地研究这道几何难题。经过潜心钻研,两天后,他终于求得了答案,由此使他数学天才初露锋芒。

荷兰多特学院院长毕克曼十分赏识笛卡尔的才华,劝他说:“你有深厚的数学基础,才思敏捷,很适合数学研究。离开军队吧,我相信你将来会成功的。”

笛卡尔没有离开军队,但仍然迷恋数学,尤其想碰一碰古希腊几何三大问题。说起这三大问题,还有一个很古老的传说:

大约是2300多年前,古希腊的第罗斯岛上,一场可怕的瘟疫正在蔓延,人们生活在死亡的恐怖之中。他们来到神庙前祈求:“万能的神啊,请赐予我们平安吧!”谁知神庙里的主人欺骗这些可怜的人们说:“我忠实的信徒们,神在保佑着你们,只要你们把上供的正方体祭坛,在不改变原来形状的情况下,把它的体积增大到原来的两倍,神就会高兴,就能免除你们的灾难。”

濒于死亡的人们听后立即去改造神的祭坛,他们把祭坛的每边棱长扩充到原来的两倍。但神庙的主人看后说:“这哪里是原来的两倍,这是原来的八倍了。神不高兴啊!”

人们听后赶忙拆了重建,他们把体积改成了原来的两倍,可形状却是一个长方体。神庙的主人训斥道:“该死的信徒们,你们怎么把祭坛的形状改变了呢,这不是戏弄神吗?当心还有更大的瘟疫!”

惊慌失措的人们急忙去找著名的学者柏拉图,把希望寄托在这位大智者的身上。谁知柏拉图和他的学生们无论怎么用直尺和圆规去画,也同样找不到正确的办法,于是,立方倍积问题便成了一道几何难题。

后来,希腊人又碰到了把一个已知角分成三等分和化圆为方问题(即求一个正方形,使它的面积等于一个已知圆的面积)。

从此,立方倍积、三等分角、化圆为方这三个问题一直困扰着世世代代的数学家,不少人为此呕心沥血,穷毕生精力也找不到答案。这样一直延续了2000年。

笛卡尔认真总结前人的大量经验教训后猜想,古希腊三大几何难题,采用尺和规作图的办法。是不是本来就作不出呢?应该另找一条道路才是。

1621年,笛卡尔退出军界,与数学家迈多治等朋友来到巴黎,潜心研究数学问题。1628年,他又移居资产阶级革命已经成功的荷兰,进行长达20年的研究。这是他一生最辉煌的时期。

一天,疲惫不堪的笛卡尔躺在床上,望着天花板思考着数学问题。突然,他眼前一亮,原来,天花板上有一只蜘蛛正忙碌地编织着蛛网。那纵横交错的直线和四周的圆线相交叉一下子启发了他。困扰他多年的“形”和“数”问题,终于找到了答案。他兴奋地爬了起来,迫不及待地把灵感描绘出来。他发现了这样的规律,如果在平面上画出两条交叉的直线,假定这两条直线互成直角,那么就出现四个90度的直角。在这四个角的任一个点上设个位置,就可以建立起点的坐标系。

这个发现的基本概念简单到近乎一目了然,但却是数学上的伟大发现。它就是建立了平面上点的作为坐标的数(x、y)之间一对应关系。进一步构成了平面上点与平面上曲线之间的一对应关系。从而把数学的两大形态——形与数结合了起来。不仅如此,笛卡尔还用代数方程描述几何图形,用几何图形表示代数方程的计算结果。于是,创造出了用代数方法解几何问题的一门崭新学科——解析几何。

解析几何的诞生,改变了从古希腊以来,延续两千年的代数与几何分离的趋向,从而推动了数学的巨大发展。虽然,笛卡尔在有生之年没有解开古希腊三大几何问题,但他开创的解析几何却给后人提供了一把钥匙。

解析几何的重大贡献,还在于它提供了当时科学发展迫切需要的数学工具。17世纪资本主义迅速发展,天文和航海等科学技术对数学提出了新的要求。例如,要确定船只在海上的位置,就要确定经纬度;要改善枪炮的性能,就要精确地掌握抛射体的运行规律。所有这些,涉及到的已不是常量而是变量。

4. 数学是怎么产生的,它的发展历史是什么

产生:数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题

数学的发展史大致可以分为四个时期。

1、第一时期

数学形成时期,这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。

2、第二时期

初等数学,即常量数学时期。这个时期的基本的、最简单的成果构成中学数学的主要内容。这个时期从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年。这个时期逐渐形成了初等数学的主要分支:算数、几何、代数。

3、第三时期

变量数学时期。变量数学产生于17世纪,经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分(Calculus),即高等数学中研究函数的微分。

4、第四时期

现代数学。现代数学时期,大致从19世纪初开始。数学发展的现代阶段的开端,以其所有的基础--------代数、几何、分析中的深刻变化为特征。

(4)数学是怎么被创造出来的扩展阅读:

发展过程中研究出的数学成果:

1、李氏恒定式

数学家李善兰在级数求和方面的研究成果,在国际上被命名为李氏恒定式。

2、华氏定理

华氏定理是我国著名数学家华罗庚的研究成果。华氏定理为:体的半自同构必是自同构自同体或反同体。数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”。

5. 数学是谁创造出来的

阿拉伯数字的起源 我们都知道,数学计算的基础是阿拉伯数字:1、2、3、4、5、6、7、8、9、0。离开这些数字,我们无法进行计算。其实,这些阿拉伯数字并不是阿拉伯人发明创造的,而是发源于古印度,后来被阿拉伯人掌握、改进,并传到了西方,西方人便将这些数字称为阿拉伯数字。以后,以讹传讹,世界各地都认同了这个说法。 阿拉伯数字是古代印度人在生产和实践中逐步创造出来的。 在古代印度,进行城市建设时需要设计和规划,进行祭祀时需要计算日月星辰的运行,于是,数学计算就产生了。大约在公元前3000年,印度河流域居民的数字就比较先进,而且采用了十进位的计算方法。 到公元前三世纪,印度出现了整套的数字,但在各地区的写法并不完全一致,其中最有代表性的是婆罗门式:这一组数字在当时是比较常用的。它的特点是从“1”到“9”每个数都有专字。现代数字就是由这一组数字演化而来。在这一组数字中,还没有出现“0”(零)的符号。“0”这个数字是到了笈多王朝(公元320—550年)时期才出现的。公元四世纪完成的数学著作《太阳手册》中,已使用“0”的符号,当时只是实心小圆点“·”。后来,小圆点演化成为小圆圈“0”。这样,一套从“1”到“0”的数字就趋于完善了。这是古代印度人民对世界文化的巨大贡献。 印度数字首先传到斯里兰卡、缅甸、柬埔寨等印度的近邻国家。 公元七到八世纪,地跨亚非欧三洲的阿拉伯帝国崛起。阿拉伯帝国在向四周扩张的同时,阿拉伯人也广泛汲取古代希腊、罗马、印度等国的先进文化,大量翻译这些国家的科学著作。公元771年,印度的一位旅行家毛卡经过长途跋涉,来到了阿拉伯帝国阿拔斯王朝首都巴格达。毛卡把随身携带的一部印度天文学著作《西德罕塔》,献给了当时的哈里发(国王)曼苏尔。曼苏尔十分珍爱这部书,下令翻译家将它译为阿拉伯文。译本取名《信德欣德》。这部著作中应用了大量的印度数字。由此,印度数字便被阿拉伯人吸收和采纳。 此后,阿拉伯人逐渐放弃了他们原来作为计算符号的28个字母,而广泛采用印度数字,并且在实践中还对印度数字加以修改完善,使之更便于书写。 阿拉伯人掌握了印度数字后,很快又把它介绍给欧洲人。中世纪的欧洲人,在计数时使用的是冗长的罗马数字,十分不方便。因此,简单而明了的印度数字一传到欧洲,就受到欧洲人的欢迎。可是,开始时印度数字取代罗马数字,却遭到了基督教教会的强烈反对,因为这是来自“异教徒”的知识。但实践证明印度数字远远优于罗马数字。 1202年,意大利出版了一本重要的数学书籍《计算之书》,书中广泛使用了由阿拉伯人改进的印度数字,它标志着新数字在欧洲使用的开始。这本书共分十五章。在第一章开头就写道:“印度的九个数目字是‘9、8、7、6、5、4、3、2、1’,用这九个数字以及阿拉伯人叫做‘零’的记号‘0’,任何数都可以表示出来。” 随着岁月的推移,到十四世纪,中国印刷术传到欧洲,更加速了印度数字在欧洲的推广与应用。印度数字逐渐为全欧洲人所采用。 西方人接受了经阿拉伯传来的印度数字,但他们当时忽视了古代印度人,而只认为是阿拉伯人的功绩,因而称其为阿拉伯数字,这个错误的称呼一直流传至今。参考资料: http://post..com/f?kz=214503463

6. 数学是谁创造出来的

数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。”

自古以来,多数人把数学看成是一种知识体系,是经过严密的逻辑推理而形成的系统化的理论知识总和,它既反映了人们对“现实世界的空间形式和数量关系(恩格斯)”的认识(恩格斯),又反映了人们对“可能的量的关系和形式”的认识。数学既可以来自现实世界的直接抽象,也可以来自人类思维的劳动创造。

从人类社会的发展史看,人们对数学本质特征的认识在不断变化和深化。“数学的根源在于普通的常识,最显著的例子是非负整数。"欧几里德的算术来源于普通常识中的非负整数,而且直到19世纪中叶,对于数的科学探索还停留在普通的常识,”另一个例子是几何中的相似性,“在个体发展中几何学甚至先于算术”,其“最早的征兆之一是相似性的知识,”相似性知识被发现得如此之早,“就象是大生的。”因此,19世纪以前,人们普遍认为数学是一门自然科学、经验科学,因为那时的数学与现实之间的联系非常密切,随着数学研究的不断深入,从19世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位,这种观点在布尔巴基学派的研究中得到发展,他们认为数学是研究结构的科学,一切数学都建立在代数结构、序结构和拓扑结构这三种母结构之上。与这种观点相对应,从古希腊的柏拉图开始,许多人认为数学是研究模式的学问,数学家怀特海(A. N. Whiiehead,186----1947)在《数学与善》中说,“数学的本质特征就是:在从模式化的个体作抽象的过程中对模式进行研究,”数学对于理解模式和分析模式之间的关系,是最强有力的技术。”1931年,歌德尔(K,G0de1,1978)不完全性定理的证明,宣告了公理化逻辑演绎系统中存在的缺憾,这样,人们又想到了数学是经验科学的观点,著名数学家冯·诺伊曼就认为,数学兼有演绎科学和经验科学两种特性。

对于上述关于数学本质特征的看法,我们应当以历史的眼光来分析,实际上,对数本质特征的认识是随数学的发展而发展的。由于数学源于分配物品、计算时间、丈量土地和容积等实践,因而这时的数学对象(作为抽象思维的产物)与客观实在是非常接近的,人们能够很容易地找到数学概念的现实原型,这样,人们自然地认为数学是一种经验科学;随着数学研究的深入,非欧几何、抽象代数和集合论等的产生,特别是现代数学向抽象、多元、高维发展,人们的注意力集中在这些抽象对象上,数学与现实之间的距离越来越远,而且数学证明(作为一种演绎推理)在数学研究中占据了重要地位,因此,出现了认为数学是人类思维的自由创造物,是研究量的关系的科学,是研究抽象结构的理论,是关于模式的学问,等等观点。这些认识,既反映了人们对数学理解的深化,也是人们从不同侧面对数学进行认识的结果。正如有人所说的,“恩格斯的关于数学是研究现实世界的数量关系和空间形式的提法与布尔巴基的结构观点是不矛盾的,前者反映了数学的来源,后者反映了现代数学的水平,现代数学是一座由一系列抽象结构建成的大厦。”而关于数学是研究模式的学问的说法,则是从数学的抽象过程和抽象水平的角度对数学本质特征的阐释,另外,从思想根源上来看,人们之所以把数学看成是演绎科学、研究结构的科学,是基于人类对数学推理的必然性、准确性的那种与生俱来的信念,是对人类自身理性的能力、根源和力量的信心的集中体现,因此人们认为,发展数学理论的这套方法,即从不证自明的公理出发进行演绎推理,是绝对可靠的,也即如果公理是真的,那么由它演绎出来的结论也一定是真的,通过应用这些看起来清晰、正确、完美的逻辑,数学家们得出的结论显然是毋庸置疑的、无可辩驳的。

事实上,上述对数学本质特征的认识是从数学的来源、存在方式、抽象水平等方面进行的,并且主要是从数学研究的结果来看数学的本质特征的。显然,结果(作为一种理论的演绎体系)并不能反映数学的全貌,组成数学整体的另一个非常重要的方面是数学研究的过程,而且从总体上来说,数学是一个动态的过程,是一个“思维的实验过程”,是数学真理的抽象概括过程。逻辑演绎体系则是这个过程的一种自然结果。在数学研究的过程中,数学对象的丰富、生动且富于变化的一面才得以充分展示。波利亚(G. Poliva,1888一1985)认为,“数学有两个侧面,它是欧几里德式的严谨科学,但也是别的什么东西。由欧几里德方法提出来的数学看来象是一门系统的演绎科学,但在创造过程中的数学看来却像是一门实验性的归纳科学。”弗赖登塔尔说,“数学是一种相当特殊的活动,这种观点“是区别于数学作为印在书上和铭,记在脑子里的东西。”他认为,数学家或者数学教科书喜欢把数学表示成“一种组织得很好的状态,”也即“数学的形式”是数学家将数学(活动)内容经过自己的组织(活动)而形成的;但对大多数人来说,他们是把数学当成一种工具,他们不能没有数学是因为他们需要应用数学,这就是,对于大众来说,是要通过数学的形式来学习数学的内容,从而学会相应的(应用数学的)活动。这大概就是弗赖登塔尔所说的“数学是在内容和形式的互相影响之中的一种发现和组织的活动”的含义。菲茨拜因(Efraim Fischbein)说,“数学家的理想是要获得严谨的、条理清楚的、具有逻辑结构的知识实体,这一事实并不排除必须将数学看成是个创造性过程:数学本质上是人类活动,数学是由人类发明的,”数学活动由形式的、算法的与直觉的等三个基本成分之间的相互作用构成。库朗和罗宾逊(Courani Robbins)也说,“数学是人类意志的表达,反映积极的意愿、深思熟虑的推理,以及精美而完善的愿望,它的基本要素是逻辑与直觉、分析与构造、一般性与个别性。虽然不同的传统可能强调不同的侧面,但只有这些对立势力的相互作用,以及为它们的综合所作的奋斗,才构成数学科学的生命、效用与高度的价值。”

另外,对数学还有一些更加广义的理解。如,有人认为,“数学是一种文化体系”,“数学是一种语言”,数学活动是社会性的,它是在人类文明发展的历史进程中,人类认识自然、适应和改造自然、完善自我与社会的一种高度智慧的结晶。数学对人类的思维方式产生了关键性的影响.也有人认为,数学是一门艺术,“和把数学看作一门学科相比,我几乎更喜欢把它看作一门艺术,因为数学家在理性世界指导下(虽然不是控制下)所表现出的经久的创造性活动,具有和艺术家的,例如画家的活动相似之处,这是真实的而并非臆造的。数学家的严格的演绎推理在这里可以比作专门注技巧。就像一个人若不具备一定量的技能就不能成为画家一样,不具备一定水平的精确推理能力就不能成为数学家,这些品质是最基本的,它与其它一些要微妙得多的品质共同构成一个优秀的艺术家或优秀的数学家的素质,其中最主要的一条在两种情况下都是想象力。”“数学是推理的音乐,”而“音乐是形象的数学”.这是从数学研究的过程和数学家应具备的品质来论述数学的本质,还有人把数学看成是一种对待事物的基本态度和方法,一种精神和观念,即数学精神、数学观念和态度。尼斯(Mogens Niss)等在《社会中的数学》一文中认为,数学是一门学科,“在认识论的意义上它是一门科学,目标是要建立、描述和理解某些领域中的对象、现象、关系和机制等。如果这个领域是由我们通常认为的数学实体所构成的,数学就扮演着纯粹科学的角色。在这种情况下,数学以内在的自我发展和自我理解为目标,独立于外部世界,另一方面,如果所考虑的领域存在于数学之外,数学就起着用科学的作用,数学的这两个侧面之间的差异并非数学内容本身的问题,而是人们所关注的焦点不同。无论是纯粹的还是应用的,作为科学的数学有助于产生知识和洞察力。数学也是一个工具、产品以及过程构成的系统,它有助于我们作出与掌握数学以外的实践领域有关的决定和行动,数学是美学的一个领域,能为许多醉心其中的人们提供对美感、愉悦和激动的体验,作为一门学科,数学的传播和发展都要求它能被新一代的人们所掌握。数学的学习不会同时而自动地进行,需要靠人来传授,所以,数学也是我们社会的教育体系中的一个教学科目.”

从上所述可以看出,人们是从数学内部(又从数学的内容、表现形式及研究过程等几个角度)。数学与社会的关系、数学与其它学科的关系、数学与人的发展的关系等几个方面来讨论数学的性质的。它们都从一个侧面反映了数学的本质特征,为我们全面认识数学的性质提供了一个视角。

基于对数学本质特征的上述认识,人们也从不同侧面讨论了数学的具体特点。比较普遍的观点是,数学有抽象性、精确性和应用的广泛性等特点,其中最本质的特点是抽象性。A,。亚历山大洛夫说,“甚至对数学只有很肤浅的知识就能容易地觉察到数学的这些特点:第一是它的抽象性,第二是精确性,或者更好他说是逻辑的严格性以及它的结论的确定性,最后是它的应用的极端广泛性”王梓坤说,“数学的特点是:内容的抽象性、应用的广泛性、推理的严谨性和结论的明确必”这种看法主要从数学的内容、表现形式和数学的作用等方面来理解数学的特点,是数学特点的一个方面。另外,从数学研究的过程方面、数学与其它学科之间的关系方面来看,数学还有形象性、似真性、拟经验性。“可证伪性”的特点。对数学特点的认识也是有时代特征的,例如,关于数学的严谨性,在各个数学历史发展时期有不同的标准,从欧氏几何到罗巴切夫斯基几何再到希尔伯特公理体系,关于严谨性的评价标准有很大差异,尤其是哥德尔提出并证明了“不完备性定理…以后,人们发现即使是公理化这一曾经被极度推崇的严谨的科学方法也是有缺陷的。因此,数学的严谨性是在数学发展历史中表现出来的,具有相对性。关于数学的似真性,波利亚在他的《数学与猜想》中指出,“数学被人看作是一门论证科学。然而这仅仅是它的一个方面,以最后确定的形式出现的定型的数学,好像是仅含证明的纯论证性的材料,然而,数学的创造过程是与任何其它知识的创造过程一样的,在证明一个数学定理之前,你先得猜测这个定理的内容,在你完全作出详细证明之前,你先得推测证明的思路,你先得把观察到的结果加以综合然后加以类比.你得一次又一次地进行尝试。数学家的创造性工作成果是论证推理,即证明;但是这个证明是通过合情推理,通过猜想而发现的。只要数学的学习过程稍能反映出数学的发明过程的话,那么就应当让猜测、合情推理占有适当的位置。”正是从这个角度,我们说数学的确定性是相对的,有条件的,对数学的形象性、似真性、拟经验性。“可证伪性”特点的强调,实际上是突出了数学研究中观察、实验、分析。比较、类比、归纳、联想等思维过程的重要性。

7. 数学是人类自己创造出来的吗

数学是描述或反映现实世界的。从而如果我们相信现实世界是真实的,那么数学可以看作是对上帝创世的一些或一小撮规则的揣测

  1. 从大的方面来看,数学至少可以通过通过几何和物理(如果我们相信数是真实的,那数论也可以包含进来)来展示它的真实性。事实上在大约外尔的时代往前一直到牛顿时代,大数学家都懂物理,高斯之前的数学家都重视天文学,比如牛顿,拉普拉斯等等;而黎曼曾花大量的时间跟从韦伯做物理实验,他的好多数学观点都是建立在大量的对物理现象的观察之上的,比如黎曼的空间观念好像是为了建立统一描述物理中场的概念。黎曼几何的局部的想法以及整体几何的想法后来被爱因斯坦发现恰是相对论的数学基础;庞加莱更是公开鼓励数学家与应用结合;希尔伯特的一些自称在现实中无用的纯粹出于数学兴趣的(比如希尔伯特空间的)结果后来都在物理中找到现实对应。如果说数学家用数学语言描述物理现象还不能令人相信数学的真实存在,那在微分几何领域数学领跑了物理总该给人带来震惊吧。陈省身曾半开玩笑半认真地说,他们物理学家的好多工作相当于说明了物理就是几何。

  2. 从小的方面来看,比如对称性这一在现实世界中存在着的重要概念,通过群的概念引进到数学中时,一下子就有了极大的生命力......

所以我们不笼统地去说数学是发现还是发明,而是说那些与反映现实世界有关的数学是有生命力的。或许有些人会去发明一些数学,比如脱离开几何去发明一些奇怪的代数结构与法则...但鄙人认为,往往那不会成为好的数学。


8. 数学是怎样产生的

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.

基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.

代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.

直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分。

(8)数学是怎么被创造出来的扩展阅读:

数学的演进大约可以看成是抽象化的持续发展,或是题材的延展.而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术.第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。

除了认知到如何去数实际物件的数量,史前的人类亦了解如何去数抽象概念的数量,如时间—日、季节和年.算术(加减乘除)也自然而然地产生了.更进一步则需要写作或其他可记录数字的系统,如符木或于印加人使用的奇普.历史上曾有过许多各异的记数系统.

古时,数学内的主要原理是为了研究天文,土地粮食作物的合理分配,税务和贸易等相关的计算.数学也就是为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的.这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究.

西欧从古希腊到16世纪经过文艺复兴时代,初等代数、以及三角学等初等数学已大体完备.但尚未出现极限的概念.17世纪在欧洲变量概念的产生,使人们开始研究变化中的量与量的互相关系和图形间的互相变换.在经典力学的建立过程中,结合了几何精密思想的微积分的方法被发明。

阅读全文

与数学是怎么被创造出来的相关的资料

热点内容
软件著作权可以赚钱吗 浏览:481
作业谁发明的名字 浏览:633
狮山工商局电话是多少 浏览:542
厦门工商局咨询电话 浏览:374
农民大爷发明秸秆炉 浏览:210
碘伏开口有效期 浏览:455
马鞍山二中卢大亮 浏览:583
建筑证书培训 浏览:62
马鞍山潘荣 浏览:523
2019年公需课知识产权考试答案 浏览:280
基本卫生公共服务项目实施方案 浏览:62
初中数学校本研修成果 浏览:30
长沙市知识产权局张力 浏览:369
荣玉证书 浏览:382
凌文马鞍山 浏览:34
石柱镇工商局 浏览:854
钢铁发明国 浏览:118
创造与魔法怎么卖人民币 浏览:101
知识产权专题答案 浏览:760
高发明巫溪 浏览:755