❶ 方程是谁发明的
方程的发明者是法国数学家韦达。
韦达1540年生于法国的普瓦图(Poitou),今旺代省的丰特奈 -勒孔特(Fontenay.-le-Comte)。1603年12月13日卒于巴黎。年轻时学习法律并当过律师。后从事政治活动,当过议会的议员。
在对西班牙的战争中,曾为政府破译敌军的密码。韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数学理论研究的重大进步。韦达讨论了方程根的各种有理变换,发现了方程根与系数之间的关系(所以人们把叙述一元二次方程根与系数关系的结论称为“韦达定理”)。
韦达从事数学研究只是出于爱好,然而他却完成了代数和三角学方面的巨著。他的《应用于三角形的数学定律》(1579年)是韦达最早的数学专著之一,可能是西欧第一部论述6种三角形函数解平面和球面三角形方法的系统著作。他被称为现代代数符号之父。
韦达还专门写了一篇论文"截角术",初步讨论了正弦,余弦,正切弦的一般公式,首次把代数变换应用到三角学中。他考虑含有倍角的方程,具体给出了将COS(nx)表示成COS(x)的函数并给出当n≤11等于任意正整数的倍角表达式了。
(1)方程式中的术语是谁创造的扩展阅读:
早在3600年前,古埃及人写在草纸上的数学问题中,就涉及了方程中含有未知数的等式。
公元825年左右,中亚细亚的数学家阿尔·花拉子米曾写过一本名叫《对消与还原》的书,重点讨论方程的解法。
方程中文一词出自古代数学专著《九章算术》,其第八卷即名“方程”。“方”意为并列,“程”意为用算筹表示竖式。
卷第八(一)为:今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗。问上、中、下禾实一秉各几何?
(现今有上等黍3捆、中等黍2捆、下等黍1捆,打出的黍共有39斗;有上等黍2捆、中等黍3捆、下等黍1捆,打出的黍共有34斗;有上等黍1捆、中等黍2捆、下等黍3捆,打出的黍共有26斗。问1捆上等黍、1捆中等黍、1捆下等黍各能打出多少斗黍?)
白话翻译:卷第八(一)为:现在有上禾三点,中禾二点,下禾一点,实际上三十九斗;上禾二点,中禾三点,下禾一点,实际上三十四斗;上禾一点,中禾二点,下禾三点,实际上两个十六斗。向上、中、下禾是一点各是多少?
(现在有上等黍三捆、中等黍二捆、下等黍子捆,打出来的饭共有三十九斗;有上等黍二捆、中等黍三捆、下等黍子捆,打出来的饭共有三十四斗;有上等黍子捆、中等黍二捆、下等黍三捆,打出来的饭共有二十六斗。问1捆上等人黍、一捆中等黍、1把下等人黍各能打响多少斗黄米?)
答曰:上禾一秉,九斗、四分斗之一,中禾一秉,四斗、四分斗之一,下禾一秉,二斗、四分斗之三。
白话翻译:他回答说:上禾一点,九斗、四分一的一,中禾一点,四斗、四分一的一,下禾一点,二斗、四分之三斗。
方程术曰:置上禾三秉,中禾二秉,下禾一秉,实三十九斗,于右方。中、左禾列如右方。以右行上禾遍乘中行而以直除。又乘其次,亦以直除。然以中行中禾不尽者遍乘左行而以直除。左方下禾不尽者,上为法,下为实。实即下禾之实。
求中禾,以法乘中行下实,而除下禾之实。余如中禾秉数而一,即中禾之实。求上禾亦以法乘右行下实,而除下禾、中禾之实。余如上禾秉数而一,即上禾之实。实皆如法,各得一斗。
白话翻译:方程方法是:设置上禾三点,中禾二点,下禾一点,实际上三十九斗,在右边。中、左禾列如右方。以右行上禾遍乘中行而以直任。又乘其次,也可以直接消除。然而以中行中禾不尽的遍乘左行而以直任。左下方禾不尽的,上为法,以下是真实。实立即下禾的事实。
求中禾,因法乘中走下实,而除下禾的事实。我像中禾持数而一,就是中禾的事实。求上禾也因法乘右边走下实,而除下禾、中禾的事实。我像上禾持数而一,登上禾的事实。实际上都像法,各得一斗。
以上是出自《九章算术》中的三元一次方程组,并展示了用“遍乘直除”来消元以解此方程组。
魏晋时期的大数学家刘徽在公元263年前后为《九章算术》作了大量注释,介绍了方程组:二物者再程,三物者三程,皆如物数程之。并列为行,故谓之方程。他还创立了比“遍乘直除”更简便的“互乘相消”法来解方程组。
❷ 我们现在数学用的方程,根,解等名词都是康熙创造出来的吗有何依据(正史,谢谢!)
康熙教皇子数学、天文学、地理学、医学、测量学、农学等。先以观测日食回为例。康熙三十六年答(1697年)闰三月初一日,日食。时康熙帝亲征噶尔丹在外,皇太子在北京观测,使用皇父所赐嵌有三层玻璃的小镜子,装于自鸣钟之上,用望日千里眼观望。日食似不到十分,日光、房屋、墙壁及人影俱可见,甚属明耀。观测奏报自京城发出,送皇父览阅。康熙帝得到奏报后,朱批曰:“览尔所奏,果然如此。”后来皇四子胤禛(雍正)回忆道:“昔年遇日食四五分之时,日光照耀,难以仰视。皇考亲率朕同诸兄弟在乾清宫,用千里镜,四周用夹纸遮蔽日光,然后看出考验所亏分数。此朕身经实验者。”又以几何学为例。法国耶稣会士白晋写给法王路易十四的信中说,康熙帝亲自给皇三子胤祉讲解几何学,并培养其科学才能。后又让胤祉等向意大利耶稣会士德理格学习律吕知识,“命臣德理格在皇三子、皇十五子、皇十六子殿下前,每日讲究其精微,修造新书”。康熙帝命在畅春园蒙养斋开馆,派允祉主持纂修《律历渊源》,汇律吕、历法和算法于一书。允祉还为《古今图书集成》的纂辑做出贡献,成为康熙朝一位杰出的学者。但他在雍正继位后,仍未逃过劫难:被夺爵,禁景山永安亭而死。
❸ 数学里的方程是谁发明的
大约2.71828
这里的e是一个数的代表符号,而我们要说的,便是e的故事。这倒叫人有点好奇了,要能说成一本书,这个数应该大有来头才是,至少应该很有名吧?但是搜索枯肠,大部分人能想到的重要数字,除了众人皆知的0及1外,大概就只有和圆有关的π了,了不起再加上虚数单位的i=√-1。这个e究竟是何方神圣呢?
在高中数学里,大家都学到过对数(logarithm)的观念,也用过对数表。教科书里的对数表,是以10为底的,叫做常用对数(common logarithm)。课本里还简略提到,有一种以无理数e=2.71828……为底数的对数,称为自然对数(natural logarithm),这个e,正是我们故事的主角。不知这样子说,是否引起你更大的疑惑呢?在十进位制系统里,用这样奇怪的数为底,难道会比以10为底更「自然」吗?更令人好奇的是,长得这麼奇怪的数,会有什麼故事可说呢?
这就要从古早时候说起了。至少在微积分发明之前半个世纪,就有人提到这个数,所以虽然它在微积分里常常出现,却不是随著微积分诞生的。那麼是在怎样的状况下导致它出现的呢?一个很可能的解释是,这个数和计算利息有关。
我们都知道复利计息是怎麼回事,就是利息也可以并进本金再生利息。但是本利和的多寡,要看计息周期而定,以一年来说,可以一年只计息一次,也可以每半年计息一次,或者一季一次,一月一次,甚至一天一次;当然计息周期愈短,本利和就会愈高。有人因此而好奇,如果计息周期无限制地缩短,比如说每分钟计息一次,甚至每秒,或者每一瞬间(理论上来说),会发生什麼状况?本利和会无限制地加大吗?答案是不会,它的值会稳定下来,趋近於一极限值,而e这个数就现身在该极限值当中(当然那时候还没给这个数取名字叫e)。所以用现在的数学语言来说,e可以定义成一个极限值,但是在那时候,根本还没有极限的观念,因此e的值应该是观察出来的,而不是用严谨的证明得到的。
包罗万象的e
读者恐怕已经在想,光是计算利息,应该不至於能讲一整本书吧?当然不,利息只是极小的一部分。令人惊讶的是,这个与计算复利关系密切的数,居然和数学领域不同分支中的许多问题都有关联。在讨论e的源起时,除了复利计算以外,事实上还有许多其他的可能。问题虽然都不一样,答案却都殊途同归地指向e这个数。比如其中一个有名的问题,就是求双曲线y=1/x底下的面积。双曲线和计算复利会有什麼关系,不管横看、竖看、坐著想、躺著想,都想不出一个所以然对不对?可是这个面积算出来,却和e有很密切的关联。我才举了一个例子而已,这本书里提到得更多。
如果整本书光是在讲数学,还说成是说故事,就未免太不好意思了。事实上是,作者在探讨数学的同时,穿插了许多有趣的相关故事。比如说你知道第一个对数表是谁发明的吗?是纳皮尔(John Napier)。没有听说过?这很正常,我也是读到这本书才认识他的。重要的是要下一个问题。你知道纳皮尔花了多少时间来建构整个对数表吗?请注意这是发生在十六世纪末、十七世纪初的事情,别说电脑和计算机了,根本是什麼计算工具也没有,所有的计算,只能利用纸笔一项一项慢慢地算,而又还不能利用对数来化乘除为加减,好简化计算。因此纳皮尔整整花了二十年的时间建立他的对数表,简直是匪夷所思吧!试著想像一下二十年之间,每天都在重复做同类型的繁琐计算,这种乏味的日子绝不是一般人能忍受的。但纳皮尔熬过来了,而他的辛苦也得到了报偿——对数受到了热切的欢迎,许多欧洲甚至中国的科学家都迅速采用,连纳皮尔也得到了来自世界各地的赞誉。最早使用对数的人当中,包括了大名鼎鼎的天文学家刻卜勒,他利用对数,简化了行星轨道的繁复计算。
在《毛起来说e》中,还有许多我们在一般数学课本里读不到的有趣事实。比如第一本微积分教科书是谁写的呢?(假如你曾受微积分课程之苦,也会想知道谁是「始作俑者」吧?」)是罗必达先生。对啦,就是罗必达法则(L'Hospital's Rule)的那位罗必达。但是罗必达法则反倒是约翰.伯努利先发现的。不过这无关乎剽窃的问题,他们之间是有协议的。
说到伯努利可就有故事说了,这个家族实在不得了,别的家族出一位天才就可以偷笑了,而他们家族的天才是用「量产」形容。伯努利们前前后后在数学领域中活跃了一百年,他们的诸多成就(不仅止於数学领域),就算随便列一列,也有一本书这麼厚。不过这个家族另外擅长的一件事就不太敢恭维了,那就是吵架。自家人吵不够,也跟外面的人吵(可说是「表里如一」)。连爸爸与儿子合得一个大奖,爸爸还非常不满意,觉得应该由自己独得,居然气得把儿子赶出家门;和现代的许多「孝子」们比起来,这位爸爸真该感到惭愧。
e的「影响力」其实还不限於数学领域。大自然中太阳花的种子排列、鹦鹉螺壳上的花纹都呈现螺线的形状,而螺线的方程式,是要用e来定义的。建构音阶也要用到e,而如果把一条链子两端固定,松松垂下,它呈现的形状若用数学式子表示的话,也需要用到e。这些与计算利率或者双曲线面积八竿子打不著的问题,居然统统和e有关,岂不奇妙?
数学其实没那麼难!
我们每个人的成长过程中都读过不少数学,但是在很多人心目中,数学似乎是门无趣甚至可怕的科目。尤其到了大学的微积分,到处都是定义、定理、公式,令人望之生畏。我们会害怕一个学科的原因之一,是有距离感,那些微积分里的东西,好像不知是从哪儿冒出来的,对它毫无感觉,也觉得和我毫无关系。如果我们知道微积分是怎麼演变、由谁发明的,而发明之时还发生了些什麼事(微积分是谁发明的这件事,争论了许多年,对数学发展产生重大的影响),发明者又是什麼样的人等等,这种距离感就应该会减少甚至消失,微积分就不再是「陌生人」了。
❹ 用方程式表示数学运算是谁发明的详细介绍一下。
方程是含有未知数的等式,使等式成立的未知数的值是方程的解,中国古代<九章算术>(8)方程:线性方程组解法和正负术.是具有世界先驱意义的首创.是世
界古代著名数学著作之一.
法国数学家韦达创
十六世纪,随著各种数学符号的相继出现,特别是法国数学家韦达创立了较系统的表示未知量和已知量的符号以后,"含有未知数的等式" 这一专门概念出现了,当时拉丁语称它为"aequatio",英文为"equation".
十七世纪前后,欧洲代数首次传进中国,当时译"equation"为"相等式. 由於那时我国古代文化的势力还较强,西方近代科学文化未能及时在我国广泛传播和产生较的影响,因此"代数学"连同"相等式"等这些学科或概念都只是在极少数人中学习和研究.
十九世纪中叶,近代西方数学再次传入我国.1859年,李善兰和英国 传教士伟烈亚力,将英国数学家德.摩尔根的<代数初步>译出. 李.伟 两人很注重数学名词的正确翻译,他们借用或创设了近四百个数 学的汉译名词,许多至今一直沿用.其中,"equation"的译名就是借 用了我国古代的"方程"一词.这样,"方程"一词首次意为"含有未知数的等式.
1873年,我国近代早期的又一个西方科学的传播者华蘅芳,与英国传 教士兰雅合译英国渥里斯的<代数学>,他们则把"equation"译为"方程 式",他们的意思是,"方程"与"方程式"应该区别开来,方程仍指<九章 算术>中的意思,而方程式是指"今有未知数的等式".华.傅的主张在很长时间裏被广泛采纳.直到1934年,中国数学学会对名词进行一审查,确定"方程"与"方程式"两者意义相通.在广义上,它们是指一元n次方程以及由几个方程联立起来的方程组.狭义则专指一元n次方程.既然"方程"与"方程式"同义,那麼"方程"就显得更为简洁明了了.
现在我们所说的方程的确切定义是指含有未知数的等式。但是方程一词在我国早期的数学专著《九章算术》中,意思指的是包含多个未知量的联立一次方程,即现在所说的线性方程组。
《九章算术》有一道题目,把它翻译成现代语言就是:现在这里有上等黍3捆、中等黍2捆、下等黍1捆,打出的黍共有34斗;另有上等黍1捆、中等黍2捆、下等黍3捆,打出的黍共26斗。请你回答,上、中、下等黍各1捆所打黍的斗数为x,y,z根据题意列方程:
3x+2y+z=39(1)
2x+3y+z=34(2)
x+2y+3z=26(3)
但是《九章算术》里并没有列出像上面的方程来,而是画出一个等式,通过等式计算出答案来。
到了魏晋时期,大数学家刘徵注《九章算术》时,给这种“方程”下的定义是:“程,课程也,群物总杂各列有数,总言其实,令每行为率。二物者再程,三物者三程,皆如物数程之,并列为行,故谓之方程。”大家应该注意的是,这里所谓的“课程”也不是我们今天所说的课程,而是按不同物品的数量关系列出的式子。“实”就是式中的常数项。“今每行为率”,就由一个条件列一行式子,横列代表一个未知量。“如物数程之”,就是有几个未知数就必须列出几个等式。因为各项未知量系数和常数项用等式表示时,几行并列成一方形,所以叫作“方程”,它就是现在代数中讲的联立一次方程组。
《九章算术》中还列出了解联立一次方程组的普遍方法——“方程术”。当时又叫它“直除法”,和现在代数学中能用的加减消元法是基本一致的,而这也是世界上最早的。这种解法,公元7世纪印度才出现,在欧洲,1559年,瑞士数学家彪奇才开始用不同的字母表示不同的未知数,并提出三元一次方程组不很完整的解法,因为他们那时还没有认识到负数,这比《九章算术》要迟1500多年。
❺ 数学方程式中的元和次是谁创立的
数学方程式中的元和次是中国清朝时期的康熙皇帝创立的。
康熙皇帝是中国历史上声名显赫,又有远大抱负,聪明好学的一位皇帝。他除了其文治武功之外 ,还十分爱好数学,曾拜比利时的南怀仁等传教士为师,学习数学 、天文、地理以及拉丁文等,康熙皇帝虽然聪颖过人,但是听外籍教师讲课也有困难,因为南怀仁等人的汉语和满语水平有限,日常会话勉强对付,但要将严谨而高深的科学知识表达出来就显得力不从心了。而当时课本多是外文,即使中译本也是半通不通的。这样,学习中就必然有许多精 力被消耗在语言沟通上,进度不快 。
不过,康熙学习很刻苦,也很有耐心,不懂就请教,直至真正弄懂为止。南怀仁在讲方程时,句子冗长,吐音又很不清楚,康熙的脑子常常被搞得晕晕糊糊的,怎样才能让老师讲得好懂呢?一阵冥思苦想后,一个妙法突然冒出来。他向南怀仁建议 ,将未知数翻译为“元”,最高次数翻译为“次”(限整式方程),使方程左右两边相等的未知数的值翻译为“根”(解)⋯⋯南怀仁用笔认真地记了下来 ,随即用这些新创术语换下自己原先使用的繁琐词语 :“求二‘元’一‘次’方程的‘根 ’(解 )⋯⋯“如此一来,果然简单了很多,而且还可以提高教学效率,南怀仁惊疑地盯着康熙,愣怔了一会儿,突然按照西方最亲切的礼节一下子将康熙紧紧抱住:“我读书和教书几十年,无论是老师还是学生,还从来没见过一个像您这样肯动脑筋的人 !”
正因为康熙创造的这几个数学术语科学而简洁,十分便于理解和记忆,因此一直延用到今天 。
❻ 数学方程式里的元次方等术语是谁创造的
是康熙皇帝啊
❼ 数学方程中:元.次等术语,是谁创业造的
选康熙创造的
❽ 数学方程中的元次是谁创造的
康熙皇帝。康熙是我国历史上数学水平最高的一位帝王,他天资聪慧,十分热爱数学,14岁起跟着从比利时来华的传教士南怀仁学习数学,是康熙首创“元”、“次”、“根”等方程术语的汉译名。
比利时传教士南怀仁在给康熙讲解方程时,由于他汉语、满语水平都很有限,有些术语讲不清楚,解释很久还是不得要领,康熙就建议:将未知数翻译为“元”,最高次数翻译为“次”,使方程左右两边相等的未知数的值翻译为“根”或“解”。
南怀仁惊疑地盯着康熙,愣了一会儿,突然按照西方最亲切的礼节一下子将康熙紧紧抱住,激动地说:“我读书和教书几十年,无论是老师还是学生,还从来没见过一个像您这样肯动脑筋的人!”康熙创造的这几个方程术语,驭繁为简,准确科学,非常便于理解和记忆。
(8)方程式中的术语是谁创造的扩展阅读
南怀仁简介
南怀仁(Ferdinand Verbiest,1623年10月9日—1688年1月28日,享年66岁),字敦伯,又字勋卿,西属尼德兰皮特姆(今比利时布鲁塞尔附近)人,耶稣会传教士,清代天文学家、科学家,1623年10月9日出生,1641年9月29日入耶稣会,1658年来华,是清初最有影响的来华传教士之一,为近代西方科学知识在中国的传播做出了重要贡献。
他是康熙皇帝的科学启蒙老师,精通天文历法、擅长铸炮,是当时国家天文台(钦天监)业务上的最高负责人,官至工部侍郎,正二品。1688年1月28日南怀仁在北京逝世,享年66岁,卒谥勤敏。著有《康熙永年历法》、《坤舆图说》、《西方要记》等。
❾ 方程式的发展历史
一)属于算术方面的材料
大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。”
和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。
现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。
古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。
小数的记法,元朝(公元十三世纪)是用低一格来表示,如13.56作1356 。在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。
宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用“连身加”这名词来说明201—300以内的质数。
(二)属于代数方面的材料
从“九章算术”卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。
“九章算术”方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。
我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。一元二次方程是借用几何图形而得到证明。 不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。
十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。
在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。
级数是古老的东西,二千多年前的“周髀算经”和“九章算术”都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的著作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。
历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。
内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。
十四世纪以前,属于代数方面许多问题的研究,中国是先进国家之一。
就是到十八,九世纪由李锐(1773—1817),汪莱(1768—1813)到李善兰(1811—1882),他们在这一方面的研究上也都发表了很多的名著。
十一世纪,阿拉伯的阿尔·卡尔希第一次解出了二次方程的根。
十一世纪,阿拉伯的卡牙姆完成了一部系统研究三次方程的书《代数学》。
十一世纪中叶,中国宋朝的贾宪在《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,并列出了二项式定理系数表,这是现代“组合数学”的早期发现。后人所称的“杨辉三角”即指此法。
十二世纪,印度的拜斯迦罗著《立刺瓦提》一书,这是东方算术和计算方面的重要著作。
1202年,意大利的裴波那契发表《计算之书》,把印度—阿拉伯记数法介绍到西方。
1247年,中国宋朝的秦九韶著《数书九章》共十八卷,推广了“增乘开方法”。书中提出的联立一次同余式的解法,比西方早五百七十余年。
1248年,中国宋朝的李治著《测圆海镜》十二卷,这是第一部系统论述“天元术”的著作。
1261年,中国宋朝的杨辉著《详解九章算法》,用“垛积术”求出几类高阶等差级数之和。
1274年,中国宋朝的杨辉发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法。
1280年,元朝《授时历》用招差法编制日月的方位表(中国 王恂、郭守敬等)。
十四世纪中叶前,中国开始应用珠算盘。
1303年,中国元朝的朱世杰著《四元玉鉴》三卷,把“天元术”推广为“四元术”。
人类对一元二次方程的研究经历了漫长的岁月,早在公元前2000年左右,居住在底格里斯河和幼法拉底河的古巴比伦人已经能解一些一元二次方程。而在中国,《九章算术》“勾股”章中就有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?。”之后的丢番图(古代希腊数学家),欧几里德(古代希腊数学家),赵爽,张遂,杨辉对一元二次方程的贡献更大。
结绳:最古的记数方法,传为伏羲所创。
书器:一种最古的记数工具,传为隶首所创。
河图,洛书:相传分别为伏羲、夏禹所作,是为最初的魔方阵。
八卦:传为周公所创,是最初的二进制法。
规矩:传为伏羲或缍所创,用以作方圆,测量田地与勘测水道。
几何图案:在金石陶器、石器时代的陶片、周秦时代的彝器已有简单 的几何图形出现,其种类不下数十种。
九九:即个位数乘法表,传为伏羲所创。古代数学家以九九之术作为初等数学的代表。
技术方法:当时是以累积之方法记数,已有百……亿,兆等大数产生,都是以十进制的;也已有分数的产生。当时盛行的筹算,演变为后来的珠算术。
数论、方程论及数论得到进一步的研究,理论更臻完善。对中算史加以研究与着成专书。数学教育制度重新建立起来。此期末,西方数学第二次输入中国,以补中算的不足,中国数学在此又进入另一阶段。
❿ 方程式的来历
方程的来历
现在我们所说的方程的确切定义是指含有未知数的等式.但是方程一词在我国早期的数学专著《九章算术》中,意思指的是包含多个未知量的联立一次方程,即现在所说的线性方程组.
《九章算术》有一道题目,把它翻译成现代语言就是:现在这里有上等黍3捆、中等黍2捆、下等黍1捆,打出的黍共有34斗;另有上等黍1捆、中等黍2捆、下等黍3捆,打出的黍共26斗.请你回答,上、中、下等黍各1捆所打黍的斗数为x,y,z根据题意列方程:
3x+2y+z=39(1)
2x+3y+z=34(2)
x+2y+3z=26(3)
但是《九章算术》里并没有列出像上面的方程来,而是画出一个等式,通过等式计算出答案来.
到了魏晋时期,大数学家刘徵注《九章算术》时,给这种“方程”下的定义是:“程,课程也,群物总杂各列有数,总言其实,令每行为率.二物者再程,三物者三程,皆如物数程之,并列为行,故谓之方程.”大家应该注意的是,这里所谓的“课程”也不是我们今天所说的课程,而是按不同物品的数量关系列出的式子.“实”就是式中的常数项.“今每行为率”,就由一个条件列一行式子,横列代表一个未知量.“如物数程之”,就是有几个未知数就必须列出几个等式.因为各项未知量系数和常数项用等式表示时,几行并列成一方形,所以叫作“方程”,它就是现在代数中讲的联立一次方程组.
《九章算术》中还列出了解联立一次方程组的普遍方法——“方程术”.当时又叫它“直除法”,和现在代数学中能用的加减消元法是基本一致的,而这也是世界上最早的.这种解法,公元7世纪印度才出现,在欧洲,1559年,瑞士数学家彪奇才开始用不同的字母表示不同的未知数,并提出三元一次方程组不很完整的解法,因为他们那时还没有认识到负数,这比《九章算术》要迟1500多年.