❶ 激光器是如何发明的
这里指的是20世纪的一项重要发明——微波激射器。另一个新名词大家也许早就熟悉,所谓镭射,就是我们常常说到的激光。
晶体管的发明,它是第二次世界大战后最激动人心的科技产物,对20世纪后半叶人类社会的发展和物质文明的进步有极大的推进作用。然而,无独有偶,就在这个时期,又孕育了另一项重大的科技发明,那就是脉泽和激光。在脉泽和激光的发明中,运用了20世纪量子理论、无线电电子学、微波波谱学和固体物理学的丰硕成果,也凝聚了一大批物理学家的心血。这些物理学家很多是在贝尔实验室工作的,其中最为突出的一位是美国的物理学家汤斯(C.H.Townes)。
汤斯是美国南卡罗林纳人,1939年在加州理工学院获博士学位后进入贝尔实验室。二次大战期间从事雷达工作。他非常喜爱理论物理,但军事需要强制他置身于实验工作之中,使他对微波等技术逐渐熟悉。当时,人们力图提高雷达的工作频率以改善测量精度。美国空军要求他所在的贝尔实验室研制频率为24 000MHz的雷达,实验室把这个任务交给了汤斯。
汤斯对这项工作有自己的看法,他认为这样高的频率对雷达是不适宜的,因为他观察的这一频率的辐射极易被大气中的水蒸气吸收,因此雷达信号无法在空间传播,但是美国空军当局坚持要他做下去。结果仪器做出来了,军事上毫无价值,却成了汤斯手中极为有利的实验装置,达到当时从未有过的高频率和高分辨率,汤斯从此对微波波谱学产生了兴趣,成了这方面的专家。他用这台设备积极地研究微波和分子之间的相互作用,取得了一些成果。
1948年汤斯遇到哥伦比亚大学教授拉比(I.I.Rabi)。拉比建议他去哥伦比亚大学。这正合汤斯的心愿,遂进入哥伦比亚大学物理系。1950年起在那里就任正教授。雷达技术涉及到微波的发射和接收,而微波是指频谱介于红外和无线电波之间的电磁波。在哥伦比亚大学,汤斯继续孜孜不倦地致力于微波和分子相互作用这一重要课题。
汤斯渴望有一种能产生高强度微波的器件。通常的器件只能产生波长较长的无线电波,若打算用这种器件来产生微波,器件结构的尺寸就必需极小,以至于实际上没有实现的可能性。
1951年的一个早晨,汤斯坐在华盛顿市一个公园的长凳上,等待饭店开门,以便去进早餐。这时他突然想到,如果用分子,而不用电子线路,不是就可以得到波长足够小的无线电波吗?分子具有各种不同的振动形式,有些分子的振动正好和微波波段范围的辐射相同。问题是如何将这些振动转变为辐射。就氨分子来说,在适当的条件下,它每秒振动2.4×1010次,因此有可能发射波长为114厘米的微波。
他设想通过热或电的方法,把能量送进氨分子中,使氨分子处于“激发”状态。然后,再设想使这些受激的分子处于具有和氨分子的固有频率相同的微波束中,氨分子受到这一微波束的作用,以同样波长的微波形式放出它的能量,这一能量又继而作用于另一个氨分子,使它也放出能量。这个很微弱的入射微波束相当于起着对一场雪崩的触发作用,最后就会产生一个很强的微波束。这样就有可能实现微波束的放大。
汤斯在公园的长凳上思考了所有这一切,并把一些要点记录在一只用过的信封的反面。汤斯小组历经两年的试验,花费了近3万美元。1953年的一天,汤斯正在出席波谱学会议,他的助手戈登急切地奔入会议室,大声呼叫道:“它运转了。”这就是第一台微波激射器。汤斯和大家商议,给这种方法取了一个名字,叫“受激辐射微波放大”,英文名为“Microwave Amplification by Stimulated Emission of Radiation”,简称MASER(中文音译为脉泽,意译为微波激射器)。
脉泽有许多有趣的用途。氨分子的振动稳定而精确,用它那稳定精确的微波频率,可用来测定时间。这样,脉泽实际上就是一种“原子钟”,它的精度远高于以往所有的机械计时器。
1957年,汤斯开始思索设计一种能产生红外或可见光——而不是微波——脉泽的可能性。他和他的姻弟肖洛(A.L.Schawlow)在1958年发表了有关这方面的论文,论文的题目叫《红外区和光学脉泽》,主要是论证将微波激射技术扩展到红外区和可见光区的可能性。
肖洛1921年生于美国纽约,在加拿大多伦多大学毕业后又获硕士和博士学位。第二次世界大战后,肖洛在拉比的建议下,到汤斯手下当博士后,研究微波波谱学在有机化学中的应用。他们两人1955年合写过一本《微波波谱学》,是这个领域里的权威著作。当时,肖洛是贝尔实验室的研究员,汤斯正在那里当顾问。
1957年,正当肖洛开始思考怎样做成红外脉泽器时,汤斯来到贝尔实验室。有一天,两人共进午餐,汤斯谈到他对红外和可见光脉泽器很感兴趣,有没有可能越过远红外,直接进入近红外区或可见光区。近红外区比较容易实现,因为当时已经掌握了许多材料的特性。肖洛说,他也正在研究这个问题,并且建议用法布里-珀罗标准具作为谐振腔。两人谈得十分投机,相约共同攻关。汤斯把自己关于光脉泽器的笔记交给肖洛,里面记有一些思考和初步计算。肖洛和汤斯的论文于1958年12月在《物理评论》上发表后,引起强烈反响。这是激光发展史上具有重要意义的历史文献。汤斯因此于1964年获诺贝尔物理学奖,肖洛也于1981年获诺贝尔物理学奖。
在肖洛和汤斯的理论指引下,许多实验室开始研究如何实现光学脉泽,纷纷致力于寻找合适的材料和方法。他们的思想启示梅曼(T.Maiman)做出了第一台激光器。
梅曼用一根红宝石棒产生间断的红光脉冲。这种光是相干的,在传播时不会漫散开,几乎始终保持成一窄束光。即使将这样的光束射到32万千米之外的月球上,光点也只扩展到两三千米的范围。它的能量耗损很小,这样,人们就自然想到向月球表面发射光脉泽束,以绘制月面地形图,这种方法远比以往的望远镜有效得多。
大量的能量聚集在很窄的光束中,使它还能用于医学(例如在某些眼科手术中)和化学分析,它能使物体的一小点汽化,从而进行光谱研究。
这种光比以往产生的任何光具有更强的单色性。光束中的所有光都具有相同的波长,这就意味着这种光束经调制后可用来传送信息,和普通无线电通信中被调制的无线电载波几乎完全一样。由于光的频率很高,在给定的频带上,它的信息容量远大于频率较低的无线电波,这就是用光作载波的优点。
可见光脉泽就是现在大家熟悉的激光,激光的英文名字也可音译为镭射(laser),laser是“Light Amplification by Stimulated Emission of Radiation”(受激辐射光放大)的缩写。
梅曼是美国休斯研究实验室量子电子部年轻的负责人。他于1955年在斯坦福大学获博士学位,研究的正是微波波谱学,在休斯实验室做脉泽的研究工作,并发展了红宝石脉泽,不过需要液氮冷却,后来改用干冰冷却。梅曼能在红宝石激光首先作出突破,并非偶然,因为他已有用红宝石进行脉泽的经验多年,他预感到用红宝石做激光器的可能性,这种材料具有相当多的优点,例如能级结构比较简单,机械强度比较高,体积小巧,无需低温冷却,等等。但是,当时他从文献上知道,红宝石的量子效率很低,如果真是这样,那就没有用场了。梅曼寻找其他材料,但都不理想,于是他想根据红宝石的特性,寻找类似的材料来代替它。为此他测量了红宝石的荧光效率。没有想到,荧光效率竟是75%,接近于1。梅曼喜出望外,决定用红宝石做激光元件。
通过计算,他认识到最重要的是要有高色温(大约5 000 K)的激烈光源。起初他设想用水银灯把红宝石棒放在椭圆形柱体中,这样也许有可能起动。但再一想,觉得无须连续运行,脉冲即可,于是他决定利用氙(Xe)灯。梅曼查询商品目录,根据商品的技术指标选定通用电气公司出产的闪光灯,它是用于航空摄影的,有足够的亮度,但这种灯具有螺旋状结构,不适于椭圆柱聚光腔。他又想了一个妙法,把红宝石棒插在螺旋灯管之中,红宝石棒直径大约为1厘米、长为2厘米,正好塞在灯管里。红宝石两端蒸镀银膜,银膜中部留一小孔,让光逸出。孔径的大小,通过实验决定。
就这样,梅曼经过9个月的奋斗,花了5万美元,做出了第一台激光器。可是当梅曼将论文投到《物理评论快报》时,竟遭拒绝。该刊主编误认为这仍是脉泽,而脉泽发展到这样的地步,已没有什么必要用快报的形式发表了。梅曼只好在《纽约时报》上宣布这一消息,并寄到英国的《自然》杂志去发表。
梅曼发明红宝石激光器的消息立即传遍全球。接着又诞生了氦氖激光器。
氦氖激光器是这三四十年中广泛使用的一种激光器。它是紧接着固体激光出现的一种以气体为工作介质的激光。它的诞生首先应归功于多年对气体能级进行测试分析的实验和从事这方面研究的理论工作者。到60年代,所有这些稀有气体都已经被光谱学家做了详细研究。
不过,氦氖激光器要应用到激光领域,还需要这个领域的专家进行有目的的探索。又是汤斯的学派开创了这一事业。他的另一名研究生,来自伊朗的贾万(Javan)有自己的想法。贾万的基本思路就是利用气体放电来实现粒子数反转。
贾万首选氦、氖气体作为工作介质是一极为成功的选择。最初得到的激光光束是红外谱线1.15微米。氖有许多谱线,后来通用的是6 328埃,为什么贾万不选6 328埃,反而选1.15微米呢?这也是贾万高明的一着。他根据计算,了解到6 328埃的增益比较低,所以宁可选更有把握的1.15微米。如果一上来就取红线6 328埃,肯定会落空的。
贾万和他的合作者在直径为1.5厘米、长为80厘米的石英管两端贴有13层的蒸发介质膜的平面镜片,放在放电管中,用无线电频率进行激发。为了调整两块平面镜的取向,竟花费了6~8个月的时间。1960年12月12日终于获得了红外辐射。
1962年,贾万的同事怀特和里奇获得了6 328埃的激光光束。这时激光的调整已积累了丰富经验。里格罗德等人改进了氦氖激光器。他们把反射镜从放电管内部移到外部,避免了复杂的工艺。窗口做成按布鲁斯特角固定,再把反射镜做成半径相等的共焦凹面镜。
氦氖激光器一直到现在还在应用,在种类繁多的各种激光器中,氦氖激光器也许是最普及、应用最广泛的一种。在红宝石激光器和氦氖激光器之后,接踵而至的是效率更高、功率更大的激光器——二氧化氮激光器和经久耐用、灵巧方便的半导体激光器,它们像雨后春笋一般涌现了出来,成了现代高科技的重要组成部分。
❷ 激光是怎样发明的
激光是20世纪以来,继原子能、计算机、半导体之后,人类的又一重大发明。它的原回理早在1916年已被著名的物理学家答爱因斯坦发现,但直到1958年激光才被首次成功制造。
激光是在有理论准备和生产实践迫切需要的背景下应运而生的,它一问世就获得了异乎寻常的飞快发展,激光的发展不仅使古老的光学科学和光学技术获得了新生,而且导致一门新兴产业的出现。激光可使人们有效地利用前所未有的先进方法和手段,去获得空前的效益和成果,从而促进了生产力的发展。
❸ 发明激光的人是谁
激光的发明可以追溯到年。当时Arthur L.Schawlow和Charles H.Townes在Physical Review上发表了一篇名为“Infr ared and Optical Masers ”的论文,从而开创了一个新的科学领域并产生了一个具数十亿美元产值的新工业。 Schawlow和Townes在二十世纪40年代和50年代早期从事微波波谱方面的研究工作。作为研究各种分子特性的有力工具,微波波谱技术其时颇引人注目。他们并没有想发明一种设备,使从通信到机械的各种产业发生翻天覆地的变化;他们所想的仅仅是开发一种设备来帮助他们研究分子结构。 初始工作 在加州技术学院获博士学位后,于1939年加入贝尔实验室。在那里,他从事包括微波发生、真空管和磁学等各种不同工作。后来,他转到固体物理领域,研究表面电子发射。 一天,也就是Townes到贝尔实验室的一年后,Townes实验室的主任Mervin Kelly通知大家“从星期一开始,你们研究雷达轰炸系统。”Townes不喜欢这项工作,但他知道二次世界大战已经打破了贝尔实验室的宁静。“我们相当努力地研究雷达轰炸系统,一年后我们将该系统装入飞机中,发现它非常有效。”Townes说。 专注于分子吸收研究 二战期间,Townes对航空无线电很感兴趣,但他的防雷达工作使他必须专注于微波波谱方面的研究。雷达系统以特定波长播发无线电信号,当这些信号碰到诸如战舰或飞机之类的固体物质,就会反射回雷达系统,从而雷达系统可以识别这些物体并定位。 Townes从事的雷达导航轰炸系统采用的波长是10cm及后来的3cm,但军方要求的波长是1.25cm。以便更好的定向以及在飞机上使用更小的天线。 湿度 Townes致力于1.25cm波长的工作。他知道,气体分子在固定波长可以吸收波形,尤其令他担心的是,大气层中的水蒸气(如雾、雨、云)可能会吸收 cm雷达信号。 “雷达已经建好,已调试好,但尚不能工作,主要存在水蒸气吸收问题”他说,该系统最多只能“见”到几英里开外,“……而且,要搜寻海上船只或类似的其它物体还有太多的局限。 迁至Columbia 战后,Townes在贝尔实验室专门从事分子波谱的研究工作。1948年,他获得了转到Columbia大学工作的机会。他说:“我到Columbia大学的部分原因是,Columbia大学更专注于物理学以及我感兴趣的原理定律。此外,我更喜欢大学生活,在大学工作一直是我心中所愿。” 微波波谱学科是Schawlow 和Townes在1949年第一次相见的共同基础。此时,Schawlow刚好在多伦多大学获得物理博士学位。然后,他到Columbia大学从事一研究基金项目,与Townes开始一道工作。 分子研究 在Columbia, Townes继续研究采用受激辐射探测气体分子波谱方面的工作,由此首先发明了maser(微波激射),后来发明了laser(激光)。 Townes知道,微波激射的波长越短,其与分子的作用越强,因而它是研究波谱的强有力工具。但当时要制造一种小到足以产生所需波长的设备超出了制造技术的水平。所以,Townes竭力解决用分子产生所需频率的技术限制问题。 在Franklin公园的奇想 有几个技术问题当时已经解决,其中包括热力学第二定律,实际上,热力学第二定律已告诉Townes时,分子不会产生超过固定量的能量。 在Townes参加华盛顿的一个毫米波发射的科学委员会会议时,他正考虑如何回避热力第二定律。一天早晨,他在Franklin公园一边散步,一边思考这个问题。“我想,热力学第二定律假设了热量是平衡,而我们不必考虑它。” 信封背面的计算 Townes从夹克中拿出了一个信封开始匆匆记下他关于要得到他所需的功率输出在谐振器中需多少分子的计算。然后,他回到酒店并将这个思想告诉了Schowlow。Townes说:“我告诉他这个构思,他马上同意了我的观点并说这非常有意义。”当Townes回到Columbia后,他让他的研究生James P.Gordon立即开始这个项目工作,后来还聘用了H.L Zeiger作助手。Schawlow没有参与maser的工作。但他说:“我亲眼目睹了他笔记本中的这项发明。” 同一年,Schawlow离开了Townes和Columbia到贝尔实验室担任了一个研究员的工作。“我在贝尔实验室主要从事超导电性的研究”,他说,“随后几年,我也没有在masers激动人心的发展中作过任何工作。” 研究maser Townes决定研究氨,氨是一个很强的吸收体,与波长的作用很强。“这是我的老爱好,我对氨知之甚多。我们有1.25cm波长的波腔,所有技术和波导。” 他从事maser工作时,很少有人对他的工作感兴趣。有一次他说:“我们很平静地以研究生的方式工作了三年,最后我们成功了。据我所知,其它人都不愿意从事这项工作。” 1953年,Townes Gordon 和Zeiger研制出一种叫maser的设备,可以通过发射物的受激发射实现微波放大。他们通过Columbia大学申请了该设备的专利。 与贝尔实验室合作 Townes知道,比微波波长更短的波长(如红外线和光波波长)在研究波谱方面可能是比maser产生的微波辐射更有用。 在Columbia期间,Townes 1956年荣任贝尔实验室的顾问工作。他可以访问实验室、与人交谈、视察项目并交流思想。他说:“这是一个很不错的顾问工作,所以我欣然接受!” Townes仍在思考光的受激辐射,并看望了已在贝尔实验室呆了5年的Schawlow。这两个科学家再度合作出版了一本《微波波谱》的书。Schawlow后来回忆说:“我在认真考虑如何将maser原理从微波应用到波长更短的波,如红外线波谱领域。后来发现Townes也在考虑这个问题,于是我们决定携手合作解决这个问题。” 将镜片放到空腔中 Schawlow的思想是在空腔的每一端放一个镜片,使光来回反射。这样,可消除光束在其它方向的激射。Schawlow和Townes探讨了该方案的可行性,并对之抱着极大的热情。1957年秋天,他们开始研究生产更短波长的设备原理。通过使用镜片,Schawlow想到,这些镜片的尺寸应当可调以便激光只有一个频率,一个特定频率可以在一个路径宽度范围内选定,镜片大小可调以便任何轻微的偏向运动都能被抑制。实际上,他去掉了大多数空腔,只保留了两端空腔。 Schawlow说:“我们不用中断我们的其它工作,我们只用了几个月的业余时间。”Schawlow研制设备,而Townes从事理论研究。Schawlow建议用常规固体材料来产生固体激光。 美国专利 八个月之后,他们的合作开花结果。1958年,他们就他们的工作合写了一篇言论文,此时他们尚未造出真实的激光,并且他们还通过贝尔实验室申请了一项专利。他们关于maser原理可推广应用到光谱领域的建议发表在Physical Review的第十二期杂志上。 两年后,Schawlow和Townes获得了激光发明的专利,与此同时Hughes Aircraft公司的Theodore Maiman制造出了可以工作的激光器。1961年,Schawlow离开贝尔实验室开始了其在Stanford的执教和研究工作,在Stanford,他进一步推动了激光在波谱领域的应用。他说:“Stanford给了我不能拒绝的承诺。” 赢得Nobel奖。 1964年,“由于在量子电子学领域中的基础工作导致基于maser-laser原理的谐振器和放大器的发明”,Townes与Moscow 的Lebedev学院的A.Prskhorov和N.Bason共同一起获得该年度的Nobel物理奖。 1981年,Schawlow也因其对激光光谱的贡献荣获该年度的Nobel物理奖。Townes说:“这项奖对Schlwlow来得太迟。” Schawlow回顾这项发明说“我们想到了它的通信和科学应用,而没有将它保留在心中。如果这样做,会妨碍我们做出激光发明。”
❹ 激光是谁发明的,到底有什么用
有关激光的理论最早由爱因斯坦于1917年提出。激光是由原子受激辐射出来的光。当原子从高能级跃迁到低能级会释放能量,就以光的形式辐射出来。普通光源就源于原子的自发辐射。相对于普通光源,激光单色性好、亮度高、方向性好。
一名自然科学爱好者,欢迎关注。您的点赞就是对我最大的支持。
❺ 激光是怎么被发明出来的
1954年美国哥伦比亚大学的汤斯首次制成了氨分子微波激射器,由此打开了通向激光版的道路。1960年世界权第一台以红宝石为受激物体的激光器由美国物理学家梅曼研制成功。激光器的问世轰动了全美国,出现了光学物理的“文艺复兴”时代。激光的出现与发展,是相干电磁频谱向高频段发展的必然。
❻ 激光技术是在什么年发明的
1、激光是20世纪60年代的新光源。由于激光具有方向性好、亮度高、单色性好等特点而得到广泛应用。激光加工是激光应用最有发展前途的领域之一,现在已开发出20多种激光加工技术。
2、发展:
激光具有单色性好、方向性强、亮度高等特点。现已发现的激光工作物质有几千种,波长范围从软X射线到远红外。
激光技术的核心是激光器,激光器的种类很多,可按工作物质、激励方式、运转方式、工作波长等不同方法分类。
根据不同的使用要求,采取一些专门的技术提高输出激光的光束质量和单项技术指标,比较广泛应用的单元技术有共振腔设计与选模、倍频、调谐、Q开关、锁模、稳频和放大技术等。
3、原理:
科学家在电管中以光或电流的能量来撞击某些晶体或原子易受激发的物质,使其原子的电子达到受激发的高能量状态,当这些电子要回复到平静的低能量状态时,原子就会射出光子,以放出多余的能量;而接著,这些被放出的光子又会撞击其它原子,激发更多的原子产生光子,引发一连串的「连锁反应」,并且都朝同一个方前进,形成强烈而且集中朝向某个方向的光;因此强的激光甚至可用作切割钢板!
4、特性:
激光被广泛应用是因为它的特性。(单色波长、同调性、平行光束)
激光几乎是一种单色光波,频率范围极窄,又可在一个狭小的方向内集中高能量,因此利用聚焦后的激光束可以对各种材料进行打孔。以红宝石激光器为例,它输出脉冲的总能量不够煮熟一个鸡蛋,但却能在3毫米的钢板上鉆出一个小孔。
激光拥有上述特性,并不是因为它有与别的光不同的光能,而是它的功率密度十分高,这就是激光被广泛应用的原因。
(6)激光的发明扩展阅读:
我国早期激光技术的发展
1957年,王大珩等在长春建立了我国第一所光学专业研究所——中国科学院(长春)光学精密 仪器机械研究所(简称“光机所”)。在老一辈专家带领下,一批青年科技工作者迅速成长,邓锡铭是其中的突出代表。早在1958年美国物理学家肖洛、汤斯关于激光原理的著名论文发 表不久,他便积极倡导开展这项新技术研究,在短时间内凝聚了富有创新精神的中青年研究 队伍,提出了大量提高光源亮度、单位色性、相干性的设想和实验方案。
1960年世界第一台激光器问世。1961年夏,在王之江主持下,我国第一台红宝石激光器研制成功。此后短短几年内,激光技术迅速发展,产生了一批先进成果。各种类型的固体、气体、半导体和化学激 光器相继研制成功。在基础研究和关键技术方面、一系列新概念、新方法和新技术(如腔的Q突变及转镜调Q、行波放大、铼系离子的利用、自由电子振荡辐射等)纷纷提出并获得实施,其中不少具有独创性。
同时,作为具有高亮度、高方向性、高质量等优异特性的新光源,激光很快应用于各技术领域,显示出强大的生命力和竞争力。通信方面,1964年9月用激光演示传送电视图像,1964年11月实现3~30公里的通话。工业方面,1965年5月激光打孔机成功地用于拉丝模打孔生产,获得显著经济效益。医学方面,1965年6月激光视网膜焊接器进行了动物和临床实验 。国防方面,1965年12月研制成功激光漫反射测距机(精度为10米/10公里),1966年4月研制出遥控脉冲激光多普勒测速仪。
可以说,在起步阶段我国的激光技术发展迅速,无论是数量还是质量,都和当时国际水平接近,一项创新性技术能够如此迅速赶上世界先进行列,在我国近代科技发展史上并不多见。这些成绩的取得,尤其是能够把物理设想、技术方案顺利地转化成实际激光器件,主要得力于光机所多年来在技术光学、精密机械和电子技术方面积累的综合能力和坚实基础。一项新技术的开发,没有足够的技术支撑是很难形成气候的。
从1961年中国第一台激光器宣布研制成功至今,在全国激光科研、教学、生产和使用单位共 同努力下,我国形成了门类齐全、水平先进、应用广泛的激光科技领域,并在产业化上取得可喜进步,为我国科学技术、国民经济和国防建设作出了积极贡献,在国际上了也争得了一席之地。
❼ 激光,是哪个国家发明的
激光,以前叫雷塞,镭射,大概是德国人发明的。德国人很多现代发版明:电视。三级火箭,原子弹权也是由纳粹德国最先研发的。二战德国战败,美国缴获了相关技术与一大批研发人员。
现在的宇航卫星发射,以及洲际导弹,都依赖三级火箭技术。
❽ 问一下激光发明与发展历史
1953年,美国物理学家查尔斯·哈德·汤斯和他的学生阿瑟·肖洛制成了第一台内微波量子放大容器,获得了高度相干的微波束。
1958年,C.H.汤斯和A.L.肖洛把微波量子放大器原理推广应用到光频范围。
1960年,T.H.西奥多·梅曼制成了第一台红宝石激光器。
1961年,伊朗科学家A.贾文等人制成了氦氖激光器。
1962年,R.N.霍耳等人创制了砷化镓半导体激光器。
2013年,南非科学与工业研究委员会国家激光中心研究人员开发出世界首个数字激光器,开辟了激光应用的新前景。研究成果发表在2013年8月2日英国《自然通讯》杂志上。
❾ 激光是谁发明的
激光(LASER)是受激而发射的光,是“光受激辐射放大”的简称,它的含义是通过辐射的回受激发射而实现答光的放大(Light
Amplification
by
Stimulated
Emission
of
Radiation).产生激光的器件叫做激光器,激光是一种强烈的、集中的、高度平行的相干光束.激光(1960年由美国人Maiman发明)、晶体管(1948年由Bardeen和Brattain发明)与原子能反应堆(1942年由意大利人Fermi发明)被人们视为20世纪最重要的三大技术发明,对现代科学技术的发展产生了深远影响.
❿ 激光是怎么发明出来的
发现激光的第一人是美国的物理学家梅曼。
当时的梅曼还是一个名不见经传的年轻人。他早年研究过原子、分子光谱,这为他以后试制激光器奠定了良好的理论基础。后来,他又研究红宝石激波激射器,并有了成功的实践。这些都对他日后的成功打下了基础。但他的成功同样离不开他的高尚品格——探索精神和敢于向权威的挑战。
梅曼从1959年8月才转到激光的研究上来,当时美国的无线电物理学家汤斯和肖洛已经研究相关课题近10年,并刚刚在《物理学评论》上发表了著名的文章,认为红宝石不容易实现“受激发射”。与此同时,苏联科学院列别捷夫物理研究所的科学家们也提出了类似的看法。面对国内、国际著名的专家、学者提出的设想与方案,梅曼参与了这场激烈的竞争。
但是梅曼还是给红宝石建立起了解析模型并加以计算,不过计算结果表明,用红宝石作为材料将很难工作。随后梅曼开始试用多种其他材料,但结果都不理想。而后,他又重新转向对红宝石的研究,他希望以红宝石为样品,寻找出相应的材料,这种材料应该具有红宝石一样的优点:结构简单,结实耐用,此外还必须具备量子效应高的条件,因为量子效应低是红宝石作为激光材料的致命缺点。
对红宝石的深入研究很快使梅曼打消了另外再找其他材料的想法。他发现:含铬量合适的红宝石可以成为产生激光的最合适的材料。经过实验证明,以强光照射含铬量0.05%的红宝石,竟使得发光时的效应高达权威们原来试验结果的70倍。幸亏他当初又回过头来研究红宝石,否则激光器的发明又要推迟了。看来,好马也需要吃回头草。梅曼解决了一个划时代的问题,迎来了胜利的曙光。
在成功的喜悦中,梅曼对自己的实验装置作了进一步改善。他把一根长1.90厘米、半径为0.95厘米的红宝石圆柱体两端磨平后镀上银,放在螺旋形氙闪光灯中心,然后逐渐增强氙闪光灯的强度。当红宝石受到强光照射时,突然发射出一束深红色的光,它的亮度达到太阳表面亮度的4倍,这就是激光!
1960年美国研制成功世界上第一台红宝石激光器,我国于1961年研制成第一台红宝石激光器。从此,各种类型的激光器如雨后春笋,纷纷出现。激光与激光器的问世标志着人们掌握和利用光进入了一个新的阶段。从此,激光器的种类不断增多,性能不断完善,应用领域越来越广,在许多领域中激光还成了独领风骚的角色。