㈠ 毕达哥拉斯定理的证法
勾股定理(毕达哥拉斯定理)是数学上证明方法最多的定理之一——有四百多种证法!但有记载的第一个证明——毕达哥拉斯的证明方法已经失传。目前所能见到的最早的一种证法,属于古希腊数学家欧几里得。他的证法采用演绎推理的形式,记载在数学巨著《几何原本》里。在中国古代的数学家中,最早对勾股定理进行证明的是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用数形结合的方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a) 2 。于是便可得如下的式子: 4×(ab/2)+(b-a) 2 =c 2 化简后便可得: a 2 +b 2 =c 2 亦即:c=(a 2 +b 2 ) (1/2) 赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。 以下网址为赵爽的“勾股圆方图”:http://cimg.163.com/catchpic/0/01/.gif 以后的数学家大多继承了这一风格并且有发展, 只是具体图形的分合移补略有不同而已。 例如稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题。 以下网址为刘徽的“青朱出入图”:http://cimg.163.com/catchpic/A/A7/.gif
勾股定理的应用非常广泛。我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:"禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。"这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。
各具特色的证明方法
[编辑本段]
三角学里有一个很重要的定理,我国称它为勾股定理,又叫商高定理。因为《周髀算经》提到,商高说过"勾三股四弦五"的话。下面介绍其中的几种证明。
最初的证明是分割型的。设a、b为直角三角形的直角边,c为斜边。考虑下图两个边长都是a+b的正方形A、B。将A分成六部分,将B分成五部分。由于八个小直角三角形是全等的,故从等量中减去等量,便可推出:斜边上的正方形等于两个直角边上的正方形之和。这里B中的四边形是边长为c的正方形是因为,直角三角形三个内角和等于两个直角。如上证明方法称为相减全等证法。B图就是我国《周髀算经》中的“弦图”。
下图是H.珀里加尔(Perigal)在1873年给出的证明,它是一种相加全等证法。其实这种证明是重新发现的,因为这种划分方法,labitibn Qorra(826~901)已经知道。(如:右图)下面的一种证法,是H•E•杜登尼(Dudeney)在1917年给出的。用的也是一种相加全等的证法。
如右图所示,边长为b的正方形的面积加上边长为a的正方形的面积,等于边长为c的正方形面积。
下图的证明方法,据说是L•达•芬奇(da Vinci, 1452~1519)设计的,用的是相减全等的证明法。
欧几里得(Euclid)在他的《原本》第一卷的命题47中,给出了勾股定理的一个极其巧妙的证明,如次页上图。由于图形很美,有人称其为“修士的头巾”,也有人称其为“新娘的轿椅”,实在是有趣。华罗庚教授曾建议将此图发往宇宙,和“外星人”去交流。其证明的梗概是:
(AC)2=2△JAB=2△CAD=ADKL。
同理,(BC)2=KEBL
所以
(AC)2+(BC)2=ADKL+KEBL=(BC)2
印度数学家兼天文学家婆什迦罗(Bhaskara,活跃于1150年前后)对勾股定理给出一种奇妙的证明,也是一种分割型的证明。如下图所示,把斜边上的正方形划分为五部分。其中四部分都是与给定的直角三角形全等的三角形;一部分为两直角边之差为边长的小正方形。很容易把这五部分重新拼凑在一起,得到两个直角边上的正方形之和。事实上,
婆什迦罗还给出了下图的一种证法。画出直角三角形斜边上的高,得两对相似三角形,从而有
c/b=b/m,
c/a=a/n,
cm=b2
cn=a2
两边相加得
a2+b2=c(m+n)=c2
这个证明,在十七世纪又由英国数学家J.沃利斯(Wallis, 1616~1703)重新发现。
有几位美国总统与数学有着微妙联系。G•华盛顿曾经是一个著名的测量员。T•杰弗逊曾大力促进美国高等数学教育。A.林肯是通过研究欧几里得的《原本》来学习逻辑的。更有创造性的是第十七任总统J.A.加菲尔德(Garfield, 1831~1888),他在学生时代对初等数学就具有强烈的兴趣和高超的才能。在1876年,(当时他是众议院议员,五年后当选为美国总统)给出了勾股定理一个漂亮的证明,曾发表于《新英格兰教育杂志》。证明的思路是,利用梯形和直角三角形面积公式。如次页图所示,是由三个直角三角形拼成的直角梯形。用不同公式,求相同的面积得
即
a2+2ab+b2=2ab+c2
a2+b2=c2
这种证法,在中学生学习几何时往往感兴趣。
关于这个定理,有许多巧妙的证法(据说有近400种),下面向同学们介绍几种,它们都是用拼图的方法来证明的。
证法1 如图26-2,在直角三角形ABC的外侧作正方形ABDE,ACFG,BCHK,它们的面积分别为c2,b2和a2。我们只要证明大正方形面积等于两个小正方形面积之和即可。
过C引CM‖BD,交AB于L,连接BC,CE。因为
AB=AE,AC=AG ∠CAE=∠BAG,
所以 △ACE≌△AGB
SAEML=SACFG (1)
同法可证
SBLMD=SBKHC (2)
(1)+(2)得
SABDE=SACFG+SBKHC,
即 c2=a2+b2
证法2 如图26-3(赵君卿图),用八个直角三角形ABC拼成一个大的正方形CFGH,它的边长是a+b,在它的内部有一个内接正方形ABED,它的边长为c,由图可知。
SCFGH=SABED+4×SABC,
所以 a2+b2=c2
证法3 如图26-4(梅文鼎图)。
在直角△ABC的斜边AB上向外作正方形ABDE,在直角边AC上又作正方形ACGF。可以证明(从略),延长GF必过E;延长CG到K,使GK=BC=a,连结KD,作DH⊥CF于H,则DHCK是边长为a的正方形。设
五边形ACKDE的面积=S
一方面,
S=正方形ABDE面积+2倍△ABC面积
=c2+ab (1)
另一方面,
S=正方形ACGF面积+正方形DHGK面积
+2倍△ABC面积
=b2+a2+ab. (2)
由(1),(2)得
c2=a2+b2
证法4 如图26-5(项名达图),在直角三角形ABC的斜边上作正方形ABDE,又以直角三角形ABC的两个直角边CA,CB为基础完成一个边长为b的正方形BFGJ(图26-5)。可以证明(从略),GF的延长线必过D。延长AG到K,使GK=a,又作EH⊥GF于H,则EKGH必为边长等于a的正方形。
设五边形EKJBD的面积为S。一方面
S=SABDE+2SABC=c2+ab (1)
另一方面,
S=SBEFG+2•S△ABC+SGHFK
=b2+ab+a2
由(1),(2)
得出论证
都是用面积来进行验证:一个大的面积等于几个小面积的和。利用同一个面积的不同表示法来得到等式,从而化简得到勾股定理)图见http://ett.edae.com/21010000/vcm/0720ggdl.doc
㈡ 毕达哥拉斯生平
毕达哥拉斯(Pythagoras,572 BC?—497BC?)古希腊数学家、哲学家。无论是解说外在物质世界,还是描写内在精神世界,都不能没有数学!最早悟出万事万物背后都有数的法则在起作用的,是生活在2500年前的毕达哥拉斯。
毕达哥拉斯出生在爱琴海中的萨摩斯岛(今希腊东部小岛),自幼聪明好学,曾在名师门下学习几何学、自然科学和哲学。以后因为向往东方的智慧,经过万水千山来到巴比伦、印度和埃及,吸收了阿拉伯文明和印度文明甚至中国文明的丰富营养,大约在公元前530年又返回萨摩斯岛。后来又迁居意大利南部的克罗通,创建了自己的学派,一边从事教育,一边从事数学研究。
毕达哥拉斯和他的学派在数学上有很多创造,尤其对整数的变化规律感兴趣。例如,把(除其本身以外)全部因数之和等于本身的数称为完全数(如6,28, 496等),而将本身大于其因数之和的数称为盈数;将小于其因数之和的数称为亏数。他们还发现了“直角三角形两直角边平方和等于斜边平方”,西方人称之为毕达哥拉斯定理,我国称为勾股定理。当今数学上又有“毕达哥拉斯三元数组”的概念,指的是可作为直角三角形三条边的三数组的集合。
在几何学方面,毕达哥拉斯学派证明了“三角形内角之和等于两个直角”的论断;研究了黄金分割;发现了正五角形和相似多边形的作法;还证明了正多面体只有五种——正四面体、正六面体、正八面体、正十二面体和正二十面体。
毕达哥拉斯学派认为数最崇高,最神秘,他们所讲的数是指整数。“数即万物”,也就是说宇宙间各种关系都可以用整数或整数之比来表达。但是,有一个名叫希帕索斯的学生发现,边长为1的正方形,它的对角线(根2)却不能用整数之比来表达。这就触犯了这个学派的信条,于是规定了一条纪律:谁都不准泄露存在根2 (即无理数)的秘密。天真的希帕索斯无意中向别人谈到了他的发现,结果被杀害。但根2很快就引起了数学思想的大革命。科学史上把这件事称为“第一次数学危机”。希帕索期为根2殉难留下的教训是:科学是没有止境的,谁为科学划定禁区,谁就变成科学的敌人,最终被科学所埋葬。
可惜,朝气蓬勃的毕达哥拉斯,到了晚年不仅学术上趋向保守,而且政治上反对新生事物,最后死于非命。
毕达哥拉斯
-------------------------------------------------
(Pythagoras, 约公元前580~前500)
生平简介:
在古希腊早期的数学家中,毕达哥拉斯的影响是最大的。他那传奇般的一生给后代留下了众多神奇的传说。
毕达哥拉斯生于萨摩斯(今希腊东部小岛),卒于他林敦(今意大利南部塔兰托)。 他既是哲学家、数学家,又是天文学家。他在年轻时,根据当时富家子弟的惯例,曾到巴比伦和埃及去游学,因而直接受到东方文明的熏陶。回国后,毕达哥拉斯创建了政治、宗教、数学合一的秘密学术团体,这个团体被后人称为毕达哥拉斯学派。这个学派的活动都是秘密的,笼罩着一种不可思议的神秘气氛。据说,每个新入学的学生都得宣誓严守秘密,并终身只加入这一学派。该学派还有一种习惯,就是将一切发明都归之于学派的领袖,而且秘而不宣,以致后人不知是何人在何时所发明的。
毕达哥拉斯定理(即勾股定理)是毕达哥拉斯的另一贡献,他的一个学生希帕索斯通过勾股定理发现了无理数,虽然这一发现打破了毕达哥拉斯宇宙万物皆为整数与整数之比的信条,并导致希帕索斯悲惨地死去,但定理对数学的发展起到了巨大的促进作用。此外,毕达哥拉斯在音乐、天文、哲学方面也做出了一定贡献,首创地圆说,认为日、月、五星都是球体,浮悬在太空之中。
小故事:
毕达哥拉斯有次应邀参加一位富有政要的餐会,这位主人豪华宫殿般的餐厅铺着是正方形美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言;这位善于观察和理解的数学家却凝视脚下这些排列规则、美丽的方形磁砖,但毕达哥拉斯不只是欣赏磁砖的美丽,而是想到它们和[数]之间的关系,于是拿了画笔并且蹲在地板上,选了一块磁砖以它的对角线 AB为边画一个正方形,他发现这个正方形面积恰好等于两块磁砖的面积和。他很好奇,于是再以两块磁砖拼成 的矩形之对角线作另一个正方形,他发现这个正方形之面积等于5块磁砖的面积,也就是以两股为边作正方形面积之和。至此毕达哥拉斯作了大胆的假设: 任何直角三角形,其斜边的平方恰好等于另两边平方之和。那一顿饭,这位古希腊数学大师,视线都一直没有离开地面。
西方哲学史——毕达哥拉斯
作者:毕达哥拉斯
文章来源:
浏览:746 次
作者:英 伯特兰·罗素著 来源:《西方哲学史》
毕达哥拉斯对古代和近代的影响是我这一章的主题;无论就他的聪明而论或是就他的不聪明而论,毕达哥拉斯都是自有生民以来在思想方面最重要的人物之一。数学,在证明式的演绎推论的意义上的数学,是从他开始的;而且数学在他的思想中乃是与一种特殊形式的神秘主义密切地结合在一起的。自从他那时以来,而且一部分是由于他的缘故,数学对于哲学的影响一直都是既深刻而又不幸的。
让我们先从关于他生平已知的一些很少的事实谈起。他是萨摩岛的人,大约鼎盛于公元前523年。有人说他是一个殷实的公民叫做姆奈萨尔克的儿子,另有人说他是亚波罗神的儿子;我请读者们在这两说中自行选择一种。在他的时代,萨摩被僭主波吕克拉底所统治着,这是一个发了大财的老流氓,有着一支庞大的海军。
萨摩是米利都的商业竞争者;它的商人足迹远达以矿产著名的西班牙塔尔特苏斯地方。波吕克拉底大约于公元前535年成为萨摩的僭主,一直统治到公元前515年为止。他是不大顾虑道德的责难的;他赶掉了他的两个兄弟,他们原是和他一起搞僭主政治的,他的海军大多用于进行海上掠夺。不久之前米利都臣服于波斯的这件事情对他非常有利。
为了阻止波斯人继续向西扩张,他便和埃及国王阿马西斯联盟。但是当波斯王堪比西斯集中全力征服埃及时,波吕克拉底认识到他会要胜利,于是就改变了立场。他派遣一支由他的政敌所组成的舰队去进攻埃及;但是水兵们叛变了,回到萨摩岛向他进攻。虽然他战胜了他们,但是最后还是中了一桩利用他的贪财心的阴谋而垮台了。在萨尔底斯的波斯总督假装着要背叛波斯大王,并愿拿出一大笔钱来酬答波吕克拉底对他的援助;波吕克拉底到大陆上去会晤波斯总督时,便被捕获并被钉死在十字架上。
波吕克拉底是一位艺术的保护主,并曾以许多了不起的建筑美化了萨摩。安那克里昂就是他的宫廷诗人。然而毕达哥拉斯却不喜欢他的政府,所以便离开了萨摩岛。据说——而且不是不可能的——毕达哥拉斯到过埃及,他的大部分智慧都是在那里学得的;无论情形如何,可以确定的是他最后定居于意大利南部的克罗顿。
意大利南部的各希腊城市也象萨摩岛和米利都一样,都是富庶繁荣的;此外,它们又遭受不到波斯人的威胁①。最大的两个城市是西巴瑞斯和克罗顿。西巴瑞斯的奢华至今还脍炙人口;据狄奥多罗斯说,它的人口当全盛时期曾达三十万人之多,虽然无疑地这是一种夸大。克罗顿与西巴瑞斯的大小大致相等。两个城市都靠输入伊奥尼亚的货物至意大利为生,一部分货物是做为意大利的消费品,一部分则从西部海岸转口至高卢和西班牙。意大利的许多希腊城市彼此激烈地进行征战;当毕达哥拉斯到达克罗顿的时候,克罗顿刚刚被劳克瑞所战败。然而在毕达哥拉斯到达之后不久,克罗顿对西巴瑞斯的战争便取得了完全的胜利,西巴瑞斯彻底地被毁灭了(公元前510年)。西巴瑞斯与米利都在商业上一直有密切的联系。克罗顿以医学著名;克罗顿有一个人德谟西底斯曾经做过波吕克拉底的御医,后来又作过大流士的御医。毕达哥拉斯和他的弟子在克罗顿建立了一个团体,这个团体有一个时期在该城中是很有影响的。但是最后,公民们反对他,于是他就搬到梅达彭提翁(也在意大利南部),并死于此处。不久他就成为一个神话式的人物,被赋与了种种奇迹和神力,但是他也是一个数学家学派的创立者②。这样,就有两种相反的传说争论着他的事迹,而真相便很难弄清楚。
毕达哥拉斯是历史上最有趣味而又最难理解的人物之一。不仅关于他的传说几乎是一堆难分难解的真理与荒诞的混合,而且即使是在这些传说的最单纯最少争论的形式里,它们也向我们提供了一种最奇特的心理学。简单地说来,可以把他描写成是一种爱因斯坦与艾地夫人的结合。他建立了一种宗教,主要的教义是灵魂的轮回①和吃豆子的罪恶性。他的宗教体现为一种宗教团体,这一教团到处取得了对于国家的控制权并建立起一套圣人的统治。但是未经改过自新的人渴望着吃豆子,于是就迟早都反叛起来了。
毕达哥拉斯教派有一些规矩是:
1.禁食豆子。
2.东西落下了,不要拣起来。
3.不要去碰白公鸡。
4.不要擘开面包。
5.不要迈过门闩。
6.不要用铁拨火。
7.不要吃整个的面包。
8.不要招花环。
9.不要坐在斗上。
10.不要吃心。
11.不要在大路上行走。
12.房里不许有燕子。
13.锅从火上拿下来的时候,不要把锅的印迹留在灰上,而要把它抹掉。
14.不要在光亮的旁边照镜子。
15.当你脱下睡衣的时候,要把它卷起,把身上的印迹摩平①。
所有这些诫命都属于原始的禁忌观念。
康福德(《从宗教到哲学》)说,在他看来,“毕达哥拉斯代表着我们所认为与科学倾向相对立的那种神秘传统的主潮。”他认为巴门尼德——他称之为“逻辑的发现者”
——“是毕达哥拉斯的一个支派,而柏拉图本人则从意大利哲学获得了他的灵感的主要来源”。他说毕达哥拉斯主义是奥尔弗斯教内部的一种改良运动,而奥尔弗斯教又是狄奥尼索斯崇拜中的改良运动。理性的东西与神秘的东西之互相对立贯穿着全部的历史,它在希腊人中间最初表现为奥林匹克的神与其他较为不开化的神之间的对立,后者更接近于人类学者们所研究的原始信仰。在这个分野上,毕达哥拉斯是站在神秘主义方面的,虽然他的神秘主义具有一种特殊的理智性质。他认为他自己具有一种半神明的性质,而且似乎还曾说过,“既有人,又有神,也还有象毕达哥拉斯这样的生物。”康福德说,受他所鼓舞的各种体系“都是倾向于出世的,把一切价值都置于上帝的不可见的统一性之中,并且把可见的世界斥为虚幻的,说它是一种混浊的介质,其中上天的光线在雾色和黑暗之中遭到了破坏,受到了蒙蔽”。
狄凯阿克斯说,毕达哥拉斯教导说,“首先,灵魂是个不朽的东西,它可以转变成别种生物;其次,凡是存在的事物,都要在某种循环里再生,没有什么东西是绝对新的;一切生来具有生命的东西都应该认为是亲属。”①据说,毕达哥拉斯好象圣法兰西斯一样地曾向动物说法。
在他建立的团体里,不分男女都可以参加;财产是公有的,而且有一种共同的生活方式,甚至于科学和数学的发现也认为是集体的,而且,在一种神秘的意义上,都得归功于毕达哥拉斯;甚至于在他死后也还是如此。梅达彭提翁的希巴索斯曾违反了这条规矩,便因船只失事而死,这是神对于他的不虔诚而震怒的结果。
但是这一切与数学又有什么关系呢?它们是通过一种赞美沉思生活的道德观而被联系在一片的。伯奈特把这种道德观总结如下:
“我们在这个世界上都是异乡人,身体就是灵魂的坟墓,然而我们决不可以自杀以求逃避;因为我们是上帝的所有物,上帝是我们的牧人,没有他的命令我们就没权利逃避。在现世生活里有三种人,正象到奥林匹克运动会上来的也有三种人一样。那些来作买卖的人都属于最低的一等,比他们高一等的是那些来竞赛的人。然而,最高的一种乃是那些只是来观看的人们。因此,一切中最伟大的净化便是无所为而为的科学,唯有献身于这种事业的人,亦即真正的哲学家,才真能使自己摆脱\'生之巨轮\'。”①文字涵义的变化往往是非常有启发意义的。我在上文已经提到“狂欢”(orgy)那个字;现在我就要谈谈“理论”(theory)这个字。这个字原来是奥尔弗斯教派的一个字,康福德解释为“热情的动人的沉思”。他说,在这种状态之中“观察者与受苦难的上帝合而为一,在他的死亡中死去,又在他的新生中复活”;对于毕达哥拉斯,这种“热情的动人的沉思”乃是理智上的,而结果是得出数学的知识。这样,通过了毕达哥拉斯主义,“理论”
就逐渐地获得了它的近代意义;然而对一切为毕达哥拉斯所鼓舞的人们来说,它一直保存着一种狂醉式的启示的成份。这一点,对于那些在学校里无可奈何地学过一些数学的人们来说,好象是很奇怪的;然而对于那些时时经验着由于数学上的豁然贯通而感到沉醉欢欣的人们来说,对于那些喜爱数学的人们来说,毕达哥拉斯的观点则似乎是十分自然的,纵令它是不真实的。仿佛经验的哲学家只是材料的奴隶,而纯粹的数学家,正象音乐家一样,才是他那秩序井然的美丽世界的自由创造者。
最有趣的是,我们从伯奈特叙述的毕达哥拉斯的伦理学里,可以看出与近代价值相反的观念。譬如在一场足球赛里,有近代头脑的人总认为足球员要比观众伟大得多。至于国家,情形也类似:他们对于政治家(政治家是比赛中的竞争者)的崇拜有甚于对于那些仅仅是旁观者的人们。这一价值的变化与社会制度的改变有关——战士、君子、财阀、独裁者,各有其自己的善与真的标准。君子在哲学理论方面曾经有过长期的当权时代,因为他是和希腊天才结合在一片的,因为沉思的德行获得了神学的保证,也因为无所为而为的真理这一理想庄严化了学院的生活。君子可以定义为平等人的社会中的一分子,他们靠奴隶劳动而过活,或者至少也是依靠那些毫无疑问地位卑贱的劳动人民而过活。应该注意到在这个定义里也包括着圣人与贤人,因为就这些圣贤的生活而论,他们也是耽于沉思的而不是积极活动的。
近代关于真理的定义,例如实用主义的和工具主义的关于真理的定义,就是实用的而不是沉思的,它是由于与贵族政权相反对的工业文明所激起的。
无论人们对于容许奴隶制存在的社会制度怀着怎样的想法,但正是从上面那种意义的君子那里,我们才有了纯粹的数学。沉思的理想既能引人创造出纯粹的数学,所以就是一种有益的活动的根源;这一点就增加了它的威望,并使它在神学方面、伦理学方面和哲学方面获得了一种在其他情况下所不能享有的成功。
关于毕达哥拉斯之作为一个宗教的先知与作为一个纯粹的数学家这两方面,我们已经解释得很多了。在这两方面,他都有着无可估计的影响,而且这两方面在当时也不象近代人所想象的那样是分离开来的。
大多数的科学从它们的一开始就是和某些错误的信仰形式联系在一片的,这就使它们具有一种虚幻的价值。天文学和占星学联系在一片,化学和炼丹术联系在一片。数学则结合了一种更精致的错误类型。数学的知识看来是可靠的、准确的,而且可以应用于真实的世界。此外,它还是由于纯粹的思维而获得的,并不需要观察。因此之故,人们就以为它提供了日常经验的知识所无能为力的理想。人们根据数学便设想思想是高于感官的,直觉是高于观察的。如果感官世界与数学不符,那么感官世界就更糟糕了。人们便以各种不同的方式寻求更能接近于数学家的理想的方法,而结果所得的种种启示就成了形而上学与知识论中许多错误的根源。这种哲学形式也是从毕达哥拉斯开始的。
正如大家所知道的,毕达哥拉斯说“万物都是数”。这一论断如以近代的方式加以解释的话,在逻辑上是全无意义的,然而毕达哥拉斯所指的却并不是完全没有意义的。
他发现了数在音乐中的重要性,数学名词里的“调和中项”与“调和级数”就仍然保存着毕达哥拉斯为音乐和数学之间所建立的那种联系。他把数想象为象是表现在骰子上或者纸牌上的那类形状。我们至今仍然说数的平方与立方,这些名词就是从他那里来的。
他还提到长方形数目、三角形数目、金字塔形数目等等。这些都是构成上述各种形状所必需的数目小块块(或者我们更自然一些应该说是些数目的小球球)。他把世界假想为原子的,把物体假想为是原子按各种不同形式排列起来而构成的分子所形成的。他希望以这种方式使算学成为物理学的以及美学的根本研究对象。
毕达哥拉斯的最伟大的发现,或者是他的及门弟子的最伟大的发现,就是关于直角三角形的命题;即直角两夹边的平方的和等于另一边的平方,即弦的平方。埃及人已经知道三角形的边长若为3,4,5的话,则必有一个直角。但是显然希腊人是最早观察到32+42=52的,并且根据这一提示发现了这个一般命题的证明。
然而不幸,毕达哥拉斯的定理立刻引到了不可公约数(无理数)的发现,这似乎否定了他的全部哲学。在一个等边直角三角形里,弦的平方等于每一边平方的二倍。让我们假设每边长一时,那么弦应该有多么长呢?让我们假设它的长度是m/n时。那么m2/n2=2。
如果m和n有一个公约数,我们可以把它消去,于是m和n必有一个是奇数。现在m2=2n2,所以m是偶数,所以m也是偶数;因此n就是奇数。假设m=2p。那末4p2=2n2,因此n2=2p2,而因此n便是偶数,与假设相反。所以就没有m/n的分数可以约尽弦。以上的证明,实质上就是欧几里德第十编中的证明①。
这种论证就证明了无论我们采取什么样的长度单位,总会有些长度对于那个单位不能具有确切的数目关系;也就是说,不能有两个整数m、n,从而使问题中的m倍的长度等于n倍的单位。这就使得希腊的数学家们坚信,几何学的成立必定是独立的而与算学无关。
柏拉图对话录中有几节可以证明,在他那时候已经有人独立地处理几何学了;几何学完成于欧几里德。欧几里德在第二编中从几何上证明了许多我们会自然而然用代数来证明的东西,例如(a+b)2=a2+2ab+b2。正是因为有不可公约数的困难,他才认为这种办法是必要的。他在第五编、第六编中论比例时,情形也是如此。整个体系在逻辑上是醒目的,并且已经预示着十九世纪数学家们的严谨了。只要关于不可公约数还没有恰当的算学理论存在时,则欧几里德的方法便是几何学中最好的可能方法。当笛卡儿介绍了坐标几何学(解析几何)从而再度确定了算学至高无上的地位时,他曾设想不可公约数的问题有解决的可能性,虽然在他那时候还不曾发现这种解法。
几何学对于哲学与科学方法的影响一直是深远的。希腊人所建立的几何学是从自明的、或者被认为是自明的公理出发,根据演绎的推理前进,而达到那些远不是自明的定理。公理和定理被认为对于实际空间是真确的,而实际空间又是经验中所有的东西。这样,首先注意到自明的东西然后再运用演绎法,就好像是可能发现实际世界中一切事物了。这种观点影响了柏拉图和康德以及他们两人之间的大部分的哲学家。“独立宣言”
①说:“我们认为这些真理是自明的”,其本身便脱胎于欧几里德。十八世纪天赋人权的学说,就是一种在政治方面追求欧几里德式的公理②。牛顿的《原理》一书,尽管它的材料公认是经验的,但是它的形式却完全是被欧几里德所支配着的。严格的经院形式的神学,其体裁也出于同一个来源。个人的宗教得自天人感通,神学则得自数学;而这两者都可以在毕达哥拉斯的身上找到。
我相信,数学是我们信仰永恒的与严格的真理的主要根源,也是信仰有一个超感的可知的世界的主要根源。几何学讨论严格的圆,但是没有一个可感觉的对象是严格地圆形的;无论我们多么小心谨慎地使用我们的圆规,总会有某些不完备和不规则的。这就提示了一种观点,即一切严格的推理只能应用于与可感觉的对象相对立的理想对象;很自然地可以再进一步论证说,思想要比感官更高贵而思想的对象要比感官知觉的对象更真实。神秘主义关于时间与永恒的关系的学说,也是被纯粹数学所巩固起来的;因为数学的对象,例如数,如其是真实的话,必然是永恒的而不在时间之内。这种永恒的对象就可以被想象成为上帝的思想。因此,柏拉图的学说是:上帝是一位几何学家;而詹姆士·琴斯爵士也相信上帝嗜好算学。与启示的宗教相对立的理性主义的宗教,自从毕达哥拉斯之后,尤其是从柏拉图之后,一直是完全被数学和数学方法所支配着的。
数学与神学的结合开始于毕达哥拉斯,它代表了希腊的、中世纪的以及直迄康德为止的近代的宗教哲学的特征。毕达哥拉斯以前的奥尔弗斯教义类似于亚洲的神秘教。但是在柏拉图、圣奥古斯丁、托马斯·阿奎那、笛卡尔、斯宾诺莎和康德的身上都有着一种宗教与推理的密切交织,一种道德的追求与对于不具时间性的事物之逻辑的崇拜的密切交织;这是从毕达哥拉斯而来的,并使得欧洲的理智化了的神学与亚洲的更为直接了当的神秘主义区别开来。只是到了最近的时期,人们才可能明确地说出毕达哥拉斯错在哪里。我不知道还有什么别人对于思想界有过象他那么大的影响。我所以这样说,是因为所谓柏拉图主义的东西倘若加以分析,就可以发现在本质上不过是毕达哥拉斯主义罢了。有一个只能显示于理智而不能显示于感官的永恒世界,全部的这一观念都是从毕达哥拉斯那里得来的。如果不是他,基督徒便不会认为基督就是道;如果不是他,神学家就不会追求上帝存在与灵魂不朽的逻辑证.明.。但是在他的身上,这一切还都不显著。
下面就要谈到这一切是怎样变得显著的。
====================================================================
①西西里的希腊城市是受着迦太基人的威胁的,但是在意大利,人们并不感到这种威胁的切迫。
②亚里士多德说,毕达哥拉斯“最初从事数学和算学,后来一度不惜从事非里赛底斯所奉行的魔术。”
①“丑:毕达哥拉斯对于野鸟有什么意见?
马伏里奥:他说我们祖母的灵魂也许曾在鸟儿的身体里寄住过。
丑:你对他的意见觉得怎样?
马:我认为灵魂是高贵的,绝对不赞成他的说法。
丑:再见,你在黑暗里住下去吧,等到你赞成了毕达哥拉斯的说法之后,我才可以承认你的头脑健全”。(第十二夜)
(朱生豪译:《莎士比亚戏剧集》卷二,第218页,作家出版社,1954)
①引自伯奈特《早期希腊哲学》。
①康福德:前引书,第201页。
①《早期希腊哲学》,第108页。
①但是这并非欧几里德所发现的,见希斯:《希腊的数学》。以上的证明或许柏拉图是知道的。
①这里指的是美国的《独立宣言》——中译本编者
②佛兰克林用“自明的”代替了杰弗逊的“神圣的与不可否认的”。
㈢ 毕达哥拉斯除勾股定理外的定理有哪些
【毕达哥拉斯(Pythagoras)简介】
泰勒斯(Thales)在哲学上有个对立面,这个人就是首先提出物质运动应该符合数学规律的古希腊哲学家、数学家、天文学家——毕达哥拉斯(公元前560年~公元前480年)。
【人生简历】
公元前580年,毕达哥拉斯出生在米里都附近的萨摩斯岛(今希腊东部的小岛)——爱奥尼亚群岛的主要岛屿城市之一,此时群岛正处于极盛时期,在经济、文化等各方面都远远领先于希腊本土的各个城邦。
毕达哥拉斯的父亲是一个富商,九岁时被父亲送到提尔,在闪族叙利亚学者那里学习,在这里他接触了东方的宗教和文化。以后他又多次随父亲作商务旅行到小亚细亚。
公元前551年,毕达哥拉斯来到米利都、得洛斯等地,拜访了泰勒斯、阿那克西曼德和菲尔库德斯,并成为了他们的学生。在此之前,他已经在萨摩斯的诗人克莱非洛斯那里学习了诗歌和音乐。
公元前550年,30岁的毕达哥拉斯因宣传理性神学,穿东方人服装,蓄上头发从而引起当地人的反感,从此萨摩斯人一直对毕达哥拉斯有成见,认为他标新立异,鼓吹邪说。毕达哥拉斯被迫于公元前535年离家前往埃及,途中他在腓尼基各沿海城市停留,学习当地神话和宗教,并在提尔一神庙中静修。
抵达埃及后,国王阿马西斯推荐他入神庙学习。从公元前535年到公元前525年这十年中,毕达哥拉斯学习了象形文字和埃及神话历史和宗教,并宣传希腊哲学,受到许多希腊人尊敬,有不少人投到他的门下求学。
毕达哥拉斯在49岁时返回家乡萨摩斯,开始讲学并开办学校,但是没有达到他预期的成效。公元前520年左右,为了摆脱当时君主的暴政,他与母亲和唯一的一个门徒离开萨摩斯,移居西西里岛,后来定居在克罗托内。在那里他广收门徒,建立了一个宗教、政治、学术合一的团体。
他的演讲吸引了各阶层的人士,很多上层社会的人士来参加演讲会。按当时的风俗,妇女是被禁止出席公开的会议的,毕达哥拉斯打破了这个成规,允许她们也来听讲。热心的听众中就有他后来的妻子西雅娜,她年轻漂亮,曾给他写过传记,可惜已经失传了。
毕达哥拉斯在意大利南部的希腊属地克劳东成立了一个秘密结社,这个社团里有男有女,地位一律平等,一切财产都归公有。社团的组织纪律很严密,甚至带有浓厚的宗教色彩。每个学员都要在学术上达到一定的水平,加入组织还要经历一系列神秘的仪式,以求达到“心灵的净化”。
他们要接受长期的训练和考核,遵守很多的规范和戒律,并且宣誓永不泄露学派的秘密和学说。他们相信依靠数学可使灵魂升华,与上帝融为一体,万物都包含数,甚至万物都是数,上帝通过数来统治宇宙。这是毕达哥拉斯学派和其他教派的主要区别。
学派的成员有着共同的哲学信仰和政治理想,他们吃着简单的食物,进行着严格的训练。学派的教义鼓励人们自制、节欲、纯洁、服从。他们开始在大希腊(今意大利南部一带)赢得了很高的声誉,产生过相当大的影响,也因此引起了敌对派的嫉恨。
后来他们受到民主运动的冲击,社团在克罗托内的活动场所遭到了严重的破坏。毕达哥拉斯被迫移居他林敦(今意大利南部塔兰托),并于公元前500年去世,享年80岁。许多门徒逃回希腊本土,在弗利奥斯重新建立据点,另一些人到了塔兰托,继续进行数学哲学研究,以及政治方面的活动,直到公元前4世纪中叶。毕达哥拉斯学派持续繁荣了两个世纪之久。
【“万物皆数”】
最早把数的概念提到突出地位的是毕达哥拉斯学派。他们很重视数学,企图用数来解释一切。宣称数是宇宙万物的本原,研究数学的目的并不在于使用而是为了探索自然的奥秘。他们从五个苹果、五个手指等事物中抽象出了五这个数。这在今天看来很平常的事,但在当时的哲学和实用数学界,这算是一个巨大的进步。在实用数学方面,它使得算术成为可能。在哲学方面,这个发现促使人们相信数是构成实物世界的基础。
毕达哥拉斯定理——勾股定理
毕达哥拉斯本人以发现勾股定理(西方称毕达哥拉斯定理)著称于世。这定理早已为巴比伦人和中国人所知(在中国古代大约是战国时期西汉的数学著作 《周髀 算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。这就是中国著名的勾股定理.),不过最早的证明大概可归功于毕达哥拉斯。他是用演绎法证明了直角三角形斜边平方等于两直角边平方之和,即毕达哥拉斯定理(勾股定理)。
数论
毕达哥拉斯对数论作了许多研究,将自然数区分为奇数、偶数、素数、完全数、平方数、三角数和五角数等。在毕达哥拉斯派看来,数为宇宙提供了一个概念模型,数量和形状决定一切自然物体的形式,数不但有量的多寡,而且也具有几何形状。在这个意义上,他们把数理解为自然物体的形式和形象,是一切事物的总根源。因为有了数,才有几何学上的点,有了点才有线面和立体,有了立体才有火、气、水、土这四种元素,从而构成万物,所以数在物之先。自然界的一切现象和规律都是由数决定的,都必须服从“数的和谐”,即服从数的关系。
毕达哥拉斯还通过说明数和物理现象间的联系,来进一步证明自己的理论。他曾证明用三条弦发出某一个乐音,以及它的第五度音和第八度音时,这三条弦的长度之比为6:4:3。他从球形是最完美几何体的观点出发,认为大地是球形的,提出了太阳、月亮和行星作均匀圆运动的思想。他还认为十是最完美的数,所以天上运动的发光体必然有十个。
一个理论
他还有一套这样的理论:地球沿着一个球面围绕着空间一个固定点处的“中央火”转动,另一侧有一个“对地星”与之平衡。这个“中央火”是宇宙的祭坛,是人永远也看不见的。这十个天体到中央火之间的距离,同音节之间的音程具有同样的比例关系,以保证星球的和谐,从而奏出天体的音乐。
整数的变化
毕达哥拉斯和他的学派在数学上有很多创造,尤其对整数的变化规律感兴趣。例如,把(除其本身以外)全部因数之和等于本身的数称为完全数(如6,28, 496等),而将本身大于其因数之和的数称为盈数;将小于其因数之和的数称为亏数。
几何的其他贡献
在几何学方面,毕达哥拉斯学派证明了“三角形内角之和等于两个直角”的论断;研究了黄金分割;发现了正五角形和相似多边形的作法;还证明了正多面体只有五种——正四面体、正六面体、正八面体、正十二面体和正二十面体。
万物皆数
他同时任意地把非物质的、抽象的数夸大为宇宙的本原,认为“万物皆数”,“数是万物的本质”,是“存在由之构成的原则”,而整个宇宙是数及其关系的和谐的体系。毕达哥拉斯将数神秘化,说数是众神之母,是普遍的始原,是自然界中对立性和否定性的原则。
【毕达哥拉斯得到的伦理观】
在早年的治学时期,毕达哥拉斯经常到各地演讲,以向人们阐明经过他深思熟虑的见解,除了“数是万物之原”的主题外,他还常常谈起有关道德伦理的问题。
他对议事厅的权贵们说,“一定要公正。不公正,就破坏了秩序,破坏了和谐,这是最大的恶。起誓是很严重的行为,不到关键时刻不要随便起誓,可是每个官员应能立下保证,保证自己不说谎话。”
在谈到治家时,他认为对儿女的爱是不能指望有回报的,但做父亲的应当努力用自己的言行去获得子女由衷的敬爱。父母的爱是神圣的,作子女的应当珍惜。子女应是父母的朋友,兄弟姐妹之间也应该彼此互敬互爱。当提到夫妻关系时,他说彼此尊重是最重要的,双方都应忠实于配偶。
他谈到过自律的问题。他说,自律是对人个性的一种考验,对儿童、少年、老人、妇女来说,能自律是一种美德,但对年轻人来说,则是必要。自律使你身体健康,心灵洁净,意志坚强。毕达哥拉斯从如何培养自律讲到教育的重要性,他认为人的自律只能在理性和知识的指导下才能培养起来,而知识只能通过教育才能获得,所以教育的重要性是不容忽视的。
他形象的描述了教育的特性:“你能通过学习从别人那里获得知识,但教授你的人却不会因此失去了知识。这就是教育的特性。世界上有许多美好的东西。好的禀赋可以从遗传中获得,如健康的身体,娇好的容颜,勇武的个性;有的东西很宝贵,但一经授予他人就不再归你所有,如财富,如权力。而比这一切都宝贵的是知识,只要你努力学习,你就能得到而又不会损害他人,并可能改变你的天性。”
诚然,作为一种唯心主义的世界观,毕达哥拉斯和他的学派的科学探索无法找到正确的方向,甚至在某种程度上给后来的自然哲学以及科学的发展带来了很大的消极影响。但是,这些失误,并不能掩盖毕达哥拉斯在自然科学形成和发展过程中起到的积极作用。列宁告诉我们,毕达哥拉斯是“科学思维的萌芽同宗教神话之类幻想间的一种联系”。
【毕达哥拉斯的小故事】
毕达哥拉斯有次应邀参加一位富有政要的餐会,这位主人豪华宫殿般的餐厅铺着是正方形美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言;这位善于观察和理解的数学家却凝视脚下这些排列规则、美丽的方形磁砖,但毕达哥拉斯不只是欣赏磁砖的美丽,而是想到它们和[数]之间的关系,于是拿了画笔并且蹲在地板上,选了一块磁砖以它的对角线 AB为边画一个正方形,他发现这个正方形面积恰好等于两块磁砖的面积和。他很好奇,于是再以两块磁砖拼成 的矩形之对角线作另一个正方形,他发现这个正方形之面积等于5块磁砖的面积,也就是以两股为边作正方形面积之和。至此毕达哥拉斯作了大胆的假设: 任何直角三角形,其斜边的平方恰好等于另两边平方之和。那一顿饭,这位古希腊数学大师,视线都一直没有离开地面。
【西方哲学史——毕达哥拉斯】
作者:英 伯特兰·罗素著 来源:《西方哲学史》
毕达哥拉斯对古代和近代的影响是我这一章的主题;无论就他的聪明而论或是就他的不聪明而论,毕达哥拉斯都是自有生民以来在思想方面最重要的人物之一。数学,在证明式的演绎推论的意义上的数学,是从他开始的;而且数学在他的思想中乃是与一种特殊形式的神秘主义密切地结合在一起的。自从他那时以来,而且一部分是由于他的缘故,数学对于哲学的影响一直都是既深刻而又不幸的。
让我们先从关于他生平已知的一些很少的事实谈起。他是萨摩岛的人,大约鼎盛于公元前523年。有人说他是一个殷实的公民叫做姆奈萨尔克的儿子,另有人说他是亚波罗神的儿子;我请读者们在这两说中自行选择一种。在他的时代,萨摩被僭主波吕克拉底所统治着,这是一个发了大财的老流氓,有着一支庞大的海军。
萨摩是米利都的商业竞争者;它的商人足迹远达以矿产著名的西班牙塔尔特苏斯地方。波吕克拉底大约于公元前535年成为萨摩的僭主,一直统治到公元前515年为止。他是不大顾虑道德的责难的;他赶掉了他的两个兄弟,他们原是和他一起搞僭主政治的,他的海军大多用于进行海上掠夺。不久之前米利都臣服于波斯的这件事情对他非常有利。
为了阻止波斯人继续向西扩张,他便和埃及国王阿马西斯联盟。但是当波斯王堪比西斯集中全力征服埃及时,波吕克拉底认识到他会要胜利,于是就改变了立场。他派遣一支由他的政敌所组成的舰队去进攻埃及;但是水兵们叛变了,回到萨摩岛向他进攻。虽然他战胜了他们,但是最后还是中了一桩利用他的贪财心的阴谋而垮台了。在萨尔底斯的波斯总督假装着要背叛波斯大王,并愿拿出一大笔钱来酬答波吕克拉底对他的援助;波吕克拉底到大陆上去会晤波斯总督时,便被捕获并被钉死在十字架上。
波吕克拉底是一位艺术的保护主,并曾以许多了不起的建筑美化了萨摩。安那克里昂就是他的宫廷诗人。然而毕达哥拉斯却不喜欢他的政府,所以便离开了萨摩岛。据说——而且不是不可能的——毕达哥拉斯到过埃及,他的大部分智慧都是在那里学得的;无论情形如何,可以确定的是他最后定居于意大利南部的克罗顿。
意大利南部的各希腊城市也象萨摩岛和米利都一样,都是富庶繁荣的;此外,它们又遭受不到波斯人的威胁①。最大的两个城市是西巴瑞斯和克罗顿。西巴瑞斯的奢华至今还脍炙人口;据狄奥多罗斯说,它的人口当全盛时期曾达三十万人之多,虽然无疑地这是一种夸大。克罗顿与西巴瑞斯的大小大致相等。两个城市都靠输入伊奥尼亚的货物至意大利为生,一部分货物是做为意大利的消费品,一部分则从西部海岸转口至高卢和西班牙。意大利的许多希腊城市彼此激烈地进行征战;当毕达哥拉斯到达克罗顿的时候,克罗顿刚刚被劳克瑞所战败。然而在毕达哥拉斯到达之后不久,克罗顿对西巴瑞斯的战争便取得了完全的胜利,西巴瑞斯彻底地被毁灭了(公元前510年)。西巴瑞斯与米利都在商业上一直有密切的联系。克罗顿以医学著名;克罗顿有一个人德谟西底斯曾经做过波吕克拉底的御医,后来又作过大流士的御医。毕达哥拉斯和他的弟子在克罗顿建立了一个团体,这个团体有一个时期在该城中是很有影响的。但是最后,公民们反对他,于是他就搬到梅达彭提翁(也在意大利南部),并死于此处。不久他就成为一个神话式的人物,被赋与了种种奇迹和神力,但是他也是一个数学家学派的创立者②。这样,就有两种相反的传说争论着他的事迹,而真相便很难弄清楚。
毕达哥拉斯是历史上最有趣味而又最难理解的人物之一。不仅关于他的传说几乎是一堆难分难解的真理与荒诞的混合,而且即使是在这些传说的最单纯最少争论的形式里,它们也向我们提供了一种最奇特的心理学。简单地说来,可以把他描写成是一种爱因斯坦与艾地夫人的结合。他建立了一种宗教,主要的教义是灵魂的轮回①和吃豆子的罪恶性。他的宗教体现为一种宗教团体,这一教团到处取得了对于国家的控制权并建立起一套圣人的统治。但是未经改过自新的人渴望着吃豆子,于是就迟早都反叛起来了。
勾股定理
勾股定理又叫商高定理,或称毕达哥拉斯定理:
在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。如果直角三角形两直角边分别为a、b,斜边为c,那么a
据考证,人类对这条定理的认识,少说也超过 4000 年!
中国最早的一部数学著作——《周髀算经》的开头,就有这条定理的相关内容:周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度。夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘。得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。
在西方有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。
实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例。除上述两个例子外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角。但是,这一传说引起过许多数学史家的怀疑。比如说,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理。我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得证实。”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥板书,据专家们考证,其中一块上面刻有如下问题:“一根长度为 30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为为3:4:5三角形的特殊例子;专家们还发现,在另一块泥板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数。这说明,勾股定理实际上早已进入了人类知识的宝库。
勾股定理是几何学中的明珠,它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家、画家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单又实用,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。(※关于勾股定理的详细证明,由于证明过程较为繁杂,不予收录。)
人们对勾股定理感兴趣的原因还在于它可以作推广。
欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。
从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。
勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。
若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。
㈣ 毕达哥拉斯的证明方法
毕达哥拉斯定理:
在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。如果直角三角形两直角边分别为a、b,斜边为c,那么a^2;+b^2;=c^2;,即α*α+b*b=c*c
推广:把指数改为n时,等号变为小于号
据考证,人类对这条定理的认识,少说也超过 4000 年!
中国最早的一部数学著作——《周髀算经》的第一章,就有这条定理的相关内容:周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度。夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘。得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”就是说,矩形以其对角相折所称的直角三角形,如果勾(短直角边)为3,股(长直角边)为4,那么弦(斜边)必定是5。从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要的数学原理了。
在西方有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。
实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例。除上述两个例子外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角。但是,这一传说引起过许多数学史家的怀疑。比如说,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理。我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得证实。”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥板书,据专家们考证,其中一块上面刻有如下问题:“一根长度为 30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为为3:4:5三角形的特殊例子;专家们还发现,在另一块泥板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数。这说明,勾股定理实际上早已进入了人类知识的宝库。
勾股定理是几何学中的明珠,它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家、画家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单又实用,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。(※关于勾股定理的详细证明,由于证明过程较为繁杂,不予收录。)
人们对勾股定理感兴趣的原因还在于它可以作推广。
欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。
从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。
勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。
若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。
如此等等。
【附录】
《周髀算经》简介
[编辑本段]
《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。 《周髀算经》使用了相当繁复的分数算法和开平方法。
伽菲尔德证明勾股定理的故事
[编辑本段]
1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。
于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。
如下:
解:勾股定理的内容:直角三角形两直角边a、b的平方和等于斜边c的平方,
a^2;+b^2;=c^2;
说明:我国古代学者把直角三角形的较短直角边称为“勾”,较长直角边为“股”,斜边称为“弦”,所以把这个定理成为“勾股定理”。勾股定理揭示了直角三角形边之间的关系。
举例:如直角三角形的两个直角边分别为3、4,则斜边c2= a2+b2=9+16=25
则说明斜边为5。
㈤ 毕达哥拉斯三角形数的规律是什么
在众多的学派中,毕达哥拉斯学派对“形数”的研究最为突出,该项研究强烈地反映了他们将数作为几何思维元素的精神,有效地印证了“凡物皆数”的观点。
那什么是形数呢?即有形状的数。毕达哥拉斯学派研究数的概念时,喜欢把数描绘成沙滩上的小石子,小石子能够摆成不同的几何图形,于是就产生了一系列的形数。
1、三角形数
毕达哥拉斯发现,当小石子的数目是1、3、6、10、…等数时,小石子都能摆成正三角形,他把这些数叫做“三角形数”。如图一1、2所示:
不难看出,前四个三角形数都是一些连续自然数的和,记每一个三角形数为 (i=1、2、3、…、n)则:
=1
=1+2=3
=1+2+3=6
=1+2+3+4=10
……………
=1+2+3+…+100=5050
……………
就这样,毕达哥拉斯借助生动的直观的几何图形,很快就发现了自然数的一个规律:从1开始的连续自然数的和都是三角形数。如果用字母n表示最后一个加数,那么1+2+3+…+n的和即是一个三角形数,而且正好是第n个三角形数。
∴=1+2+3+…+n= (n∈)
㈥ 毕达哥拉斯律 与中国古代的什么理论相似
现如今一些学者会把中国律制的“三分损益法”与西方的“毕达哥拉斯乐制”混淆一谈,被视为两种完全相同的律制.有这样一种逻辑关系:将三分损益法所派生的十二律按照一定的音高关系进行排列时, “三分损益律”由于每次上生一个纯五度,都包括八个律(例如黄钟到林钟),所以也称为“隔八相生法”,两种律制虽然在某种特定环境下可以并用,但是两者还是存在着重大的区别.
㈦ 毕达哥拉斯与勾股定理
勾股定理是一个基来本的初等几自何定理,直角三角形两直角边的平方和等于斜边的平方。如果直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²,若a、b、c都是正整数,(a,b,c)叫做勾股数组。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最著名的例子。
远在公元前约三千年的古巴比伦人就知道和应用勾股定理,还知道许多勾股数组。古埃及人也应用过勾股定理。在中国,西周的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
㈧ 求毕达哥拉斯,赫拉克利特,德谟克利特的资料
毕达哥拉斯是古希腊著名的哲学家、数学家、天文学家。约公元前580年生于萨摩斯,约公元前500年卒于他林敦。早年曾游历埃及、巴比伦等地。为了摆脱暴政,他移居意大利半岛南部的克罗托内,并组织了一个政治、宗教、数学合一的秘密团体。后在政治斗争中失败,被杀害。
毕达哥拉斯学派很重视数学,企图用数来解释一切。他们研究数学的目的并不在于实用,而是为了探索自然的奥秘。毕达哥拉斯本人以发现勾股定理著称,其实这个定理早为巴比伦人和中国人所知,不过最早的证明应归功毕达哥拉斯。
毕达哥拉斯还是音乐理论的鼻祖,他阐明了单弦的乐音与弦长的关系。在天文方面,首创地圆说。毕达哥拉斯的思想和学说,对希腊文化有巨大的影响。
毕 达 哥 拉 斯
达哥拉斯(Pythagoras,572 BC?—497 BC?)古希腊数学家、哲学家。无论是解说外在物质世界,还是描写内在精神世界,都不能没有数学!最早悟出万事万物背后都有数的法则在起作用的,是生活在2500年前的毕达哥拉斯。
毕达哥拉斯出生在爱琴海中的萨摩斯岛(今希腊东部小岛),自幼聪明好学,曾在名师门下学习几何学、自然科学和哲学。以后因为向往东方的智慧,经过万水千山来到巴比伦、印度和埃及,吸收了阿拉伯文明和印度文明甚至中国文明的丰富营养,大约在公元前530年又返回萨摩斯岛。后来又迁居意大利南部的克罗通,创建了自己的学派,一边从事教育,一边从事数学研究。
毕达哥拉斯在Croton建立了“学术帮派”兄弟会(也允许女性参加;足见毕氏没有性别歧视),后来因志同道合而娶了Milo美丽的女儿Theano(是典型的希腊美女——白晰的皮肤,挺直的鼻梁及高挑的身材),之后,毕氏继续领导这个神秘的组织致力于数理及哲学的探讨,当时外界对兄弟会的研究完全不了解。有一次毕达哥拉斯和Leon王子应邀出席参观一场盛大的竞技比赛,Leon和毕达哥拉斯无所不谈,Leon就问毕达哥拉斯:“能否谈谈你是怎样的一个人?”,毕达哥拉斯简单的回答Leon说:“我是哲学家(philosopher)”,王子之前从未听过“philosophy”这个字眼,就向大师请益,毕达哥拉斯说:“就好象今天来参加盛会的人,有一些是沽名钓誉者,有些是为奖赏而拼死拼活的,而我呢?我来这里就只是为了‘观察’和‘理解’这里的一切,而‘观察’和‘理解’就是哲学。”
毕达哥拉斯有次应邀参加一位富有政要的餐会,这位主人豪华宫殿般的餐厅铺着是正方形美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言;但这位善于观察和理解的数学家却凝视脚下这些排列规则、美丽的方形磁砖,但毕达哥拉斯不只是欣赏磁砖的美丽,而是想到它们和“数”之间的关系,于是拿了画笔并且蹲在地板上,选了一块磁砖以它的对角线AB为边画一个正方形,他发现这个正方形面积恰好等于两块磁砖的面积和。他很好奇……于是再以两块磁砖拼成的矩形之对角线作另一个正方形,他发现这个正方形之面积等于5块磁砖的面积,也就是以两股为边作正方形面积之和。至此毕达哥拉斯作了大胆的假设:任何直角三角形,其斜边的平方恰好等于另两边平方之和……那一顿饭,这位古希腊数学大师,视线都一直没有离开地面。
毕达哥拉斯(BC560~480)逃离Samos岛之后,前往意大利的Croton(当时仍属于希腊版图)并结识了当地最有权势的人——Milo。毕达哥拉斯的哲理思想在当时是能影响全希腊的知识界,但Milo的声望比毕氏更高,他除了有着像力神Hercules般的体形之外,同时也是奥林匹克竞技十项全能,也同时是哲学及数学的爱好者;干材遇烈火也是慧眼识英雄,于是Milo提供财力及房舍给毕达哥拉斯办“学校”,他俩就成了最好的伙伴。毕达哥拉斯成立了“学校”——毕达哥拉斯兄弟会,这个组织立刻吸引了600位会员,这是历史上很特殊的知识帮派,会员必须贡献他所有的财产给组织;毕达哥拉斯为了显示兄弟会的“组织性”,他规定入会的兄弟要发毒誓,不准泄露组织的任何数学发现……
在那个一切归美于神的年代里,Pythagoras所创立的“兄弟会”,其实就是一个宗教性团体,只是说这些教徒所信奉的偶像是“数”,毕达哥拉斯相信神用“数”创造了宇宙万物,而能透过对数的研究就能更了解宇宙的奥密也就更能接近神,这是毕达哥拉斯的信仰也是他所创兄弟会的教义。此外,信徒被迫发毒誓不得泄露组织内的活动以及他们所研究的成果,毕达哥拉斯之所以如此定“组织章程”,其实并不难理解,就类似现在的休闲中心采用会员制,一方面是便于管理、提升素质,另一方面也是维护会员的权益;兄弟会会员入会必须要将他所有财产贡献给组织,会员的义务是这么大,所以当然,相对的,成员的权益(数学新知)也不能让外人分享。由于组织的神秘色彩,在当时是吸引了无数人才进入兄弟会。
赫拉克利特
赫拉克利特(Heraclitus,约公元前540年——前480年),古希腊哲学家、爱非斯派的创始人。生于爱非斯一个贵族家庭。他的文章晦涩难懂,富有隐喻。
赫拉克利特的理论以毕达哥拉斯的学说为基础。他借用毕达哥拉斯“和谐”的概念,认为在对立与冲突的背后有某种程度的和谐,而协调本身并不是引人注目的。他认为冲突使世界充满生气。赫拉克利特还认为,火是万物的本原,“一切事物都换成火,火也换成一切事物”。
赫拉克利特也认为所有东西都是流动的,每一件事物都在不断变换,他的名言是:“人不能两次踏入同一条河流,因为无论是这条河还是这个人都已经不同。”苏格拉底因此称赫拉克利特为“流动者”。
赫拉克利特的对立理论则指出,世间的事物都是相对的,在没有理解恶的时候也就不可能理解善。
赫拉克利特认为神是涵盖整个世界的事物。但他常常用逻各斯(logos,即理性)一词来代替神。他相信世界上有“普遍的理性”来指导大自然发生的每一件事。
他本来应该继承王位,但是他将王位让给了他的兄弟,自己跑到女神阿尔迪美斯庙附近隐居起来。据说,波斯国王大流士曾经写信邀请他去波斯宫廷教导希腊文化。赫拉克利特傲慢地拒绝了。他说:“因为我有一种对显赫的恐惧,我不能到波斯去,我满足于我的心灵既有的渺小的东西。”还有一则轶事说,他整天和小孩玩骰子。他对围观的人说:“你们这般无赖,有什么值得大惊小怪的!难道这不比你们参加的政治活动更好吗?”有人问他为什么保持沉默,他回答说:“为什么?好让你们去唠叨!”这些轶事虽然不完全可信,但是它们表明希腊哲学家已经开始脱离公共事务。其实,赫拉克利特也没有完全脱离政治。当爱菲斯城邦放逐了他的朋友赫尔谟多罗时,他气呼呼地说:“爱菲斯的每个成年人最好都将自己吊死,把城邦留给尚葆其天真的少年。”他号召人民保卫法律,铲除暴虐。据说,他在隐居时,以草根和植物度日,得了水肿病。他到城里找医生,用哑谜的方式询问医生能否使阴雨天变得干燥起来。医生不懂他的意思。他跑到牛圈里,想用牛粪的热力把身体里的水吸出,结果无济于事,去世时大约60岁。
赫拉克利特写过一部总称为《论自然》的书,内容有“论万物”、“论政治”和“论神灵”三部分。可惜这部书没有保存下来,我们现在看到的只是130多个残篇,它们是从不同时期的著作中摘录出来的。残篇的语言多形象比喻,内容是深奥的辩证法,读起来十分困难,赫拉克利特因此得到“晦涩哲人”的称号。
永恒的活火
“这个有秩序的宇宙(科斯摩斯)对万物都是相同的,它既不是神也不是人所创造的,它过去、现在和将来永远是一团永恒的活火,按一定尺度燃烧,一定尺度熄灭。”
赫拉克利特主张火与万物可以相互转化,但并未说明转化是如何进行的。这体现了他哲学上晦涩难懂和神秘主义的特点。他认为火的燃烧中有一定的尺度和逻各斯的思想。
原因:火是诸元素中最精致,并且是最接近于没有形体的东西;更重要的是,火既是运动的,又是能使别的事物运动。
赫拉克利特认为万物的本原是火,说宇宙是永恒的活火,他的基本出发点是:这个有秩序的宇宙既不是神也不是人所创造的。宇宙本身是它自己的创造者,宇宙的秩序都是由它自身的逻各斯所规定的。这是赫拉克利特学说的本质,它是米利都学派的朴素唯物论思想的继承和深入的发展。
万物皆流
“人不能两次走进同一条河流”是古希腊唯物主义哲学家赫拉克利特的一句名言,列宁称他为“辩证法的奠基人之一”。这句名言的意思是说,河里的水是不断流动的,你这次踏进河,水流走了,你下次踏进河时,又流来的是新水。河.水川流不息,所以你不能踏进同一条河流。显然,这句名言是有其特定意义的,并不是指这条河与那条河之间的区别。赫拉克利特主张“万物皆动”,“万物皆流”,这使他成为当时具有朴素辩证法思想的“流动派”的卓越代表。
赫拉克利特的这一名言,说明了客观事物是永恒地运动。变化和发展着的这样一个真理。恩格斯曾评价说:“这个原始的、朴素的但实质上正确的世界观是古希腊哲学的世界观,而且是由赫拉克利特第一次明白地表述出来的:一切都存在,同对又不存在,因为一切都在流动,都在不断地变化,不断地产生和消失。”赫拉克利特还认为,事物都是相互转化的。冷变热,热变冷,湿变干,干变湿。他还明确断言:“我们走下而又没有走下同一条河流。我们存在而又不存在。”
逻各斯
赫拉克利特认为万物是永远变动的,而这种变动是按照一定的尺度和规律进行的。这就是他的逻各斯学说,是他的辩证法思想的第二个方面。
万物的运动,无论是火的燃烧和熄灭以及万物的生成和互相转化都是按照一定的逻各斯进行的;这种逻各斯主要就是一种尺度、大小、分寸,即数量上的比例关系。这种尺度当然也是一种规律,但它和通常说的一般规律还有点不同,即尺度还只是一种主要表现为数量上的一定的比例和关系,而一般规律却不仅表现在数量方面也可以表现在其他方面。从抽象的程度说,一般规律高于尺度。人的认识发展是从具体到一般的,先从具体的事物中发现比较一般的东西,然后再深入到更为一般的东西。所以,发现尺度是发现一般规律的前一步,从认识尺度再前进一步就可以认识一般规律。赫拉克利特提出的逻各斯正是处在人类认识发展的这个阶段——认识尺度、比例上。
由此也可以看到赫拉克利特和毕达哥拉斯学派之间的关系。毕达哥拉斯学派认为万物的本原是数,它们的存在和变化都根据一定的数的比率关系,整个宇宙就是按一定的数的比例组成的有秩序的科斯摩斯。赫拉克利特用“逻各斯”这样一个简单的概念将毕达哥拉斯学派的思想完美地表达出来。在这点上,赫拉克利特和毕达哥拉斯学派的思想是根本一致的。我们可以说:在公元前六——五世纪期间,以毕达哥拉斯学派和赫拉克利特为代表的希腊哲学,已经比米利都学派前进了一步,即他们不满足于寻求万物的本原,而是开始要寻求隐藏在现象背后的带有规律性的东西。他们开始发现了数量上的比例关系,也就是逻各斯。这是当时哲学上的一个重大发展,也是他们对哲学发展作出的重要贡献之一。
对立统一
原始的统一是不断地活动和变化的,永不停止。它的创造是毁灭,毁灭是创造。一种东西变成另外一种东西,比如火变成水,火就消失在新的存在形式中。每一种东西都这样变成它的对立面,因此每一种东西都是对立性质的统一。没有什么东西的性质不变,没有什么东西具有永恒的性质。从这一意义来看,每一种东西既存在,又不存在。有这种对立,才能有世界。比如,音乐中的和谐就产生于高低音调的结合。
世界为斗争所支配。赫拉克利特说,“战争是万有之父和万有之王”。如果没有斗争和对立,世界就会消亡——停滞或者毁灭。对立和矛盾统一起来才能产生和谐。“生与死,梦与醒、少与老,是同样的东西。后者变化,就成为前者,前者便回来,则称为后者。”
总结
赫拉克利特被称为辩证法的奠基人之一,因为他是在古代希腊哲学家中,第一个用朴素的语言讲出了辩证法的要点的人。赫拉克利特的辩证思想主要表现在以下三个方面:
第一,他认为万物都是在不断运动变化中的,并提出了“人不能两次踏进同一条河流”这一著名命题来说明它。
第二,他看到事物的运动变化是按照一定的规律进行的,第一个提出了“逻各斯”的思想。
第三,他看到事物的运动变化是和事物本身存在的矛盾对立分不开的;虽然他自己并没有明确提出“对立统一”这样的命题,但他注意到各种对立面统一的现象,并且提出了“斗争是产生万物的根源”的思想。这些观点使他成为辩证法的创始人和奠基人。
赫拉克利特是伊奥尼亚的哲学家,他继承米利都学派的传统,认为物质性的元素是万物的本原。他认为本原是永恒的活火,强调它本身就是不停歇的运动,火转化为万物,万物又转化为火。在这方面,他将米利都学派关于本原的思想向前发展了。
赫拉克利特在哲学思想上的发展,主要表现在辩证法方面。他的辩证法思想虽然还带着朴素的直观性,但在当时却是非常深刻的。首先,他提出事物不断运动变化,一切皆流的思想。将运动作为一个哲学问题来探讨,是从他开始的。比他稍后的爱利亚学派和他针锋相对地提出只有静止不动的东西才是我们可以认知的真实的东西。这样,运动和静止的关系就成为哲学中的一个重要问题而展开了。
赫拉克利特还认为事物的运动变化都是按照一定的尺度、分寸进行的,从而提出了逻各斯的思想。他相映早于他的毕达哥拉斯及其早期学派一起,从探究万物的本原深入到要探求现象背后的普遍规律。这为人类认识的发展,为希腊以至整个西方的哲学和科学的发展提供了广阔的领域和深远的前途。
赫拉克利特的辩证法的核心还是他有关对立统一的思想。有关对立的问题,虽然是希腊哲学一开始在米利都学派的哲学中就已经涉及到了,毕达哥拉斯学派也已经列出对立的表来;但是,从哲学上探讨对立面之间的相互关系,却是从赫拉克利特开始的。他从自然社会和日常生活中,朴素地看到对立双方是相互依存、相互统一、相互转化、相互作用的,提出了斗争是万物之父、万物之王的思想。他无愧为辩证法的奠基人。
虽然后来的哲学家在理论上对赫拉克利特的对立统一学说没有真正的认识,但是在实践中,讨论有关对立的种种问题,却一直是希腊哲学的一个重要方面的内容。许多重要的哲学家如德谟克利特、柏拉图、亚里士多德等人,都以自己的方式提出和讨论了对立统一的关系,在某些方面达到和赫拉克利持相似的结论。
赫拉克利特又可以说是第一个提出认识论问题的哲学家。他重视感觉经验,最早提出感觉是否可靠的问题,又提出入人有共同的智慧。从这方面也可以说赫拉克利特是第一个人,他将哲学从完全讨论外部世界开始转向也研究认识以及认识的主体——人。
在宗教上,赫拉克利特和比他稍早的塞诺芬尼一起反对传统宗教,但赫拉克利特主要是反对传统的宗教祭神仪式,反对偶像崇拜。赫拉克利特也承认神,但他所说的神,就是指永恒的活火,指逻各斯,指最高的智慧。因此他又是最早把宗教哲学化,将宗教的神改造成为理性的神,从而使哲学摆脱宗教走出了一大步。但因为他不可能也没有划清哲学和宗教的界限,所以到后期希腊罗马哲学时期的斯多亚学派和基督教教义哲学,又将他的逻各斯和火解释成为宗教的神,使他的哲学为宗教教义服务,既使宗教哲学化,又将哲学拉回到宗教。
德谟克利特
德谟克利特(约公元前160年~约公元前370年),古希腊唯物主义者,在原子论的发展方面占有重要地位的哲学家。据考证,他的著作几乎涉及人类知识的一切部门,但传于今世的仅有几百个片段。
德漠克利特继承了古希腊原子论创始人刘基伯的观点原子是组成物体的不可分割的最小微粒。他认为万物皆由“不可分割”的原子所组成,原子在质上都是相同的,只是外形彼此不相同,这就可以解释各种物质的性质。水的原子平滑呈圆形,因此水才能流动而无固定形状。火的原子是多刺的,这就是烧灼使人痛苦的原因。自然界中物质发生变化是由于结合在一起的原子分散开来,又重新以新的形式结合的结果。
根据德谟克利特的见解,原子的运动和变化受自然界一定的而又不可打破的规律的影响,根本不是上帝或鬼神灵机一动的结果。所以,德谟克利特是最早期的彻底机械唯物论者,他认为宇宙的活动就象一台机器的活动一样,是无知觉和有限制的。他甚至还认为天地宇宙的产生是无数原子引起无目的旋转运动的结果。这种运动使原子结成团块而形成宇宙。德谟克利特的观点与现代关于物质结构和宇宙起源的理论甚为相似,但有本质的不同,德谟克利特的结论产生于自我直觉和猜测,而现代理论是建立在定量实验和井然有序的数学推理基础之上的。
㈨ 毕达哥拉斯与毕达哥拉斯学派有什么关系
毕达哥拉斯(公元前580至前570之间~约前500年)毕达哥拉斯,古希腊数学家、天文学家、哲学家。
毕达哥拉斯是泰勒斯的学生。曾游学埃及、巴比伦等国,后定居于克罗托内城,在那里创立毕达哥拉斯学派,对数学和天文学的发展产生过巨大影响。在数学方面,毕达哥拉斯约于公元前531年在西方首次提出直角三角形各边的平方关系,后人称为“毕达哥拉斯定理”。他还证明了三角形三个角之和等于两个直角,指出内接半圆的所有角都为直角,提出区别奇数、偶数和质数的方法,和他的学生们发现无理数,并用数学研究乐律,指出弦长的比数越简单,其音越和谐。但他们把数的概念绝对化、神秘化,断言“凡物皆数”,把数和物质的东西分割开来,把数的关系当做事物原型,构成宇宙的“秩序”,走向唯心主义。
在天文学方面,毕达哥拉斯认为地球是一个球体,位于宇宙中心。把表面观察到的太阳绕地球的螺旋运动分析成两种匀速的圆周运动,即周日运动和周年运动,并以此来解释月球和其他行星的运动。
㈩ 毕达哥拉斯定理的简单说明
毕达哥拉斯定理又叫做勾股定理~
在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。如果直角三角形两直角边分别为a、b,斜边为c,那么a^2+b^2=c^2
毕达哥拉斯简介:
http://ke..com/view/16578.htm