① 一元一次方程中的“元”产生于什么年代是哪位数学家发明的原来的意思是什么
一元一次方程中的“元”产生的年代没有明确的记录,据说是康熙皇帝在学习西方数学时专提出的,因属当时没有可以代替“未知数”的代词,因此采用“元”为方程的未知数。
公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题。1859年,数学家李善兰正式将这类等式译为一元一次方程。
(1)数学方程中元次是由谁创造的扩展阅读:
一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。
如果仅使用算术,部分问题解决起来可能异常复杂,难以理解。而一元一次方程模型的建立,将能从实际问题中寻找等量关系,抽象成一元一次方程可解决的数学问题。
② 一元二次方程最先是由谁提出的
巴比伦人发明了60进制的计数系统,掌握了解一元二次方程的方法
③ 求教方程中元和次的概念
数学里“元”是代表未知数的意思,次就是未知数最高有几次方。
一元二次方程:只含内有一个未知数容(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。
二元一次方程:含有两个未知数(二元),并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。所有二元一次方程都可化为ax+by+c=0(a、b≠0)的一般式与ax+by=c(a、b≠0)的标准式,否则不为二元一次方程。
(3)数学方程中元次是由谁创造的扩展阅读:
将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解。
一元二次方程的求根公式在方程的系数为有理数、实数、复数或是任意数域中适用;在使用计算机解一元二次方程时,和人手工计算类似,大部分情况下也是根据求根公式来求解。
④ 一元一次方程概念中的“元”和“次”指什么
“元”和“次”是方程和函数中的术语,“元”是指方程中的未知数的个数,“次”是指未知数的最高指数,一元一次,就是说方程中只有一个未知数,未知数的最高指数为1,比如3x+1=2
⑤ 方程是谁创造的
古代国来人
《后汉书·马严源传》“善《九章筭术》” 唐 李贤 注:“ 刘徽 《九章算术》曰《方田》第一,《粟米》第二,《差分》第三,《少广》第四,《商功》第五,《均输》第六,《盈不足》第七,《方程》第八,《句股》第九。”《九章算术·方程》 白尚恕 注释:“‘方’即方形,‘程’即表达相课的意思,或者是表达式。於某一问题中,如有含若干个相关的数据,将这些相关的数据并肩排列成方形,则称为‘方程’。所谓‘方程’即现今的增广矩阵。”
⑥ 是谁提出的任意次方程的数值解
秦九韶在《数书九章》中除“大衍求一术”外,还创拟了正负开方术,即任意版高次方程权的数值解法,也是中世纪世界数学的最高成就,秦九韶所发明的此项成果比1819年英国人霍纳的同样解法早572年。秦九韶的正负开方术,列算式时,提出“商常为正,实常为负,从常为正,益常为负”的原则,纯用代数加法,给出统一的运算规律,并且扩充到任何高次方程中去。
此外,秦九韶还改进了一次方程组的解法,用互乘对减法消元,与现今的加减消元法完全一致;同时秦九韶又给出了筹算的草式,可使它扩充到一般线性方程中的解法。秦九韶还创用了“三斜求积术”等,给出了已知三角形三边求三角形面积公式,与海伦公式完全一致。
⑦ 一元一次方程发明者是谁
一元一次方程式
--- 方程式的由来
十六世纪,随著各种数学符号的相继出现,特别是法国数学家韦达创
立了较系统的表示未知量和已知量的符号以后,"含有未知数的等式"
这一专门概念出现了,当时拉丁语称它为"aequatio",英文为"equation".
十七世纪前后,欧洲代数首次传进中国,当时译"equation"为"相等式.
由於那时我国古代文化的势力还较强,西方近代科学文化未能及时
在我国广泛传播和产生较的影响,因此"代数学"连同"相等式"等这
些学科或概念都只是在极少数人中学习和研究.
十九世纪中叶,近代西方数学再次传入我国.1859年,李善兰和英国
传教士伟烈亚力,将英国数学家德.摩尔根的<代数初步>译出. 李.伟
两人很注重数学名词的正确翻译,他们借用或创设了近四百个数
学的汉译名词,许多至今一直沿用.其中,"equation"的译名就是借
用了我国古代的"方程"一词.这样,"方程"一词首次意为"含有未知
数的等式.
1873年,我国近代早期的又一个西方科学的传播者华蘅芳,与英国传
教士兰雅合译英国渥里斯的<代数学>,他们则把"equation"译为"方程
式",他们的意思是,"方程"与"方程式"应该区别开来,方程仍指<九章
算术>中的意思,而方程式是指"今有未知数的等式".华.傅的主张在
很长时间裏被广泛采纳.直到1934年,中国数学学会对名词进行一审
查,确定"方程"与"方程式"两者意义相通.在广义上,它们是指一元n次
方程以及由几个方程联立起来的方程组.狭义则专指一元n次方程.
既然"方程"与"方程式"同义,那麼"方程"就显得更为简洁明了了.
(本文摘自九章出版社之"数学诞生的故事")