1. 大气压是谁发现的
1654年格里克在德国马德堡作了著名的马德堡半球实验,有力的证明了大气压强的存在,这让人们对大气压有了深刻的认识,但大气压到底有多大人们还不清楚.11年后意大利科学家托里拆利在一根80厘米长的细玻璃管中注满水银倒置在盛有水银的水槽中,发现玻璃管中的水银大约下降了4厘米后就不再下降了.这4厘米的空间无空气进入,是真空.托里拆利据此推断大气的压强就等于水银柱的长度.根据压强公式科学家们准确地算出了大气压在标准状态下为1.013×10^5Pa
2. 关于钟表发明的人和怎样创作的
钟表
钟表(watch and clock)
钟和表的统称。钟和表都是计量和指示时间的精密仪器。
钟和表通常是以内机的大小来区别的。按国际惯例,机心直径超过50毫米、厚度超过12毫米的为钟;直径37~50毫米、厚度4~6毫米者,称为怀表;直径37毫米以下为手表;直径不大于20毫米或机心面积不大于314平方毫米的,称为女表。手表是人类所发明的最小、最坚固、最精密的机械之一。
现代钟表的原动力有机械力和电力两种。机械钟表是一种用重锤或弹簧的释放能量为动力,推动一系列齿轮运转,借擒纵调速器调节轮系转速,以指针指示时刻和计量时间的计时器。
钟表的发展
公元1300年以前,人类主要是利用天文现象和流动物质的连续运动来计时。例如,日晷是利用日影的方位计时;漏壶和沙漏是利用水流和沙流的流量计时。
东汉张衡制造漏水转浑天仪,用齿轮系统把浑象和计时漏壶联结起来,漏壶滴水推动浑象均匀地旋转,一天刚好转一周,这是最早出现的机械钟。北宋元祜三年(1088)苏颂和韩公廉等创制水运仪象台,已运用了擒纵机构。
1350年,意大利的丹蒂制造出第一台结构简单的机械打点塔钟,日差为15~30分钟,指示机构只有时针;1500~1510年,德国的亨莱思首先用钢发条代替重锤,创造了用冕状轮擒纵机构的小型机械钟;1582年前后,意大利的伽利略发明了重力摆;1657年,荷兰的惠更斯把重力摆引入机械钟,创立了摆钟。
1660年英国的胡克发明游丝,并用后退式擒纵机构代替了冕状轮擒纵机构;1673年,惠更斯又将摆轮游丝组成的调速器应用在可携带的钟表上;1675年,英国的克莱门特用叉瓦装置制成最简单的锚式擒纵机构,这种机构一直沿用在简便摆锤式挂钟中。
1695年,英国的汤姆平发明工字轮擒纵机构;1715年,英国的格雷厄姆又发明了静止式擒纵机构,弥补了后退式擒纵机构的不足,为发展精密机械钟表打下了基础;1765年,英国的马奇发明自由锚式擒纵机构,即现代叉瓦式擒纵机构的前身;1728~1759年,英国的哈里森制造出高精度的标准航海钟;1775~1780年,英国的阿诺德创造出精密表用擒纵机构。
18~19世纪,钟表制造业已逐步实现工业化生产,并达到相当高的水平。20世纪,随着电子工业的迅速发展,电池驱动钟、交流电钟、电机械表、指针式石英电子钟表、数字式石英电子钟表相继问世,钟表的日差已小于0.5秒,钟表进入了微电子技术与精密机械相结合的石英化新时期。
钟表的种类
钟表的应用范围很广,品种甚多,可按振动原理、结构和用途特点分类。按振动原理可分为利用频率较低的机械振动的钟表,如摆钟、摆轮钟等;利用频率较高的电磁振荡和石英振荡的钟表,如同步电钟、石英钟表等;按结构特点可分为机械式的,如机械闹钟、自动、日历、双历、打簧等机械手表;电机械式的,如电摆钟、电摆轮钟表等;电子式的,如摆轮电子钟表、音叉电子钟表、指针式和数字显示式石英电子钟表 等。
机械钟表有多种结构形式,但其工作原理基本相同,都是由原动系、传动系、擒纵调速器、指针系和上条拨针系等部分组成。
机械钟表利用发条作为动力的原动系 ,经过一组齿轮组成的传动系来推动擒纵调速器工作;再由擒纵调速器反过来控制传动系的转速;传动系在推动擒纵调速器的同时还带动指针机构,传动系的转速受控于擒纵调速器,所以指针能按一定的规律在表盘上指示时刻 ;上条拨针系是上紧发条或拨动指针的机件。
此外,还有一些附加机构,可增加钟表的功能,如自动上条机构、日历(双历)机构、闹时装置、月相指示和测量时段机构等。
原动系是储存和传递工作能量的机构,通常由条盒轮、条盒盖、条轴、发条和发条外钩组成。发条在自由状态时是一个螺旋形或 S形的弹簧,它的内端有一个小孔,套在条轴的钩上。它的外端通过发条外钩,钩在条盒轮的内壁上。上条时,通过上条拨针系使条轴旋转将发条卷紧在条轴上。发条的弹性作用使条盒轮转动,从而驱动传动系。
传动系是将原动系的能量传至擒纵调速器的一组传动齿轮,它是由二轮(中心轮)、三轮(过轮)、四轮(秒轮)和擒纵轮齿轴组成,其中 轮片是主动齿轮,齿轴是从动齿轮。钟表传动系的齿形绝大部分是根据理论摆线的原理,经过修正而制作的修正摆线齿形。
擒纵调速器是由擒纵机构和振动系统两部分组成,它依靠振动系统的周期性震动,使擒纵机构保持精确和规律性的间歇运动,从而取得调速作用。叉瓦式擒纵机构是应用最广的一种擒纵机构。它由擒纵轮、擒纵叉、双圆盘和限位钉等组成。它的作用是把原动系的能量传递给振动系统,以便维持振动系统作等幅振动,并把振动系统的振动次数传递给指示机构,达到计量时间的目的。
振动系统主要由摆轮、摆轴、游丝、活动外桩环、快慢针等组成。游丝的内外端分别固定在摆轴和摆夹板上;摆轮受外力偏离其平衡位置开始摆动时,游丝便被扭转而产生位能,称为恢复力矩。擒纵机构完成前述两动作的过程 ,振动系在游丝位能作用下,进行反方向摆动而完成另半个振动周期,这就是机械钟表在运转时擒纵调速器不断和重复循环工作的原理。
上条拨针系的作用是上条和拨针。它由柄头、柄轴、 立轮、离合轮、离合杆、离合杆簧、拉档、压簧、拨针轮、跨轮、时轮、分轮、大钢轮、小钢轮、棘爪、棘爪簧等组成。
上条和拨针都是通过柄头部件来实现的。上条时,立轮和离合轮处于啮合状态,当转动柄头时,离合轮带动立轮,立轮又经小钢轮和大钢轮,使条轴卷紧发条。棘爪则阻止大钢轮逆转。拨针时,拉出柄头,拉档在拉档轴上旋转并推动离合杆,使离合轮与立轮脱开,与拨针轮啮合。此时转动柄头便拨针轮通过跨轮带动时轮和分轮,达到校正时针和分针的目的。
钟表要求走时准确,稳定可靠。但一些内部因素和外界环境条件都会影响钟表的走时精度。内部因素包括各组成系统的结构设计、工作性能、选用材料、加工工艺和装配质量等。例如,发条力矩的稳定性,传动系工作的平稳性,擒纵调速器的准确性等都影响走时精度。
外界环境条件包括温度、磁场、湿度、气压、震动、碰撞、使用位置等。例如,温度变化会引起钟表内润滑油和摆轮游丝性能的变化,从而引起走时性能的变化;环境的磁场强度大于60奥斯特时,会引起部分零件磁化而走慢;湿度大会引起部分零件氧化和腐蚀 等等。
钟表的起源
古代人生活简单,除了饮食渔猎制造工具之外别无所事,所以日出而作,日落而息,用不著争取时间。进而人类群居有了交易的时候,也不过是‘日中为市,交易而退’。后来人事渐繁,尤其是农业兴起后,人类逐渐体会时间的重要性。时间观念随著人类文明程度而有所不同,从早期的“立竿见影”到用圭表或日晷来测度时间,到要求准确时间的测度,而发明了“漏刻”到了后期发明水钟(water clock),以滴水增加重量推动轴杆或使齿轮运转,十一世纪正式才有机械钟,机械钟是以重锤代水为动力推动齿轮运转的钟。
表的发明传说为十六世纪纽伦堡(德国北部工业首府)的锁匠所制作出和鸡蛋一样大小,因此有“纽伦堡蛋”之称,此表零件自身即含有动力,完全是用手工作成的,随制随改进,所以制造出来的每件都是不相同的样式。
瑞士钟表
瑞士号称“钟表王国”,它的钟表业独霸全球达二个半世纪之久,至今仍坐稳了世界同行的头把椅。
瑞士的钟表业起源於以日内瓦为中心的法、瑞边境侏儒山脉山谷与盆地间的小村与城镇之中,早在15世纪日内瓦的珠宝匠以及金匠便开始制造钟表。1601年1月20日,日内瓦当局正式批准成立了世界上第一个钟表行业公会,当时的日内瓦大约只有三百多钟表技工,年产钟表约五千只,到了18世纪中,大批的钟表匠聚集到日内瓦,他们往往在临街的底楼开店招揽顾客,在顶楼的安静处制造和修理钟表,到了19世纪中,日内瓦不仅成了全瑞士的钟表制造中心,而且还成为全欧洲同行们的领袖。
日内瓦依靠钟表兴旺发达的经验,启发了侏儒山脉深处的农夫、牧民,他们也开始造起了齿轮、弹簧、发条。当地一些青年不惜花费十年甚至数十年的时间去日内瓦等城市学习,再返回家乡开设自己的手工作坊,他们互相分工合作,立志造出世界上质量最好的零件,装配出最复杂、精密的钟表,
瑞士钟表业真正面临严重挑战发生在19世纪至20世纪之交,随著工业革命的深入,美国人发明的标准化大规模生产风靡全球似乎只有美式的那种大工厂才能赚到足够的利润,并生存下去,但瑞士钟表小作坊最终还是找到了适应现代工业社会的生存方式,它是通过机芯、表带、表壳等专业零件公司的统一设计和大批量的生产,从而使钟表昂贵的价值降到一般消费者能的承受的地步,再加上那些技艺高超的工匠以及风格独特的小型钟表厂,把买来的零件自行加工改装,订制成特别的零件,这样瑞士钟表业就能和那些名表和谐地共存,而一向以大批量生产而来势汹汹的美国产手表,因为缺乏各个档次价位产品的支撑,在第二次世界大战以后的市场上变得无影无纵 。
钟表,也是由中国人在900多年前的北宋时期发明的。世界著名的钟表大师、香港钟表历史学家矫大羽说,经过数年的努力和求证,他提出的“中国人开创了钟表史”这一观点,已被世界钟表界认可。
矫大羽说,中国古代有日晷、水钟、火钟、铜壶滴漏等,这只能算是古人的计时器。没有嘀嗒嘀嗒的钟表声,都不能称作钟表。到了1090年,北宋宰相苏颂主持建造了一台水运仪象台,每天仅有一秒的误差。而且,它有擒纵器,正是擒纵器工作时能发出嘀嗒嘀嗒的声音。这就是钟表与计时器的区别。国际钟表界都把擒纵器视为钟表的心脏。在瑞士,他找到了一本世界钟表界的权威书刊上写到:“现代机械钟表中使用的擒纵器源自中国古代苏颂的发明。”之后,他又在英国著名科技史家李约瑟的一本书中,找到了他的一段话:“苏颂把钟表机械和天文观察仪器结合以来,在原理上已经完全成功,他比罗伯特·胡克先行了六个世纪,比方和斐
3. 谁是最早发明华氏度气温计的人
温度计的一种。水的冰点为32度,沸点为212度,符号为“F”。刻度方法是德国物理学家华兰海特制定的。华氏温标(Fahrenheittemperature scale) 符号℉,1714年,荷兰人华伦海特制定了华氏温标,他把一定浓度的盐水凝固时的温度定为0oF,把纯水凝固时的温度定为32 oF,把标准大气压下水沸腾的温度定为212 oF,中间分为180等份,每一等份代表1度,这就是华氏温标,用符号F表示,这就是华氏温度。 华氏温度与摄氏温度的关系 关系式:oF=(9/5) ℃+32。 它的出现是华伦海特为了统一物理学中的温度单位来定的。华伦海特(Daniel Gabriel Fahrenheit)温度测量有了共同的标准,可以对不同的地点,不同时间及各人所测量的温度值进行比较。 Farenheit曾发现气压表的水银柱高度随温度而变化,这就促使他开始对水银温度计进行研究。 1714年,他终于制成了第一支玻璃水银温度计。这种温度计的刻度是按历史上最早出现的温标(华氏温标)来划分的。最初,华氏温标选用NH4Cl(氯化铵)和水的混合物的温度为0°,而以人(他妻子)的体温为96°。此后,改为冰水混合物为32°(即冰点),而以水沸点的温度为212°,这就是华氏温标,用符号℉表示. 摄氏温度与华氏温度的换算式 摄氏温度,冰点时温度为0摄氏度,沸点为100摄氏度而华氏温度把冰点温度定为32华氏度,沸点为212华氏度 所以1摄氏度等于33.8华氏度 摄氏温度与华氏温度的换算式是: ℃ = 5×(℉- 32)/9,℉ = 9×℃ /5+32 式中℉-华氏温度,℃-摄氏温度 开氏温度与华氏温度的换算式是: K = ℃+273,K = 5×(℉- 32)/9+273,℉ = 9×(K-273)/5+32 所以,绝对零度 0 (K) = 9×(0-273)/5+32 (℉) = -460 (℉)
4. 气压计是谁发明的哪国人
是由意大利人托里拆利发明的 托里拆利(E.Torricelli,公元1608~1647年)于1608年10月15日出生在意大利的法恩茨,。他在伽利略身边当了3年助手。 伽利略一生有诸多发明和发现,但“智者千虑,必有一失”。他认为水泵之所以能够抽水,是因为如果水不跟着活塞升起来,就会形成真空,而自然是不能允许真空存在的,因此水就被抽吸上来。这实质上是沿袭了古希腊亚里士多德关于“自然厌恶真空”的错误观念。按照这种说法,水泵能够把水抽到任意高度,但事实上水至多可以抽升到离水面大约10米左右。伽利略认为自然对真空的厌恶有一定限度,但这个限度有多大?为什么会有限度?伽利略至死都没有回答出来。 托里拆利对这个问题进行了长时间的研究,最后毅然否定了“自然厌恶真空”这一毫无根据的臆断。他从力学视角出发,设想空气有一定的重量,并认为10米水柱重量产生的压强应当与大气压强相平衡,这是与中世纪流行的亚里士多德关于空气是没有重量的观点背道而驰的。 1643年,35岁的托里拆利做了一个著名的实验。他在长约1米、一端封闭的玻璃管(后称托里拆利管)内,装满密度为水的13.5倍的水银汞,用手指封住管口而将管倒立于水银槽内,然后放开手指,则原来达到管顶的水银柱将下降到高于槽中水银面760毫米左右处,以与管外大气压强的作用相平衡。管的上端这一部分空间,除极稀薄的水银蒸气外,可看到真空。这是人类最早用人工方法获得的真空,曾轰动一时,至今人们还把它叫做托里拆利真空。 托里拆利还发现管中水银柱的高度会因地面的高度、阴晴及气温的变化而变化,由此得出大气压强会随高度、阴晴及气温的变化而变化的结论。根据这个原理,他发明了水银气压器,可以直接用水银柱的高度表示气压的大小。现在,人们把相当于1毫米水银柱的压强叫做1个托里拆利,以纪念他的伟大贡献。 托里拆利对流体也做过研究。他在1644年发表的《几何学著作集》中,提出托里拆利定理,即装在容器中的液体,当从容器下部小孔流出来时,如果液体没有粘性,那么流速 ,其中g为重力加速度,h为孔距液面高度,也就是流速等于质点从h高处自由落下时的速度,因为自由落体的速度 ,高度 。
5. 最早的钟表是谁发明的
中国人,东汉的张衡。
顺便说一下钟表的发展史:
东汉张衡制造漏水转浑天仪,用齿轮系统把浑象和计时漏壶联结起来,漏壶滴水推动浑象均匀地旋转,一天刚好转一周,这是最早出现的机械钟。北宋元祜三年(1088)苏颂和韩公廉等创制水运仪象台,已运用了擒纵机构。
1350年,意大利的丹蒂制造出第一台结构简单的机械打点塔钟,日差为15~30分钟,指示机构只有时针;1500~1510年,德国的亨莱思首先用钢发条代替重锤,创造了用冕状轮擒纵机构的小型机械钟;1582年前后,意大利的伽利略发明了重力摆;1657年,荷兰的惠更斯把重力摆引入机械钟,创立了摆钟。
1660年英国的胡克发明游丝,并用后退式擒纵机构代替了冕状轮擒纵机构;1673年,惠更斯又将摆轮游丝组成的调速器应用在可携带的钟表上;1675年,英国的克莱门特用叉瓦装置制成最简单的锚式擒纵机构,这种机构一直沿用在简便摆锤式挂钟中。
1695年,英国的汤姆平发明工字轮擒纵机构;1715年,英国的格雷厄姆又发明了静止式擒纵机构,弥补了后退式擒纵机构的不足,为发展精密机械钟表打下了基础;1765年,英国的马奇发明自由锚式擒纵机构,即现代叉瓦式擒纵机构的前身;1728~1759年,英国的哈里森制造出高精度的标准航海钟;1775~1780年,英国的阿诺德创造出精密表用擒纵机构。
18~19世纪,钟表制造业已逐步实现工业化生产,并达到相当高的水平。20世纪,随着电子工业的迅速发展,电池驱动钟、交流电钟、电机械表、指针式石英电子钟表、数字式石英电子钟表相继问世,钟表的日差已小于0.5秒,钟表进入了微电子技术与精密机械相结合的石英化新时期。
钟表的种类
钟表的应用范围很广,品种甚多,可按振动原理、结构和用途特点分类。按振动原理可分为利用频率较低的机械振动的钟表,如摆钟、摆轮钟等;利用频率较高的电磁振荡和石英振荡的钟表,如同步电钟、石英钟表等;按结构特点可分为机械式的,如机械闹钟、自动、日历、双历、打簧等机械手表;电机械式的,如电摆钟、电摆轮钟表等;电子式的,如摆轮电子钟表、音叉电子钟表、指针式和数字显示式石英电子钟表 等。
机械钟表有多种结构形式,但其工作原理基本相同,都是由原动系、传动系、擒纵调速器、指针系和上条拨针系等部分组成。
机械钟表利用发条作为动力的原动系 ,经过一组齿轮组成的传动系来推动擒纵调速器工作;再由擒纵调速器反过来控制传动系的转速;传动系在推动擒纵调速器的同时还带动指针机构,传动系的转速受控于擒纵调速器,所以指针能按一定的规律在表盘上指示时刻 ;上条拨针系是上紧发条或拨动指针的机件。
此外,还有一些附加机构,可增加钟表的功能,如自动上条机构、日历(双历)机构、闹时装置、月相指示和测量时段机构等。
原动系是储存和传递工作能量的机构,通常由条盒轮、条盒盖、条轴、发条和发条外钩组成。发条在自由状态时是一个螺旋形或 S形的弹簧,它的内端有一个小孔,套在条轴的钩上。它的外端通过发条外钩,钩在条盒轮的内壁上。上条时,通过上条拨针系使条轴旋转将发条卷紧在条轴上。发条的弹性作用使条盒轮转动,从而驱动传动系。
传动系是将原动系的能量传至擒纵调速器的一组传动齿轮,它是由二轮(中心轮)、三轮(过轮)、四轮(秒轮)和擒纵轮齿轴组成,其中 轮片是主动齿轮,齿轴是从动齿轮。钟表传动系的齿形绝大部分是根据理论摆线的原理,经过修正而制作的修正摆线齿形。
擒纵调速器是由擒纵机构和振动系统两部分组成,它依靠振动系统的周期性震动,使擒纵机构保持精确和规律性的间歇运动,从而取得调速作用。叉瓦式擒纵机构是应用最广的一种擒纵机构。它由擒纵轮、擒纵叉、双圆盘和限位钉等组成。它的作用是把原动系的能量传递给振动系统,以便维持振动系统作等幅振动,并把振动系统的振动次数传递给指示机构,达到计量时间的目的。
振动系统主要由摆轮、摆轴、游丝、活动外桩环、快慢针等组成。游丝的内外端分别固定在摆轴和摆夹板上;摆轮受外力偏离其平衡位置开始摆动时,游丝便被扭转而产生位能,称为恢复力矩。擒纵机构完成前述两动作的过程 ,振动系在游丝位能作用下,进行反方向摆动而完成另半个振动周期,这就是机械钟表在运转时擒纵调速器不断和重复循环工作的原理。
上条拨针系的作用是上条和拨针。它由柄头、柄轴、 立轮、离合轮、离合杆、离合杆簧、拉档、压簧、拨针轮、跨轮、时轮、分轮、大钢轮、小钢轮、棘爪、棘爪簧等组成。
上条和拨针都是通过柄头部件来实现的。上条时,立轮和离合轮处于啮合状态,当转动柄头时,离合轮带动立轮,立轮又经小钢轮和大钢轮,使条轴卷紧发条。棘爪则阻止大钢轮逆转。拨针时,拉出柄头,拉档在拉档轴上旋转并推动离合杆,使离合轮与立轮脱开,与拨针轮啮合。此时转动柄头便拨针轮通过跨轮带动时轮和分轮,达到校正时针和分针的目的。
钟表要求走时准确,稳定可靠。但一些内部因素和外界环境条件都会影响钟表的走时精度。内部因素包括各组成系统的结构设计、工作性能、选用材料、加工工艺和装配质量等。例如,发条力矩的稳定性,传动系工作的平稳性,擒纵调速器的准确性等都影响走时精度。
外界环境条件包括温度、磁场、湿度、气压、震动、碰撞、使用位置等。例如,温度变化会引起钟表内润滑油和摆轮游丝性能的变化,从而引起走时性能的变化;环境的磁场强度大于60奥斯特时,会引起部分零件磁化而走慢;湿度大会引起部分零件氧化和腐蚀 等等。
钟表的起源
古代人生活简单,除了饮食渔猎制造工具之外别无所事,所以日出而作,日落而息,用不著争取时间。进而人类群居有了交易的时候,也不过是‘日中为市,交易而退’。后来人事渐繁,尤其是农业兴起后,人类逐渐体会时间的重要性。时间观念随著人类文明程度而有所不同,从早期的“立竿见影”到用圭表或日晷来测度时间,到要求准确时间的测度,而发明了“漏刻”到了后期发明水钟(water clock),以滴水增加重量推动轴杆或使齿轮运转,十一世纪正式才有机械钟,机械钟是以重锤代水为动力推动齿轮运转的钟。
表的发明传说为十六世纪纽伦堡(德国北部工业首府)的锁匠所制作出和鸡蛋一样大小,因此有“纽伦堡蛋”之称,此表零件自身即含有动力,完全是用手工作成的,随制随改进,所以制造出来的每件都是不相同的样式。
瑞士钟表
瑞士号称“钟表王国”,它的钟表业独霸全球达二个半世纪之久,至今仍坐稳了世界同行的头把椅。
瑞士的钟表业起源於以日内瓦为中心的法、瑞边境侏儒山脉山谷与盆地间的小村与城镇之中,早在15世纪日内瓦的珠宝匠以及金匠便开始制造钟表。1601年1月20日,日内瓦当局正式批准成立了世界上第一个钟表行业公会,当时的日内瓦大约只有三百多钟表技工,年产钟表约五千只,到了18世纪中,大批的钟表匠聚集到日内瓦,他们往往在临街的底楼开店招揽顾客,在顶楼的安静处制造和修理钟表,到了19世纪中,日内瓦不仅成了全瑞士的钟表制造中心,而且还成为全欧洲同行们的领袖。
日内瓦依靠钟表兴旺发达的经验,启发了侏儒山脉深处的农夫、牧民,他们也开始造起了齿轮、弹簧、发条。当地一些青年不惜花费十年甚至数十年的时间去日内瓦等城市学习,再返回家乡开设自己的手工作坊,他们互相分工合作,立志造出世界上质量最好的零件,装配出最复杂、精密的钟表,
瑞士钟表业真正面临严重挑战发生在19世纪至20世纪之交,随著工业革命的深入,美国人发明的标准化大规模生产风靡全球似乎只有美式的那种大工厂才能赚到足够的利润,并生存下去,但瑞士钟表小作坊最终还是找到了适应现代工业社会的生存方式,它是通过机芯、表带、表壳等专业零件公司的统一设计和大批量的生产,从而使钟表昂贵的价值降到一般消费者能的承受的地步,再加上那些技艺高超的工匠以及风格独特的小型钟表厂,把买来的零件自行加工改装,订制成特别的零件,这样瑞士钟表业就能和那些名表和谐地共存,而一向以大批量生产而来势汹汹的美国产手表,因为缺乏各个档次价位产品的支撑,在第二次世界大战以后的市场上变得无影无纵 。
6. 第一个发现大气压存在的人是谁
托里拆利
托里拆利(Evangelista Torricelli) 意大利物理学家、数学家。1608年10月15日生于法恩扎的一个贵族家庭。1628年开始在罗马学习数学。1641年在其数学教师开斯托里的建议下,去佛罗伦斯做伽利略的助手。1642年伽利略逝世后,托里拆利接替伽利略任佛罗伦斯学院物理学和数学教授。由于受到多斯加尼君主的器重,被委任为宫廷数学家。1647年10月25日逝世,终年39岁。
托里拆利在数学和物理学等许多方面都有建树。他的科学活动主要是在1641年以后进行的,虽然仅仅有五、六年时间,但所取得的成果却具有重大意义。
托里拆利最有成效的工作是对空气压强问题的研究,并因此发明了使他著称于世的气压计。1644年,托里拆利曾发表过有关几何和物理学方面的著作。他论证了空气具有重量,并对重量和压力等物理概念进行过深刻阐述。他从实验上解决了空气是否有重量和真空是否可能存在的两个重大课题。
对于上述两个问题,历史上曾长期争论不休,但亚里士多德的“大自然厌恶真空”的说法始终占上风。托里拆利以前的科学家们都没有真正解决这两个问题。伽利略曾发现,抽水机在工作时,不能把水抽到10米以上的高度,他把这种现象解释为存在有“真空力”的缘故。在总结前人理论和实验的基础上,托里拆利进行了大量的实验,实现了真空,验证了空气具有重要的事实。从1643年起托里拆利曾先后采用多种液体,设计了多种实验方式进行研究,如海水、蜂蜜、水银等都是他选用的对象。大量的实验证实了抽水机提升液体的高度,决定于液体的比重。
托里拆利选用的水银实验,取得了最成功的结果。他把装满水银的玻璃管一端封闭,开口端插入水银槽中,发现无论玻璃管长度如何,也不管玻璃管倾斜程度如何,管内水银柱的垂直高度总是76厘米。后来人们称这一实验为“托里拆利实验”,完成实验的玻璃管为“托里拆利管”。水银柱上端玻璃管内显然是真空的(接近真空,有少量水银蒸汽存在),称“托里拆利真空”,这是世界上首次人工获得的真空状态。托里拆利根据这一实验得出结论:空气具有重量,空气重量所造成的压力与管内水银柱的高度所造成的压力相等,才使水银柱具有某一确定高度。托里拆利根据自己的实验,提出了可以利用水银柱高度来测量大气压,并于1644年同维维安尼(Viviani,1622—1713)合作,制成了世界上第一具水银气压计。
对于托里拆利实验,也曾存在着激烈的争论,特别是有人提出玻璃管上端内充有‘纯净的空气“,并非真空。争论持续到帕斯卡的实验成功后才逐渐统一起来。
7. 第一个发现大气压存在的人是谁
托里拆利
托里拆利(Evangelista Torricelli) 意大利物理学家、数学家.1608年10月15日生于法恩扎的一个贵族家庭.1628年开始在罗马学习数学.1641年在其数学教师开斯托里的建议下,去佛罗伦斯做伽利略的助手.1642年伽利略逝世后,托里拆利接替伽利略任佛罗伦斯学院物理学和数学教授.由于受到多斯加尼君主的器重,被委任为宫廷数学家.1647年10月25日逝世,终年39岁.
托里拆利在数学和物理学等许多方面都有建树.他的科学活动主要是在1641年以后进行的,虽然仅仅有五、六年时间,但所取得的成果却具有重大意义.
托里拆利最有成效的工作是对空气压强问题的研究,并因此发明了使他著称于世的气压计.1644年,托里拆利曾发表过有关几何和物理学方面的著作.他论证了空气具有重量,并对重量和压力等物理概念进行过深刻阐述.他从实验上解决了空气是否有重量和真空是否可能存在的两个重大课题.
对于上述两个问题,历史上曾长期争论不休,但亚里士多德的“大自然厌恶真空”的说法始终占上风.托里拆利以前的科学家们都没有真正解决这两个问题.伽利略曾发现,抽水机在工作时,不能把水抽到10米以上的高度,他把这种现象解释为存在有“真空力”的缘故.在总结前人理论和实验的基础上,托里拆利进行了大量的实验,实现了真空,验证了空气具有重要的事实.从1643年起托里拆利曾先后采用多种液体,设计了多种实验方式进行研究,如海水、蜂蜜、水银等都是他选用的对象.大量的实验证实了抽水机提升液体的高度,决定于液体的比重.
托里拆利选用的水银实验,取得了最成功的结果.他把装满水银的玻璃管一端封闭,开口端插入水银槽中,发现无论玻璃管长度如何,也不管玻璃管倾斜程度如何,管内水银柱的垂直高度总是76厘米.后来人们称这一实验为“托里拆利实验”,完成实验的玻璃管为“托里拆利管”.水银柱上端玻璃管内显然是真空的(接近真空,有少量水银蒸汽存在),称“托里拆利真空”,这是世界上首次人工获得的真空状态.托里拆利根据这一实验得出结论:空气具有重量,空气重量所造成的压力与管内水银柱的高度所造成的压力相等,才使水银柱具有某一确定高度.托里拆利根据自己的实验,提出了可以利用水银柱高度来测量大气压,并于1644年同维维安尼(Viviani,1622—1713)合作,制成了世界上第一具水银气压计.
对于托里拆利实验,也曾存在着激烈的争论,特别是有人提出玻璃管上端内充有‘纯净的空气“,并非真空.争论持续到帕斯卡的实验成功后才逐渐统一起来.
8. 电流表和电压表是谁发明的,在那年发明的
乔治·西蒙·欧姆(Georg
Simon
Ohm,1787~1854年德国物理学家)根据1821年施魏格尔和波根多夫发明了一种原始的电流计为基础,巧妙地利用电流的磁效应设计了一个电流扭秤。用一根扭丝挂一个磁针,让通电的导线与这个磁针平行放置,当导线中有电流通过时,磁针就偏转一定的角度,由此可以判断导线中电流的强弱了。他把自己制作的电流计连在电路中,并创造性地在放磁针的度盘上划上刻度,以便记录实验的数据。
电压表不详