1. 向量是怎么发明的
大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿.
2. 向量是由谁创立的
向量的建立经过了一个漫长的过程,所以不能说具体由哪个人建立起来的.
从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系。
向量能够进入数学并得到发展,首先应从复数的几何表示谈起.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi,并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题.人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学。
但复数的利用是受限制的,因为它仅能用于表示平面,若有不在同一平面上的力作用于同一物体,则需要寻找所谓三维“复数”以及相应的运算体系.19世纪中期,英国数学家汉密尔顿发明了四元数(包括数量部分和向量部分),以代表空间的向量.他的工作为向量代数和向量分析的建立奠定了基础.随后,电磁理论的发现者,英国的数学物理学家麦克思韦尔把四元数的数量部分和向量部分分开处理,从而创造了大量的向量分析。
三维向量分析的开创,以及同四元数的正式分裂,是英国的居伯斯和海维塞德于19世纪SO年代各自独立完成的.他们提出,一个向量不过是四元数的向量部分,但不独立于任何四元数.他们引进了两种类型的乘法,即数量积和向量积.并把向量代数推广到变向量的向量微积分.从此,向量的方法被引进到分析和解析几何中来,并逐步完善,成为了一套优良的数学工具。
3. 谁发明的数列,向量这些东西呢
你应该问谁规定要学数学学这么多
学点初中的就可以了
4. 关于向量的由来
数学中的向量是从复数引入的
5. 向量是为坐标而发明的吗
要详细的资料,谢谢!! 向量又称为矢量,最初被应用于物理学.很多物理解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿.
6. 谁能具体讲一讲向量的发展史包括为什么发明向量,发
向量的建立经过了一个漫长的过程,所以不能说具体由哪个人建立起来的.
从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系。
向量能够进入数学并得到发展,首先应从复数的几何表示谈起.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi,并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题.人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学。
7. 谁能具体讲一讲向量的发展史
向量又称为矢量,最初被应用于物理学.很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿.
课本上讨论的向量是一种带几何性质的量,除零向量外,总可以画出箭头表示方向.但是在高等数学中还有更广泛的向量.例如,把所有实系数多项式的全体看成一个多项式空间,这里的多项式都可看成一个向量.在这种情况下,要找出起点和终点甚至画出箭头表示方向是办不到的.这种空间中的向量比几何中的向量要广泛得多,可以是任意数学对象或物理对象.这样,就可以指导线性代数方法应用到广阔的自然科学领域中去了.因此,向量空间的概念,已成了数学中最基本的概念和线性代数的中心内容,它的理论和方法在自然科学的各领域中得到了广泛的应用.而向量及其线性运算也为“向量空间”这一抽象的概念提供出了一个具体的模型
8. 向量的概念最早是由谁引入的
向量,最初被应用于物理学.很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿
9. 向量的历史
向量(vector)又称矢量,即既有大小又有方向的量叫做向量。向量是作为力、速度、加速度等量大小而引入 数学的。
希腊的亚里士多德(前384-前322)已经知道力可以表示成向量,两个力的合成,可以从两个向量运用平行四 边形的法则得到。即以此两力所代表的向量为边作平行四边形,其对角线的大小和方向即表示合力的大小与方向( 如下图)。
德国的斯提文(1548?-1620?)在静力学问题上,应用了平行四边形法则。伽利略(1564-1642)清楚地叙述 了这个定律。
稍后丹麦的未塞尔(1745-1818),瑞士的阿工(1768-1822)发现了复数的几何表示,德国高斯(1777-1855)建立了 复平面的概念,从而向量就与复数建立了一一对应,这不但为虚数的现实化提供了可能,也可以用复数运算来研究 向量。
英国数学家亥维赛(1850-1925)在向量分析上作出了许多贡献。他首先给出了向量的定义:向量 =a +b +c 。这里 、 、 分别是沿着x、y、z轴方向的单向矢量,系数a、b、c是实数,称为分量等等。至于n 维向量的理论是由德国数学家格拉斯曼1844年引了的。