㈠ 科学家创新发明的例子
有以下例子:
1、爱迪生发明电灯。
1878年,爱迪生开始白炽灯的研究,在十几个月中经过多次失败后,于1879年10月21日成功地点亮了白炽炭丝灯,稳定地点亮了两整天。1882年,在纽约珍珠街创办世界第二座公用火电厂,建立起纽约市区电灯照明系统,成为现代电力系统的雏形。
电照明的实现,不仅仅大大改善了人们生产劳动的条件,也预示着日常生活电气化时代即将到来。1883年,爱迪生在试验真空灯泡时,意外地发现冷、热电极间有电流透过。这种现象之后称为爱迪生效应,成为电子管和电子工业的基础。
2、张衡发明浑天仪。
东汉杰出科学家张衡,在任太史令时,专心研究天文历算。在当时,有种比较先进的天文学说叫浑天说,认为天是浑圆的,像一枚禽卵,天像卵壳,地像卵黄,在天的中间,日月星辰在“卵壳”上不停转动。张衡认为这样的结论不完善。
于是他天天观测天象,积累了大量恒星运动的资料并对恒星运动的规律进行了分析研究,制成了浑天仪,继承和发展了前人的浑天说。浑天仪用铜制成,主体是一个球体模型,上刻着恒心、南极、北极、经度、黄道、赤道。仪器上表现的情况同天空中星象出没完全相符。所以取得如此成就,完全由于张衡坚持观测天象的结果。
3、亚历山德罗•伏特发明电池。
伏特虽然没有发现电,但是他却想出了一个可将电携带的好点子。要知道“伏特电池”可是现代电池的先驱。
伏特一生职业都在搞电的东西。早期他发明了起电盘(即一次充电单板电容),一年之后致力于封闭室燃气点火发电实验,在此过程中他发现了沼气(甲烷),即今天家庭普遍使用的一种气体。
然而真正使其出名的却是“伏特电池”,其实就是一堆锌片和铜片交互排列,再加上两种金属片之间为增强导电性而浸了盐水的布料而已。但就是这种粗陋的电池向世界展示了如何利用金属-化学组合生电的奥秘。
4、尼古拉•特斯拉发明无线电。
虽然尼古拉•特斯拉生前没有因此得到认可,但美国联邦最高法院最终还是肯定了他的专利申请,确认是他而不是马可尼发明了无线电。
特斯拉也许就是为标新立异而生的。虽然他发明的一种称做“交流电”的输电方法应用至今,其实他研究的焦点集中于电的理论应用(遗憾的是许多研究成果仍停留在绘图板上)。就是这个总是自己制作实验设备(比如用来聚集电能的著名的特斯拉线圈)的特斯拉,提出了范围涉及从X射线到地震仪的一系列观点。
5、莱昂纳多•达•芬奇发明计算器。
提到达•芬奇和他的发明时,你最好问这样的问题:“什么东西不是他发明的?”因为他发明的东西实在太多了。达•芬奇的工作日志里绘有许多东西的设计图,但其中最值得一提的就是计算器的设计。试想如果缺少简单的复杂的数学运算,那科学将会是什么样子。
达•芬奇堪称文艺复兴开山鼻祖,他能画(比如杰作《蒙娜丽莎》),能雕塑,也能发明。他那至今令全世界着迷的日记,描绘勾勒了从人体到直升机和坦克的很多事物。
㈡ 20世纪的伟大发明,并说出谁发明的和怎么发明的
二十世纪影响人类的重大发明
蒸汽机:推动了整个工业革命的发展
传统的马力或者水力无法提供工业革命所需的动力,蒸汽机能量的开发为世界带来了一种更有效更强大的动力。虽说古人在公元前2世纪就已经开始这方面的探索,但直到瓦特的蒸汽机面市后,才真正开启了蒸汽机的商业价值。许多历史学家认为,蒸汽机的开发是工业革命最重要的发明之一,因为蒸汽机的出现带动了冶金、煤矿和纺织业的发展。蒸汽机的出现及纺织业的机械化,提高了工业的用铁量。由于英国拥有丰富的铁矿和煤矿,需求量的增加刺激了冶铁技术和煤矿业的改进,同时加快了工业化的步伐。1804年出现的蒸汽机火车和1807年出现的蒸汽机轮船大大改善了运输条件,辅助了工业革命的发展。
电话:掀开人类通讯史的新篇章
“沃森先生,请立即过来,我需要帮助!”这是1876年3月10日电话发明人亚历山大·贝尔通过电话成功传出的第一句话,电话从此诞生了,人类通讯史从此掀开了一个全新的篇章。
人类进行无线通讯的梦想则是1973年在美国纽约实现的。当时,这台世界上第一个实用手机体积大,重达1.9 公斤,是名副其实的“大哥大”。26年后的今天,世界最小的手机也诞生了,它只有寻呼机那么大,也比第一代手机轻了不少。
1964年是人类通讯史上另一个重要转折点,这年夏天,全世界成千上万的观众通过电视第一次收看由卫星转播的日本东京奥林匹克运动会实况。这是人类有史以来第一次通过电视屏幕同时间观看千里之外发生的事,人们除了感叹奥运精彩壮观的开幕式和各种比赛外,更惊叹于科技的进步。这一切都归功于哈罗德·罗森发明的地球同步卫星。
1969年夏天,国际互联网的雏形在美国出现,它由四个电脑网站组成,一个在加州大学分校,另三个在内华达州。1972年,实验人员首次在实验网络上发出第一封电子邮件,这标志着国际互联网开始与通讯相结合。到了90年代,国际互联网开始转为商业用途。1995年网络发展到第一个高潮,这一年被称为国际互联网年。在电子商业浪潮的推动下,国际互联网在21世纪对人类社会的影响将更加深远。
汽车:载着时代向前奔驶
汽车改变了人类的整个交通状况,拥有汽车工业成了每一个强大工业国家的标志。
汽车走过这样一段历史:1771年,法国人居纽设计出蒸汽机三轮车;1860年,法国人雷诺制造出了以煤炭瓦斯为燃料的汽车发动机;1885年,德国人本茨和戴姆勒各自完成了装有高速汽油发动机的机车和装有二冲程汽油发动机的三轮汽车,并且成功企业化;1908年,美国人福特采用流水式生产线大量生产价格低、安全性能高、速度快的T型汽车。汽车的大众化由此开始;1912年,凯迪拉克公司推出电子打火启动车,使妇女也开始爱上汽车;1926年,世界第一家汽车制造公司戴姆勒·本茨公司成立;1934年,第一辆前轮驱动汽车面世;1940年,大战令许多汽车制造商停产,欧洲车商开始转向生产军用车辆;50年代,德国沃尔沃的甲壳车轿车一经推出就成为最受欢迎的汽车;1970年到2000 年,日本车在亚洲走俏,丰田、本田、三菱以及日产特高技术小型车入侵欧美市场,改写了欧美牌子垄断的局面。
实际上,汽车的发明使人类的机动性有了极大的提高,使20世纪人类的视野更加开阔,更追求自由。当然,汽车工业的发展也带来了道路网挤占土地资源、大气污染和高昂的车费等问题,但不管怎么说,汽车确实载着人类向前发展,向前奔驶。
电视:人类自己创造的“魔鬼”
现代人可以一天不吃饭,不喝水,但不能一天没有电视。
电视的设想和理论早在1870年就出现过。1884年,德国发明家保罗?尼普科夫设计了全个穿孔的“扫描圆盘 ”,当圆盘转动的时候,小孔把景物碎分成小点,这些小点随即转换成电信号,另一端的接收机把信号重组成与原来图像相同但粗糙的影像。1926年,苏格兰人约翰·贝蒙德采用尼普科夫的“大圆盘”制造了影像机。
真正制造出画面稳定的电视是从俄罗斯移民到美国的拉基米尔·佐里金和出生在美国犹它州的菲洛·法恩斯沃思。在 1939年的世界博览会上,世界第一台真正清晰的电视开播,电视真正诞生了。
登月:人类航天史上迈出一大步
美国宇航员阿姆斯特朗登上月球刹那所说的名言“对个人来说,这只是一小步;对人类来说,这是迈出一大步”牢牢铭记在地球人的心上。
1969年7月20日下午4时,全世界5亿电视观众都看到了“黑黝黝”的画面,画面深处传来一个来自外太空的声音:“休斯顿,这里是静海基地,鹰舱已经登陆!”接下来,美国“阿波罗11号”登月宇宙飞船上的两名宇航员阿姆斯特朗和奥尔德林问休斯顿宇航中心:“我们不想休息四小时,我们想马上登月。”休斯顿回答:“同意立即登月!”接着,阿姆斯特朗背朝外,开始从九级梯子缓缓爬下。全世界5亿人都看到了这一场景。
登月确确实实是人类航天科技的一大进步,因为正如最后一名登月者塞尔南上校所说的:“在月球遥望地球,我看不到任何国界,我觉得地球就是一个整体,我的整个思想也就开阔了。”
电脑:人类未来的希望
1946年2月4日,美国军方和政府部门的代表、著名的科学家一起挤在宾夕法尼亚大学的一个房间里。当一位陆军将军轻轻按下电钮后,占满整整三堵墙的机器立即亮了起来,人们热烈鼓掌,高声欢呼:“ENIAC活了!”并且向总工程师埃科特祝贺。“ENIAC”就是世界上第一台电脑。
基因:破解生命的千古密码
10多年前,科学界就预言说,21世纪是一个基因工程世纪。人类基因工程走过的主要历程怎样呢?1866年,奥地利遗传学家孟德尔神父发现生物的遗传基因规律;1868年,瑞士生物学家弗里德里希发现细胞核内存有酸性和蛋白质两个部分。酸性部分就是后来的所谓的DNA;1882年,德国胚胎学家瓦尔特弗莱明在研究蝾螈细胞时发现细胞核内的包含有大量的分裂的线状物体,也就是后来的染色体;1944年,美国科研人员证明DNA是大多数有机体的遗传原料,而不是蛋白质;1953年,美国生化学家华森和英国物理学家克里克宣布他们发现了DNA的双螺旋结果,奠下了基因工程的基础;1980年,第一只经过基因改造的老鼠诞生;1996年,第一只克隆羊诞生;1999年,美国科学家破解了人类第 22组基因排序列图;未来的计划是可以根据基因图有针对性地对有关病症下药
㈢ 电炮的发展史
早在1845年,CharsWheastone建造了世界第一台直线磁阻电动机,并用其将金属棒抛射到20m远的地方。1895年Mayor获得第一个直线感应电动机专利。此后,德国科学家柯比提出用“电磁推进”制造“电气炮”的想法。但第一个提出电磁炮概念并进行实验的是挪威Oslo大学物理学教授Birkeland,他在1901年获得了“电火炮专利”,并使用直流激励管状直线电动机的系列线圈,把500g重的弹丸加速到50m/s;这个实验模型后来展示在Oslo的科学博物馆内。1912年,法国的EmileBachelet建造了一个交流激励的磁推进装置,在1914年展出时,曾引起英国首相丘吉尔的兴趣。1917年,另一位法国发明者提出利用磁场力发射有翼炮弹的设想。1920年,法国的Fauchon-Villeplee发表了《电气火炮》一文。几乎与此同时,美国费城的电炮公司研制了用于火炮的电磁加速器。1937年,美国的航空公司创始人Northrup教授以“AbkadPsendoman”为笔名在《0到80》一书中提及了电磁发射原理。此后,美国普林斯顿大学试试用电磁力发射了载体。直到二战爆发前,各种电炮的专利已达45项之多。战争期间,德国,日本都曾研制过电磁炮。1944年德国的Hansler曾将10g弹丸加速到1.2km/s。1946年美国的威斯汀豪斯电气公司建成一个全尺寸的飞机弹射装置,名叫“电拖(Electopult)”。它是一个初级运动的直线感应电动机。尔后,美国海军和空军也做了一些研究工作。但是空军的科学研究所经过反复论证,于1957年得出“电磁炮根本行不通”的结论,把电磁炮打入冷宫。在此影响下,电磁炮研究一度陷入低潮。可是,那时期澳大利亚和其他一些科学家却持不同看法,在60年代仍孜孜不倦地研究,并取得了一定的进展。例如,澳大利亚国立大学的Marshall及其同事在改进大电流滑动接触技术方面,提出了“等离子体电弧电枢”概念。美国的Brast和Sawle首先利用等离子体电枢把31mg的弹丸加速到6km/s。他们拨亮了即将熄灭的电磁炮研究之“火”。1966年,美国内华达州大学的Winterberg教授提出用磁行波加速超导体的概念。1967年,苏联的鲍恩达列托夫用1cm长的单级脉冲感应线圈炮把2g铝环加速到5km/s。1972年,NASA提出电刷换向的螺旋线圈炮;而麻省理工则研制出第一台类似同步直线电动机的线圈炮。基于上述的工作成就和脉冲功率技术学科的发展,使电磁炮技术在70年代有了重大突破。1978年澳大利亚国立大学的马歇尔等公布了其研究成果:用550MJ单机发电机和等离子体电枢,在5m长的导轨炮上把3g聚碳酸酯弹丸加速到了5.9km/s的初速。这一重大成就,从实验上证明了用电磁力可将较重的弹丸推进到高速的可能性,为电磁炮的发展作出了开拓性的贡献。从此,电磁炮的研制工作开始迈入了新阶段。马歇尔等人的划时代性成就,使世界各国的科学家受到极大鼓舞和启发,同时引起各国军方的浓厚兴趣,于是纷纷投入大量财力人力对电磁炮进行研究,并建立了不少电磁炮实验室。美国、前苏联、澳大利亚、英国、法国、中国、日本等十几个国家,目前美国处于领先地位。1978年,为了评估电磁炮技术及其应用潜力,在美国陆军装备研究发展中心的倡议下,成立了有关电磁炮研究的国家咨询委员会和技术学部。国防高级研究计划所(DARPA)成为各大学和公司电磁炮研究的主要支持者 电热炮的研制早在1945年始于德国,设计者O.Muck,他是实际研制电热炮的第一人,他在此之前曾从事线圈炮和导轨炮的研制工作。1956年,美国通用动力公司的Yoler设计出一种多级加速结构的电热炮,可不断加速膛内弹丸。同年,一位名叫Bloxsom的人设计出另一种电热炮,并申请了专利和发表了论文,他采用电弧加热氦气的方案,把直径3mm的尼龙环加速到2.99km/s。1960年,美国国防部发表了《电弧炮的研究报告》,并且由空军导弹局组织实施研制;在这种炮的药室内装有充作“发射药”的氢化锂,用已充电的电容器组向药室放电,结果把10mg的尼龙弹丸加速到4.9km/s。尽管以上的工作曾为电热炮的发展和研制工作作出了一定的贡献,但是由于当时的脉冲功率技术和其他相关学科水平的限制,以及人们急功近利地偏爱导轨炮,总希望完全脱离化学火炮的工作模式,从而冷落了电热炮的研究。直到前苏联、美国、前西德和以色列等在研究导轨炮和线圈炮的同时,从对比中发现了电热炮的实用性。此后,人们再次对电热炮热衷起来,并在技术上有了重大突破,使电热炮的发展在80年代得到转机。当初苏联曾在其FST-2坦克上实验了135mm口径的电热炮,据称初速已经达到2.5km/s,有可能在90年代电热炮先于导轨炮或线圈炮装备在类似FST坦克上。
美国当然也不甘落后,对电热炮的研制加快了步伐。有代表性的研制单位是通用动力公司和食品机械(FMC)公司,它们于军方签订合同研制一种间热式电热炮,称作燃烧增强等离子体(CAP)炮,实际上是一种电热化学(ETC)炮。CAP炮用放电产生的高压、高温等离子体加热、离解焓能较高的工作流体,从而提高“发射药”的能级。此外,美国与以色列合作研制另一类间热式电热炮——固体推进剂电热化学炮,即固体工质CAP炮 ,这种炮是借助高温等离子体加热固体发射药以提高能量水平的,他们在60mm炮上装M30粒状发射药进行电加热实验,炮口动能提高了25%;1989年,美国通用动力公司在绿色农场(Green Farm)试验场上首次进行了电热炮的实弹射击实验,并把电热炮列入美国国防部关键技术技术计划中。该计划准备于1995财年制造和使用155mm的电热炮,直接作为战术武器,供陆军作为延伸射程的反装甲武器,对付敌人的下一代坦克;海军把它装在水面舰艇上,用以拦截和摧毁15km以外的现有和未来的导弹武器系统;空军把电热炮用于诸如A10等近距离的空中支援飞机上,以毁伤地面远至5km的装甲车。据英国《海上防务》(1993年7~8月)报道,美国FMC公司海军系统分部5月份成功地在火炮试验场进行了电热—化学炮速射演示。以色列的核研究机构早已在研究电热炮。他们在现有常规火炮的炮闩和炮管的内壁涂上一层绝缘材料(如聚四氟乙烯等),用已充电的电容器向炮管放电,在弹丸后面形成聚四氟乙烯材料的高温等离子体,同时向弹丸后的炮管注入石蜡和水,用等离子体加热这些物质以产生氢,氢气同时被等离子体加热而膨胀,进而推动弹丸前进。目前,这种特殊的电炮,已经能把弹丸加速到4km/s(1995年)
中国科学院合肥等离子体物理研究所,1988年研制了一台等离子体箍缩型电热炮,作为该所导轨炮的前级注入炮使用。此电热炮系用大电流加热后膛的铝箔,使其电爆炸产生等离子体,借助等离子体的箍缩效应,把30g的弹丸加速到570m/s;当在后膛再填加800mg速燃火药时,将50g弹丸加速到700m/s。。中国工程物理研究院流体物理研究所1991年制作了一门液体工质间热式电热炮,即液体工质的CAP炮,炮口径为23mm,已把20g弹丸加速到1850m/s;这门CAP炮的工作流体是过氧化氢等轻工质,用塑料袋封装后置入燃烧室的,电源为充电的电容器组。
㈣ 谁发明了什么
爱迪生抄发明电灯
华佗发明麻沸散
伦琴发现X射线
贝克勒耳发现自发放射性
瑞利发现氩
达伦发明航标灯自动调节器
劳伦斯发明回旋加速器
格拉泽发明气泡室
卡皮察发明并应用氦的液化器
鲁斯卡发明电子透镜研制成世界第一台电子显微镜
鲁斑-锔子
诸葛亮-诸葛弩
法拉第-发电机
瓦特-蒸汽机
瓦特发明了蒸汽机
蔡伦发明了纸
张衡发明了地动仪
贝尔发明了电话
㈤ 范德格拉夫静电加速器
产生静电高压的装置。又称范德格拉夫加速器,是美国
物理学家R.J.范德格拉夫在1931年发明的。结构如图,空心
金属圆球A放在绝缘圆柱 C 上,圆柱内B为由电动机带动上下
运动的丝带(绝缘传送带),金属针尖 E 与数万伏的直流电
源相接,电源另一端接地,由于针尖的放电作用,电荷将不
断地被喷送到传送带B上。另一金属针尖F与导体球 A 的内表
面相联。当带电的传送带转动到针尖 F 附近时,由于静电感
应和电晕放电作用,传送带上的电荷转移到针尖 F 上,进而
移至导体球A的外表面,使导体球A带电。随着传送带不断运
转,A球上的电量越来越多,电势也不断增加。通常半径为1
米的金属球可产生约 1 兆伏(对地)的高电压。为了减少大
气中的漏电,提高电压,减小体积,可将整个装置放在充有
10~20个大气压的氮气的钢罐之中。
产生正极性电的范德格拉夫起电机可用作正离子的加速
电源,产生负极性电的则可用于高穿透性的 X 射线发生器中。
㈥ 谈谈加速器发明的意义以及对人类社会的作用
在探究微观粒子性质的过程中,加速器是产生和研究各种形形色色粒子的最好工具.早在20世纪30年代,劳伦斯(E.Lawrence,1901~1958)就发明了回旋加速器;我国在1988年建成了北京正负电子对撞机.欧洲核子研究中心的正负电子对撞机是当今世界上能量最高的对撞机,其能量为100GeV,主加速器周长为27 km,目前正在建造的大型强子(质子-质子)对撞机能量高达16 TeV.
高能加速器的建造得益于科学技术的发展,如高真空技术、超导技术、计算机技术等.加速器在帮助人们进一步探索微观粒子世界奥秘的同时,在人们的生产、生活中也有着重要的作用.20世纪40年代.电子加速器开始用于癌症的治疗.粒子加速器还用于工业探伤、食品的防腐与保鲜、复合材料的生产以及医疗用品消毒等.
㈦ 回旋加速器是如何发明的
粒子物理学的诞生揭开了物理学发展史中崭新的一页,它不但标志了人类对物质结构的认识进入了更深的一个层次,而且还意味着人类开始以更积极的方式变革自然、探索自然、开发自然和更充分地利用大自然的潜力。
各种加速器的发明对粒子物理学的发展起了很大的促进作用,美国物理学家劳伦斯(E.Lawrence)顺应这一形势,走在时代的前列。他以天才的设计思想、惊人的毅力和高超的组织才能,为加速器的发展作出了重大贡献。
劳伦斯1901年出生于美国南达科他州南部的坎顿,父母都是教师,早年就对科学有浓厚兴趣,喜欢做无线电通讯实验,在活动中表现出非凡的才能。他聪慧博学,善于思考,原想学医,却于1922年以化学学士学位毕业于南达科他大学,后转明尼苏达大学当研究生。导师斯旺对劳伦斯有很深影响,使他对电磁场理论进行了深入的学习。
劳伦斯在耶鲁大学继续研究两年之后,于1927年当了助理教授。1928年转到伯克利加州大学任副教授。两年后晋升,是最年轻的教授。在这里他一直工作到晚年,使伯克利加州大学由一所新学校成为粒子物理的研究基地。
1928年前后,人们纷纷在寻找加速粒子的方法。当时实验室中用于加速粒子的主要设备是变压器、整流器、冲击发生器、静电发生器和特斯拉线圈,等等。这些方法全都要靠高电压。可是电压越高,对绝缘的要求也越高,否则仪器就会被击穿。正当劳伦斯苦思解决方案之际,一篇文献引起了他的注意,使他领悟到用一种巧妙的方法来解决这个矛盾。他后来在诺贝尔物理学奖的领奖演说中讲到:
“1929年初的一个晚上,当我正在大学图书馆浏览期刊时,我无意中发现在一本德文电气工程杂志上有一篇维德罗的论文,讨论正离子的多级加速问题。我读德文不太容易,只是看看插图和仪器照片。从文章中列出的各项数据,我就明确了他处理这个问题的一般方法……在连成一条线的圆柱形电极上加一适当的无线电频率振荡电压,以使正离子得到多次加速。这一新思想立即使我感到找着了真正的答案,解答了我一直在寻找的加速正离子的技术问题。我没有更进一步地阅读这篇文章,就停下来估算把质子加速到一百万电子伏的直线加速器一般特性该是怎样的。简单的计算表明,加速器的管道要好几米长,这样的长度在当时作为实验室之用已是过于庞大了。于是我就问自己这样的问题:不用直线上那许多圆柱形电极,可不可以靠适当的磁场装置,只用两个电极,让正离子一次一次地来往于两电极之间?再稍加分析,证明均匀磁场恰好有合适的特性,在磁场中转圈的离子,其角速度与能量无关。这样它们就可以以某一频率与一振荡电场谐振,在适当的空心电极之间来回转圈。这个频率后来叫做‘回旋频率’。”
劳伦斯不仅提出了切实可行的方案,更重要的是以不懈的努力实现了自己的方案。
1930年春,劳伦斯让他的一名研究生爱德勒夫森(N.Edleson)做了两个结构简陋的回旋加速器模型。真空室的直径大约只有10厘米。其中的一个还真的显示了能工作的迹象。随后,劳伦斯又让另一名研究生利文斯顿(M.S.Livingston)用黄铜和封蜡作真空室,直径也只有11.43厘米,但这个“小玩意”已具有正式回旋加速器的一切主要特征。1931年1月2日,在这微型回旋加速器上加不到1 000伏的电压,可使质子加速到80 000电子伏,也就是说,不到1 000伏的电压达到了8万伏的加速效果。
1932年,劳伦斯又做了22.86厘米和27.94厘米的同类仪器,可把质子加速到1.25兆电子伏(MeV)。正好这时,英国卡文迪什实验室的科克饶夫(J.D.Cockcroft)和瓦尔顿(E.T.S.Walton)用高压倍加器做出了锂(Li)蜕变实验。消息传来,人心振奋,劳伦斯看到了加速器的光明前景,更加紧工作。不久他就用27.94厘米回旋加速器轻而易举地实现了锂蜕变实验,验证了科克饶夫和瓦尔顿的结果。这次实验的成功,显示了回旋加速器的优越性,使科学界认识到它的意义,同时也大大增强了劳伦斯等人对工作的信心。
于是他和利文斯顿以更大的规模设计了一台D形电极、直径为68.58厘米的机器,准备把质子加速到5MeV能量。这时氘已经被尤里(Urey)发现了,劳伦斯可以用氘核作为轰击粒子,以获得更佳效果。因为氘核是由一个质子和一个中子组成的复合核,氘核在静电场作用下有可能解体,变成质子和中子。而中子的穿透能力特别强,这样就可以利用回旋加速器产生许多重要的人工核反应。
68.58厘米回旋加速器的运行带来了丰硕成果。许多放射性同位素陆续在伯克利发现。伯克利加州大学成了核物理的研究中心,他们把生产出来的放射性同位素提供给医生、生物化学家、农业和工程科学家,广泛应用在医疗、生物、农业等领域。
1936年,在劳伦斯主持下,他们将68.58厘米回旋加速器改装成93.98厘米的,使粒子能量达到6MeV。用它测量了中子的磁矩,并且产生出了第一个人造元素——锝(Tc)。
为了表彰劳伦斯发明的回旋加速器的功绩,1939年诺贝尔物理学奖授给了劳伦斯。
然而,劳伦斯仍不愿加速器停留在这个水平。他认为,在这个水平上工作,还远不足以发现微观世界的奥秘。所以新的一代回旋加速器又在设计之中。
一台大型的回旋加速器,从设计、制作、安装、调试直到进行各项实验活动,都需要各种人才的分工协作、互相配合。劳伦斯在诺贝尔奖颁奖会上的演说词中讲到:“从工作一开始就要靠许多实验室的众多能干而积极的合作者的集体努力”,“各方面的人才都参加到这项工作中来,不论从哪个方面来衡量,取得的成功都依赖于密切和有效的合作。”
1958年劳伦斯因病去世,终年57岁。为了纪念他,伯克利加州大学辐射实验室改名为劳伦斯辐射实验室。他的一生为回旋加速器奋斗不息,虽然他自己没有直接做出科学发现或者创立科学理论,但是在他的领导和培养下或者在跟他协作的过程中,许多人做出了重大贡献。在他的实验室里,先后有8人获得诺贝尔奖。由于加速器的应用,物理学进入了一个新阶段,“大科学”从此开始了。
核乳胶的发1950年诺贝尔物理学奖授予英国布里斯托尔大学的鲍威尔(C.F.Powell),表彰他发展了研究核过程的光学方法,和他用这一方法做出的有关介子的发现。
所谓研究核过程的光学方法,指的是运用特制的照相乳胶记录核反应和粒子径迹的方法,这种特制的乳胶就叫做核乳胶。
鲍威尔1903年12月5日生于英格兰肯特(Kent)的汤布里奇(Tonbridge)。他父亲是一位枪炮制造商,长期从事这方面的贸易。他的祖父曾创建一所私立学校。家庭的影响使他从小就有崇尚实践和重视学术的素养。他11岁时就在当地的学校取得了奖学金,后来又在社会上赢得了公开奖学金到剑桥大学的西尼·塞索克斯(Sidney Sussex)学院学习。1924~1925年以头等成绩通过了自然科学学位考试,1925年毕业。1925~1927年鲍威尔作为卢瑟福和C.T.R.威尔逊的研究生在卡文迪什实验室做研究工作,1927年获博士学位。他的第一项研究是与云室有关的凝聚现象,其结果间接地解释了经喷嘴的蒸汽会产生高度电离这一反常现象。他证明了这是由于在快速膨胀的蒸汽中存在过饱和现象。他的结论关系到蒸汽涡轮机的设计和运转。1928年鲍威尔去布里斯托尔大学威尔斯物理实验室工作,当丁铎尔(A.M.Tyndall)的助手,后来晋升为讲师。1936年他参加地震考察队访问西印度群岛,研究火山活动。第二年回以布里斯托尔,1948年升任教授。他在这里长年耐心地工作于发展一种测量正离子迁移率的精确技术,从而掌握了大多数普通气体中的离子特性。在旅居加勒比海之后,他又回过来从事建造一台用于加速质子和氘核的科克饶夫高压加速器,把加速器与威尔逊云室结合起来,可以研究中子-质子散射。1938年他在从事宇宙射线实验中采用各种照相乳胶直接记录粒子的径迹。当科克饶夫高压加速器开始运转时,鲍威尔用同样的方法观测反冲质子的径迹,测量中子的能量,他和合作者发现乳胶中带电粒子的径迹长度可以对带电粒子的射程给出精确的计量,不久就明确这一方法在核物理实验中有非常大的好处。这一发现把他引向研究高能氘核束所产生的散射和蜕变过程。
后来鲍威尔又回过来从事宇宙射线的研究并研制出了灵敏度更高的照相乳胶。1947年他和奥恰利尼在海拔3 000米的山顶上,用这种新乳胶直接记录宇宙射线的辐射,并通过分析乳胶中射线的径迹,证实了π±介子的存在,并且观测到了π介子衰变成μ介子和中微子的过程。1949年鲍威尔又用这种方法发现了K介子的衰变方式。
鲍威尔所用的照相法是基于这样的原理:带电粒子穿过照相乳胶时,所经之处溴化银颗粒会被带电粒子电离,因而留下轨迹;一系列变黑的颗粒以一定间隔分布,其距离视粒子速率而定;粒子速率越大,则间距也越大。这是因为快速粒子比慢速粒子具有更小的电离能力。
这一方法其实并不新颖,早在20世纪初期就已用做显示放射性辐射的手段。因为要在核过程的研究中运用这一方法,首先需要有一种对各种带电粒子特别是快速粒子都很灵敏的乳胶。在30年代初期,这个问题似乎已经接近于解决,因为有人发现,可以用敏化乳胶片的办法使之能对快速质子发生作用。不过这一方法用起来很困难,所以未能广泛使用。
不需要事先敏化的乳胶在1935年就由列宁格勒的兹达诺夫和依尔福德(ILFORD)实验室各自独立地生产出来了。但是在核物理研究中,即使到了30年代照相法仍未得到普遍采用,只有在宇宙射线的研究上还有一些人用到这种方法。许多核物理学家对这种方法还持怀疑态度,因为从测量到的径迹长度计算粒子能量往往会得到很分散的结果。大家那个时候更相信的是威尔逊云室。
鲍威尔的功绩就在于驱散了对照相法的怀疑,他使照相法不仅对宇宙射线和结合核现象,而且在研究某些核过程中也能成为非常有效的手段。鲍威尔用新的依尔福德中间色调底片,研究了在核过程研究中照相法的用途和可靠性。从1939年至1945年他和他的合作者一方面做了各种试验,另一方面不断地改进材料的处理方法,研究有关技术,创制分析粒子径迹的光学设备。他们的工作令人信服地证明了:在核物理的研究中,照相法和云室及计数器是同样有效的,有时照相法比云室和计数器更为有效。照相法节省时间,节省材料。例如,用威尔逊云室在20 000张立体照片中可供测量的粒子径迹只有1 600条,而鲍威尔和他的合作者在3平方厘米的照相底片中就找到了3 000条可用的粒子径迹。1946年在他们为改进和发展照相法的努力中作出了重要的一步,这就是他们用到了一种新型的名叫“C2”的乳胶,其特性在各方面都超过了原来的乳胶。粒子的径迹更为清晰,看不到干扰本底,这就大大地提高测量的可靠性。后来还可以用照相法来发现罕见过程,可以在乳胶中掺某种原子以供特殊研究。改进的照相法对宇宙射线的研究就更为有效。乳胶可以连续记录,而威尔逊云室只能记录仪器操作的短暂时间间隙里所通过的粒子和所发生的过程,因而显得十分局限。可见,照相法在这些研究中大大优越于云室法。在法国南部有一个高于海平面2 800米的观测站用到了这种新型乳胶。后来又在高5 500米处进行测量,测量结果在乳胶中找到了大量的孤立粒子径迹,同时也有记录蜕变的分叉,这些分叉就像一颗一颗的星。在乳胶中可以找到分叉数各不相等的“星”,从这些星可以判定,有一些是小质量的粒子闯进了乳胶,打到乳胶中的某些原子核上,引起这些原子核发生蜕变。然而是宇宙射线的什么成分引起了原子核的蜕变?经过深入的研究,他们证明,这一活跃的粒子是介子,其质量比电子大几百倍,带的是负电。有些蜕变还可以观察到慢速介子从原子核里抛出来。1947年鲍威尔和他的合作者报告说,发现了一种介子,在其运动过程中又产生了另一介子。分析初始介子和二次介子的径迹表明有可能存在两类具有不同质量的介子。后来的实验证实了这一理论。初始介子叫做π介子,二次介子叫做μ介子。初步测量表明π介子的质量大于μ介子的质量,而它们的电荷都等于基本电荷。
鲍威尔在进一步的实验中确定π介子的质量是μ介子的1.35倍。这个关系与美国伯克利辐射实验室的研究者们用467.36厘米的回旋加速器所测定的结果——1.33倍符合甚好。他们还确定,π介子的质量比电子大285倍,而μ介子的质量比电子大216倍。两种介子都可带正电,也可带负电。μ介子的寿命约为百万分之一秒,而π介子还要短百倍。π介子是不稳定的,会自发地蜕变为μ介子。负π介子易于和原子核相互作用,所以在乳胶中它们在径迹末端被原子俘获,既可引起轻原子核的蜕变,也可引起重原子核的蜕变。由于鲍威尔用上一种对电子敏感的乳胶,他在1949年证明了μ介子会在其路程的末端蜕变为一个带电的轻粒子和两个以上的中性粒子。接着,鲍威尔又研究了π介子(现在叫做π子),其质量为电子的1 000倍。这一介子是别人发现的,但鲍威尔对之做了更加详尽的探讨。
鲍威尔研究核乳胶的成功使布里斯托尔大学成了核物理研究的重要基地。他在1949年当选为英国皇家学会会员,1950年,也即核乳胶诞生的几年之后就获得了诺贝尔物理学奖。
㈧ 谁发明了什么东西
最佳答案检举 贝尔....电话
爱迪生.....电报机
爱迪生......电灯
爱迪生......留声机
爱迪生.....电影机
瓦特.....蒸汽机
伽利略....温度计
最佳答案检举 爱迪生发明电灯
华佗发明麻沸散
伦琴发现X射线
贝克勒耳发现自发放射性
瑞利发现氩
达伦发明航标灯自动调节器
劳伦斯发明回旋加速器
格拉泽发明气泡室
卡皮察发明并应用氦的液化器
鲁斯卡发明电子透镜研制成世界第一台电子显微镜
鲁斑-锔子
诸葛亮-诸葛弩
法拉第-发电机
瓦特-蒸汽机
瓦特发明了蒸汽机
蔡伦发明了纸
张衡发明了地动仪
贝尔发明了电话
㈨ 谁发明了什么东西
1、袁隆平
袁隆平是杂交水稻研究领域的开创者和带头人,致力于杂交水稻技术的研究、应用与推广,发明“三系法”籼型杂交水稻,成功研究出“两系法”杂交水稻,创建了超级杂交稻技术体系。
并提出并实施“种三产四丰产工程”,运用超级杂交稻的技术成果,出版中、英文专著6部,发表论文60余篇。
2、阿尔弗雷德·贝恩哈德·诺贝尔
1863年10月,诺贝尔获得炸药发爆剂的发明专利权。这项发明人们称之为“诺贝尔引燃器”。1864年,取得硝化甘油炸药发明的专利权。
1865年,他多次实验,反复钻研,研制成了固体韧性燃料,并先后在瑞典、英国和美国取得炸药的专利。1866年,制造出能吸收比本身多三倍的硝化甘油,并且像粘土一样软硬适中的“矽藻土炸药”,这一产品成为以后诺贝尔国际性工业集团的基石。
3、狄塞尔
1892年,狄塞尔终于能够向全世界展示自己的成果——一台实用的柴油动力压燃式发动机。这种发动机功率大,油耗低,可使用劣质燃油,显示出辉煌的发展前景。狄塞尔随即投入到柴油机生产的商业冒险中。
4、塞缪尔·莫尔斯
塞缪尔·莫尔斯(Samuel Finley Breese Morse,1791年4月27日-1872年4月2日),男,是一名享有盛誉的美国画家、电报之父。
1791年4月27日出生在美国马萨诸塞州的查尔斯顿,Morse最初的职业是画家。1839年他发布了他的第一项发明“莫尔斯”码。他的同行发明的电报就是运用“莫尔斯”码来传递信号的,1844年莫尔斯从华盛顿到巴尔的摩拍发人类历史上的第一份电报。
5、托马斯·阿尔瓦·爱迪生
爱迪生是人类历史上第一个利用大量生产原则和电气工程研究的实验室来进行从事发明专利而对世界产生深远影响的人。
他发明的留声机、电影摄影机、电灯对世界有极大影响。他一生的发明共有两千多项,拥有专利一千多项。爱迪生被美国的权威期刊《大西洋月刊》评为影响美国的100位人物第9名。