導航:首頁 > 證書轉讓 > 人類基因組計劃成果

人類基因組計劃成果

發布時間:2022-01-14 05:47:14

⑴ 什麼是人類基因組計劃人類基因組計劃的成果有哪些

一個生物體內所有基因的總和就是基因組。只有破譯了所有基因的秘密,才能從根本上探索生命的本質。科學家們認為,通過測定人類的基因,了解基因的功能,可以為治療和預防癌症、心臟病等疑難疾病提供新的途徑。所以繼原子彈爆炸和阿波羅登月之後,人類又一項宏偉的科學工程——人類基因組計劃,由美國科學家於1985年率先提出,美、英、法、德、日和我國科學家共同參與,於1990年正式啟動。這一計劃耗資30億美元,旨在為30多億個鹼基對構成的人類基因組進行精確測序,繪制一張完整的人類基因圖,並解讀出其中所包含的生命信息,為從基因層面上有效的控制疾病,延緩衰老提供可能。

⑵ 簡述人類基因組計劃的主要內容和意義

主要內容:

HGP的主要任務是人類的DNA測序,遺傳圖譜、物理圖譜、序列圖譜 、基因圖譜,此外還有測序技術、人類基因組序列變異、功能基因組技術、比較基因組學、社會、法律、倫理研究、生物信息學和計算生物學、教育培訓等目的。

意義:

1、HGP對人類疾病基因研究的貢獻

人類疾病相關的基因是人類基因組中結構和功能完整性至關重要的信息。對於單基

2、HGP對醫學的貢獻

基因診斷、基因治療和基於基因組知識的治療、基於基因組信息的疾病預防、疾病易感基因的識別、風險人群生活方式、環境因子的干預。

因病,採用「定位克隆」和「定位候選克隆」的全新思路,導致了亨廷頓舞蹈病、遺傳性結腸癌和乳腺癌等一大批單基因遺傳病致病基因的發現,為這些疾病的基因診斷和基因治療奠定了基礎。

(2)人類基因組計劃成果擴展閱讀:

人類基因組計劃 - 成果

1860至1870年:奧地利學者孟德爾根據豌豆雜交實驗提出遺傳因子概念,並總結出孟德爾遺傳定律。

1909年 :丹麥植物學家和遺傳學家約翰遜首次提出「基因」這一名詞,用以表達孟德爾的遺傳因子概念。

1944年 :3位美國科學家分離出細菌的DNA(脫氧核糖核酸),並發現DNA是攜帶生命遺傳物質的分子。

1953年 :美國人沃森和英國人克里克通過實驗提出了DNA分子的雙螺旋模型。

1969年 :科學家成功分離出第一個基因。

⑶ 人類基因組計劃到目前為止有哪些成果

現代遺傳學家認為,基因是DNA(脫氧核糖核酸)分子上具有遺傳效應的特定核苷酸序列的總稱,是具有遺傳效應的DNA分子片段。基因位於染色體上,並在染色體上呈線性排列。基因不僅可以通過復制把遺傳信息傳遞給下一代,還可以使遺傳信息得到表達。

人類只有一個基因組,大約有5-10萬個基因。人類基因組計劃是美國科學家於1985年率先提出的,旨在闡明人類基因組30億個鹼基對的序列,發現所有人類基因並搞清其在染色體上的位置,破譯人類全部遺傳信息,使人類第一次在分子水平上全面地認識自我。計劃於1990年正式啟動,這一價值30億美元的計劃的目標是,為30億個鹼基對構成的人類基因組精確測序,從而最終弄清楚每種基因製造的蛋白質及其作用。
人類基因組計劃(Human Genome Project,HGP)於1990年正式啟動,其主要目標有:識別人類DNA中所有基因(超過10萬個);測定組成人類DNA的30億鹼基對的序列;將這些信息儲存到資料庫中;開發出有關數據分析工具;致力於解決該計劃可能引發的倫理、法律和社會問題。

經過多國科學家的共同努力,1999年11月23日,美國國家科學院的官員和參加人類基因組計劃的科學家們慶祝人類基因組計劃公眾DNA測序工作完成第10億個鹼基對的測定。12月1日,一個由英、美、日等國科學家組成的研究小組宣布,他們已經破譯了人類第22對染色體中所有(545個)與蛋白質合成有關的基因序列,這是人類首次了解了一條完整的人類染色體的結構,它可能使人們找到多種治療疾病的新方法。

研究顯示,第22對染色體與免疫系統、先天性心臟病、精神分裂、智力遲鈍和白血病以及多種癌症相關。完成對第22對染色體的測定將對這些疾病的早期診斷和治療起到幫助作用。這一成果是宏大的人類基因組計劃的一個里程碑。

我國在1993年啟動了相關研究項目,近兩年又在上海和北京相繼成立了國家人類基因組南、北兩個中心。1 999年7月,我國在國際人類基因組注冊,承擔了其中1%的測序任務,此舉標志著我國已掌握生命科學領域中最前沿的大片段基因組測序技術,在結構基因組學中佔了一席之地。

人類基因組計劃是當代生命科學一項偉大的科學工程,它奠定了21世紀生命科學發展和現代醫葯生物技術產業化的基礎。原計劃用15年時間即到2005年完成30億鹼基對全部序列測定,但由於它在科學上的巨大意義和商業上的巨大價值,使得這一計劃完成時間一再前提。1998年對原計劃進行了修改,准備提前兩年即2003年3月完成測序工作。有關人士認為,從商界介入人類基因組力度看,估計完成時間還會再提前。(

⑷ 科學家研究人類基因組計劃主要採用什麼研究方法研究成果有什麼意義

sanger測序方法啊,意義就是對醫學方面有很大的好處了。

⑸ 人類基因組計劃的主要實例

人類基因組研究的一個關鍵應用是通過位置克隆尋找未知生物化學功能的疾病基因。這個方法包括通過患病家族連鎖分析來繪制包含這些基因的染色體區域圖,然後檢查該區域來尋找基因。位置克隆是很有用的,但是也是非常乏味的。當在1980s早期該方法第一次提出時,希望實現位置克隆的研究者們不得不產生遺傳標記來跟蹤遺傳,進行染色體行走得到覆蓋該區域的基因組DNA,通過直接測序或間接基因識別方法分析大約1Mb大小的區域。最早的兩個障礙在1990s中期在人類基因組項目的支持下隨著人類染色體的遺傳和物理圖譜的發展而清除。然而,剩餘的障礙仍然是艱難的。
所有這些將隨著人類基因組序列草圖的實用性而改變。在公共資料庫中的人類基因組序列使得候選基因的計算機快速識別成為可能,隨之進行相關候選基因的突變檢測,需要在基因結構信息的幫助。對於孟德爾遺傳疾病,一個基因的搜索在一個適當大小的研究小組經常在幾個月實現。至少30個疾病基因直接依賴公共提供的基因組序列已經定位克隆到。因為大多數人類序列只是在過去的12個月內得到,可能許多類似的發現還沒有出版。另外,有許多案例中,基因組序列發揮著支持作用,例如提供候選微衛星標識用於很好的遺傳連鎖分析。(2001年中國上海和北京科學家發現遺傳性乳光牙本質Ⅱ型基因)
基因組序列對於揭示導致許多普通的染色體刪除綜合症的機制同樣有幫助。在幾個實例中,再發生的刪除被發現,由同源體重組合在大的幾乎同一的染色體內復制的不等交叉產生。例子包括在第22條染色體上的DiGeorge/ velocardiofacial綜合症區和在第7條染色體上的Williams-Beuren綜合症的重復刪除。
基因組序列的可用性同樣允許疾病基因的旁系同源性的快速識別,對於兩個理由是有價值的。首先,旁系同源基因的突變可以引起相關遺傳疾病。通過基因組序列使用發現的一個很好的例子是色盲(完全色盲)。CNGA3基因,編碼視錐體光感受器環GMP門控通道的a亞單位,顯示在一些色盲家系中存在突變體。基因組序列的計算機檢索揭示了旁系同源基因編碼相應的b亞單位,CNGB3(在EST資料庫中沒有出現)。CNGB3基因被快速認定為是其他家系的色盲的原因。另一個例子是由早衰1和早衰2基因提供的,它們的突變可能導致Alzheimer疾病的的早期發生。第二個理由是旁系同源體可以提供治療敢於的機會,例子是在鐮刀狀細胞疾病或β地中海貧血的個體中試圖再次激活胚胎表達的血紅蛋白基因,它是由於β-球蛋白基因突變引起的。
我們在在線人類孟德爾遺傳資料庫(OMIM)和SwissProt 或TrEMBL蛋白質資料庫中進行了971個已知的人類疾病基因的旁系同源體的系統檢索。我們識別了286個潛在的旁系同源體(要求是至少50個氨基酸的匹配,在相同的染色體上一致性大於70%但小於90%,在不同的染色體上小於95%)。盡管這種分析也許識別一些假基因,89%的匹配顯示在新靶序列一個外顯子以上的同源性,意味著許多是有功能的。這種分析顯示了在計算機中快速識別疾病基因的潛能。 在過去的世紀里,制葯產業很大程度上依賴於有限的葯物靶來開發新的治療手段。最近的綱要列舉了483個葯物靶被看作是解決了市場上的所有葯物。知道了人類的全部基因和蛋白質將極大的擴展合適葯物靶的尋找。雖然,僅僅人類的小部分基因可以作為葯物靶,可以預測這個數目將在幾千之上,這個前景將導致基因組研究在葯物研究和開發中的大規模開展。一些例子可以說明這一點:
⑴神經遞質(5-HT)通過化學門控通道介導快速興奮響應。以前識別的5-HT3A受體基因產生功能受體,但是比在活體內有小得多的電導。交叉雜交實驗和EST分析在揭示已知受體的其他同源體上都失敗了。然而,通過對人類基因組序列草圖的低要求檢索,一個推定的同源體被識別,在一個PAC克隆中第11號染色體長臂上。同源體顯示在紋狀體、尾狀核、海馬中表達,全長cDNA隨後得到。這個編碼胺受體地基因,被命名為5-HT3B。當與5-HT3A組合成異二聚體中,它顯示負責大電導神經胺通道。假定胺途徑在精神疾病和精神分裂症的中心作用,一個主要的新的治療靶的發現是相當有興趣的。
⑵半胱氨醯基白三烯的收縮和炎症作用,先前認為是過敏反應的慢反映物質(SRS-A),通過特定的受體介導。第二個類似的受體,CysLT2,使用老鼠EST和人類基因組序列的重組得到識別。這導致了與先前識別的唯一的其它受體有38%氨基酸一致性的基因的克隆。這個新的受體,顯示高的親和力和幾個白三烯的結合,映射在與過敏性哮喘有關的第13號染色體區域上。這個基因在氣道平滑肌和心臟中表達。作為白三烯途徑中抗哮喘葯物開發中一個重要的靶,新受體的發現有明顯的重要的作用。
⑶ Alzheimer疾病在老年斑中有豐富的β-澱粉樣物沉積。β-澱粉樣物由前體蛋白(APP)蛋白水解生成。有一個酶是β位 APP裂開酶,是跨膜天冬氨酸蛋白酶。公共的人類基因組草圖序列計算機搜索最近識別了BACE的一個新的同源序列,編碼一個蛋白,命名為BACE2,它與BACE有52%的氨基酸序列一致性。包含兩個激活蛋白酶位點和象APP一樣,映射到第21條染色體的必須Down綜合症區域。它提出了問題,BACE2和APP過多的拷貝是否有功於加速Down綜合症病人的腦部β-澱粉樣物沉積。
給出了這些例子,我們在基因組序列中進行系統的識別傳統葯靶蛋白質的旁系同源體。使用的靶列表在SwissPrott資料庫中識別了603個入口,有唯一的訪問碼。 一個例子是:解決了困擾研究者幾十年的一個神秘課題:苦味的分子學基礎。人類和其他動物對於某一種苦味有不同的響應(響應的多態性)。最近,研究者將這個特徵映射到人類和老鼠中,然後檢索了G蛋白偶合受體的人類基因組序列草圖上的相關區域。這些研究很快導致了該類蛋白的新家族的發現,證明了它們幾乎都在味蕾表達,實驗證實了在培養細胞中的受體響應特定的苦基質。
人體基因組圖譜是全人類的財產,這一研究成果理應為全人類所分享、造福全人類,這是參與人類基因組工程計劃的各國科學家的共識。值得關注的是,目前在人類基因組研究領域,出現了一些私營公司爭相為其成果申請專利的現象。美國塞萊拉基因公司曾表示,想把一部分研究成果申請專利,有償提供給制葯公司。
找到了一批主宰人體疾病的重要基因
如:肥胖基因、支氣管哮喘基因。這類基因的新發現每年都有新報道。這些基因的發現,增進了人們對許多重要疾病機理的理解,並且推動整個醫學思想更快的從重治療轉向重預防。例如:湖南醫科大學夏家輝教授組於1998.5.28發表克隆了人類神經性高頻性耳聾的致病基因(GJB3),這是第一次在中國克隆的基因。
在人類基因組計劃的推動下,涌現了幾門嶄新的學科。如:基因組學(genomics)和生物信息學(bioinformatics)
生物技術的產業化。一批世界級的大公司紛紛把它們的重心轉向生命科學研究和生物技術產品。這種趨勢或潮流也不能不說和人類基因組計劃密切相關。

⑹ 人類基因組計劃目前進行到什麼地步了 幾億個影響生物性狀的基因片段測出多少了

人類基因組計劃在很久以前就已經完成了,這是一個過時的話題,現在已進入後基因組時代。
2003年4月14日,中、美、日、德、法、英等6國科學家宣布人類基因組序列圖繪製成功,人類基因組計劃的所有目標全部實現。
人類基因組DNA有大約30億個鹼基對序列,基因大約是3萬個左右。基因組大小在生物鍾不是最大也不是最小。
絕大多數的DNA序列不是蛋白質編碼序列,也不是純粹的基因序列,多數為調控序列,很多仍然功能未知。這也是為什麼現在對於人類基因組的研究陷入了僵局。基因組計劃的完成不是一個結束,而是剛剛開始。
如果你十分有興趣的話,你可以自學一下專業英語詞彙,上NCBI資料庫(免費,網路一下就行),進入人類基因組的頁面,上面匯集了所有的成果。

⑺ 人類基因組計劃的進展可能給人類帶來哪些新的問題和挑戰

人類基因組計劃的進展可能給人類帶來哪些新的問題和挑戰
中的單核苷酸的多態性,最後將繪制一幅人的10萬個基因的定點陣圖。與Incyte公司合作的HGS(Human Genome Science)公司的負責人宣稱,截止1998年8月,該公司已鑒定出10萬多個基因(人體基因約為12萬個),並且得到了95%以上基因的EST(expressed sequence tag)或其部分序列。 1998年9月14日美國國家人類基因組計劃研究所(NHGRI)和美國能源部基因組研究計劃的負責人在一次咨詢會議上宣布,美國政府資助的人類基因組計劃將於2001年完成大部分蛋白質編碼區的測序,約占基因組的三分之一,測序的差錯率不超過萬分之一。同時還要完成一幅「工作草圖」,至少覆蓋基因組的90%,差錯率為百分之一。2003年完成基因組測序,差錯率為萬分之一。這一時間表顯示,計劃將比開始的目標提前兩年完成。 2、疾病基因的定位克隆 人類基因組計劃的直接動因是要解決包括腫瘤在內的人類疾病的分子遺傳學問題。6000多個單基因遺傳病和多種大面積危害人類健康的多基因遺傳病的致病基因及相關基因,代表了對人類基因中結構和功能完整性至關重要的組成部分。所以,疾病基因的克隆在HGP中占據著核心位置,也是計劃實施以來成果最顯著的部分。 在遺傳和物理作圖工作的帶動下,疾病基因的定位、克隆和鑒定研究已形成了,從表位→蛋白質→基因的傳統途徑轉向「反求遺傳學」或「定位克隆法」的全新思路。隨著人類基因圖的構成,3000多個人類基因已被精確地定位於染色體的各個區域。今後,一旦某個疾病位點被定位,就可以從局部的基因圖中遴選出相關基因進行分析。這種被稱為「定位候選克隆」的策略,將大大提高發現疾病基因的效率。 3、多基因病的研究 目前,人類疾病的基因組學研究已進入到多基因疾病這一難點。由於多基因疾病不遵循孟德爾遺傳規律,難以從一般的家系遺傳連鎖分析取得突破。這方面的研究需要在人群和遺傳標記的選擇、數學模型的建立、統計方法的 改進等方面進行艱苦的努力。近來也有學者提出,用比較基因表達譜的方法來識別疾病狀態下基因的激活或受抑。實際上,「癌腫基因組解剖學計劃(Cancer Genome Anatomy Project,CGAP」就代表了在這方面的嘗試。 4、中國的人類基因組研究 國際HGP 研究的飛速發展和日趨激烈的基因搶奪戰已引起了中國政府和科學界的高度重視。在政府的資助和一批高水平的生命科學家帶領下,我國已建成了一批實力較強的國家級生命科學重點實驗室,組建了北京、上海人類基因組研究中心。有了研究人類基因組的條件和基礎,並引進和建立了一批基因組研究中的新技術。中國的HGP在多民族基因保存、基因組多樣性的比較研究方面取得了令人滿意的成果,同時在白血病、食管癌、肝癌、鼻咽癌等易感基因研究方面亦取得了較大進展。 首先建立了寡核苷酸引物介導的人類高分辨染色體顯微切割和顯微基因克隆技術;已建立的17種染色體特異性DNA潮。這些資料與人類學、語言學的資料項結合,將有可能建立一個全人類的資料庫資源,從而更好地了解人。

⑻ 人類基因組計劃對人類社會有什麼影

人類基因組計劃(human genome project, HGP)是由美國科學家於1985年率先提出,於1990年正式啟動的。美國、英國、法國、德國、日本和我國科學家共同參與了這一預算達30億美元的人類基因組計劃。按照這個計劃的設想,在2005年,要把人體內約20,000--25,000個基因的密碼全部解開,同時繪制出人類基因的譜圖。換句話說,就是要揭開組成人20,000--25,000個基因的30億個鹼基對的秘密。人類基因組計劃與曼哈頓原子彈計劃和阿波羅計劃並稱為三大科學計劃。被譽為生命科學的"登月計劃"。

人類基因組計劃(英語:Human Genome Project, HGP)是一項規模宏大,跨國跨學科的科學探索工程。其宗旨在於測定組成人類染色體(指單倍體)中所包含的30億個鹼基對組成的核苷酸序列,從而繪制人類基因組圖譜,並且辨識其載有的基因及其序列,達到破譯人類遺傳信息的最終目的。基因組計劃是人類為了探索自身的奧秘所邁出的重要一步,是繼曼哈頓計劃和阿波羅登月計劃之後,人類科學史上的又一個偉大工程。截止到2005年,人類基因組計劃的測序工作已經完成。其中,2001年人類基因組工作草圖的發表(由公共基金資助的國際人類基因組計劃和私人企業塞雷拉基因組公司各自獨立完成,並分別公開發表)被認為是人類基因組計劃成功的里程碑。

基因圖譜的意義

在於它能有效地反應在正常或受控條件中表達的全基因的時空圖。通過這張圖可以了解某一基因在不同時間不同組織、不同水平的表達;也可以了解一種組織中不同時間、不同基因中不同水平的表達,還可以了解某一特定時間、不同組織中的不同基因不同水平的表達。

人類基因組是一個國際合作項目:表徵人類基因組,選擇的模式生物的DNA測序和作圖,發展基因組研究的新技術,完善人類基因組研究涉及的倫理、法律和社會問題,培訓能利用HGP發展起來的這些技術和資源進行生物學研究的科學家,促進人類健康。

折疊編輯本段其他資料

折疊對人類疾病基因研究的貢獻

人類疾病相關的基因是人類基因組中結構和功能完整性至關重要的信息。對於單基因病,採用「定位克隆」和「定位候選克隆」的全新思路,導致了亨廷頓氏舞蹈症、遺傳性結腸癌和乳腺癌等一大批單基因遺傳病致病基因的發現,為這些疾病的基因診斷和基因治療奠定了基礎。對於心血管疾病、腫瘤、糖尿病、神經精神類疾病(老年性痴呆、精神分裂症)、自身免疫性疾病等多基因疾病是目前疾病基因研究的重點。健康相關研究是HGP的重要組成部分,1997年相繼提出:「腫瘤基因組解剖計劃」「環境基因組學計劃」。

折疊對醫學的貢獻

基因診斷、基因治療和基於基因組知識的治療、基於基因組信息的疾病預防、疾病易感基因的識別、風險人群生活方式、環境因子的干預。

折疊對生物技術的貢獻

物理圖譜的發展而清除。然而,剩餘的障礙仍然是艱難的。

所有這些將隨著人類基因組序列草圖的實用性而改變。在公共資料庫中的人類基因組序列使得候選基因的計算機快速識別成為可能,隨之進行相關候選基因的突變檢測,需要在基因結構信息的幫助。

現在,對於孟德爾遺傳疾病,一個基因的搜索在一個適當大小的研究小組經常在幾個月實現。至少30個疾病基因直接依賴公共提供的基因組序列已經定位克隆到。因為大多數人類序列只是在過去的12個月內得到,可能許多類似的發現還沒有出版。

另外,有許多案例中,基因組序列發揮著支持作用,例如提供候選微衛星標識用於很好的遺傳連鎖分析。(2001年中國上海和北京科學家發現遺傳性乳光牙本質Ⅱ型基因)

基因組序列對於揭示導致許多普通的染色體刪除綜合症的機制同樣有幫助。在幾個實例中,再發生的刪除被發現,由同源體重組合在大的幾乎同一的染色體內復制的不等交叉產生。例子包括在第22條染色體上的DiGeorge/ velocardiofacial綜合症區和在第7條染色體上的Williams-Beuren綜合症的重復刪除。

基因組序列的可用性同樣允許疾病基因的旁系同源性的快速識別,對於兩個理由是有價值的。首先,旁系同源基因的突變可以引起相關遺傳疾病。通過基因組序列使用發現的一個很好的例子是色盲(完全色盲)。

CNGA3基因,編碼視錐體光感受器環GMP門控通道的a亞單位,顯示在一些色盲家系中存在突變體。基因組序列的計算機檢索揭示了旁系同源基因編碼相應的b亞單位,CNGB3(在EST資料庫中沒有出現)。CNGB3基因被快速認定為是其他家系的色盲的原因。另一個例子是由早衰1和早衰2基因提供的,它們的突變可能導致Alzheimer疾病的的早期發生。

第二個理由是旁系同源體可以提供治療敢於的機會,例子是在鐮刀狀細胞疾病或β地中海貧血的個體中試圖再次激活胚胎表達的血紅蛋白基因,它是由於β-球蛋白基因突變引起的。

我們在在線人類孟德爾遺傳資料庫(OMIM)和SwissProt 或TrEMBL蛋白質資料庫中進行了971個已知的人類疾病基因的旁系同源體的系統檢索。我們識別了286個潛在的旁系同源體(要求是至少50個氨基酸的匹配,在相同的染色體上一致性大於70%但小於90%,在不同的染色體上小於95%)。盡管這種分析也許識別一些假基因,89%的匹配顯示在新靶序列一個外顯子以上的同源性,意味著許多是有功能的。這種分析顯示了在計算機中快速識別疾病基因的潛能。

折疊葯物靶

在過去的世紀里,制葯產業很大程度上依賴於有限的葯物靶來開發新的治療手段。最近的綱要列舉了483個葯物靶被看作是解決了市場上的所有葯物。知道了人類的全部基因和蛋白質將極大的擴展合適葯物靶的尋找。雖然,僅僅人類的小部分基因可以作為葯物靶,可以預測這個數目將在幾千之上,這個前景將導致基因組研究在葯物研究和開發中的大規模開展。一些例子可以說明這一點:

⑴神經遞質(5-HT)通過化學門控通道介導快速興奮響應。以前識別的5-HT3A受體基因產生功能受體,但是比在活體內有小得多的電導。交叉雜交實驗和EST分析在揭示已知受體的其他同源體上都失敗了。

然而,最近,通過對人類基因組序列草圖的低要求檢索,一個推定的同源體被識別,在一個PAC克隆中第11號染色體長臂上。同源體顯示在紋狀體、尾狀核、海馬中表達,全長cDNA隨後得到。這個編碼胺受體地基因,被命名為5-HT3B。當與5-HT3A組合成異二聚體中,它顯示負責大電導神經胺通道。假定胺途徑在精神疾病和精神分裂症的中心作用,一個主要的新的治療靶的發現是相當有興趣的。

⑵半胱氨醯基白三烯的收縮和炎症作用,先前認為是過敏反應的慢反映物質(SRS-A),通過特定的受體介導。第二個類似的受體,CysLT2,使用老鼠EST和人類基因組序列的重組得到識別。這導致了與先前識別的唯一的其它受體有38%氨基酸一致性的基因的克隆。這個新的受體,顯示高的親和力和幾個白三烯的結合,映射在與過敏性哮喘有關的第13號染色體區域上。這個基因在氣道平滑肌和心臟中表達。作為白三烯途徑中抗哮喘葯物開發中一個重要的靶,新受體的發現有明顯的重要的作用。

⑶ Alzheimer疾病在老年斑中有豐富的β-澱粉樣物沉積。β-澱粉樣物由前體蛋白(APP)蛋白水解生成。有一個酶是β位 APP裂開酶,是跨膜天冬氨酸蛋白酶。公共的人類基因組草圖序列計算機搜索最近識別了BACE的一個新的同源序列,編碼一個蛋白,命名為BACE2,它與BACE有52%的氨基酸序列一致性。包含兩個激活蛋白酶位點和象APP一樣,映射到第21條染色體的必須Down綜合症區域。它提出了問題,BACE2和APP過多的拷貝是否有功於加速Down綜合症病人的腦部β-澱粉樣物沉積。

給出了這些例子,我們在基因組序列中進行系統的識別傳統葯靶蛋白質的旁系同源體。使用的靶列表在SwissPrott資料庫中識別了603個入口,有唯一的訪問碼。

基礎生物學

一個例子是:解決了困擾研究者幾十年的一個神秘課題:苦味的分子學基礎。人類和其他動物對於某一種苦味有不同的響應(響應的多態性)。最近,研究者將這個特徵映射到人類和老鼠中,然後檢索了G蛋白偶合受體的人類基因組序列草圖上的相關區域。這些研究很快導致了該類蛋白的新家族的發現,證明了它們幾乎都在味蕾表達,實驗證實了在培養細胞中的受體響應特定的苦基質。

人體基因組圖譜是全人類的財產,這一研究成果理應為全人類所分享、造福全人類,這是參與人類基因組工程計劃的各國科學家的共識。值得關注的是,目前在人類基因組研究領域,出現了一些私營公司爭相為其成果申請專利的現象。美國塞萊拉基因公司曾表示,想把一部分研究成果申請專利,有償提供給制葯公司。

找到了一批主宰人體疾病的重要基因

如:肥胖基因、支氣管哮喘基因。這類基因的新發現每年都有新報道。這些基因的發現,增進了人們對許多重要疾病機理的理解,並且推動整個醫學思想更快的從重治療轉向重預防。例如:湖南醫科大學夏家輝教授組於1998.5.28發表克隆了人類神經性高頻性耳聾的致病基因(GJB3),這是第一次在中國克隆的基因。

在人類基因組計劃的推動下,涌現了幾門嶄新的學科。如:基因組學(genomics)和生物信息學(bioinformatics)

生物技術的產業化。一批世界級的大公司紛紛把它們的重心轉向生命科學研究和生物技術產品。這種趨勢或潮流也不能不說和人類基因組計劃密切相關。

進展與未來

2000年6月26日,參加人類基因組工程項目的美國、英國、法蘭西共和國、德意志聯邦共和國、日本和中國的6國科學家共同宣布,人類基因組草圖的繪制工作已經完成。最終完成圖要求測序所用的克隆能忠實地代表常染色體的基因組結構,序列錯誤率低於萬分之一。95%常染色質區域被測序,每個Gap小於150kb。完成圖將於2003年完成,比預計提前2年。

完成人類基因組序列完成圖

⑴ 從當前物理圖譜生成的克隆產生完成的序列,覆蓋基因組的常染色質區域大於96%。大約1Gb的完成序列已經實現。剩下的也已經形成草圖,所有的克隆期望達到8~10倍的覆蓋率,大約2001年中期(99.99%的正確率),使用已經建立的和日益自動化的協議。

⑵ 檢測另外的庫來關閉gaps。使用FISH技術或其他方法來分析沒有閉合的Gaps大小。22,21條染色體用這種方式。2003年已經完成。

⑶ 開發新的技術來關閉難度較大的gaps,大約幾百個。

基因組序列工作框架圖(Working draft):通過對染色體位置明確的BAC連續克隆系4-5倍覆蓋率的測序(在BAC克隆水平的覆蓋率不應低於3倍),獲得基因組90%以上的序列,其錯誤率應低於1%。工作框架圖可用於基因組結構的認識、基因的識別和解析、疾病基因的定位克隆,SNP的發現等。

草圖的作用

1、草圖,許多疾病相關的基因被識別

2、SNP(人與人之間的區別),草圖提供了一個理解遺傳基礎和人類特徵進化的框架。

3、草圖後,研究人員有了新的工具來研究調節區和基因網路。

4、比較其它基因組可以揭示共同的調控元件,和其他物種共享的基因的環境也許提供在個體水平之上的關於功能和調節的信息。

5、草圖同樣是研究基因組三維壓縮到細胞核中的一個起點。這樣的壓縮可能影響到基因調控

6、在應用上,草圖信息可以開發新的技術,如DNA晶元、蛋白質晶元,作為傳統方法的補充,目前,這樣的晶元可以包含蛋白質家族中所有的成員,從而在特定的疾病組織中可以找到那些是活躍的。

2001年2月12日,美國Celera公司與人類基因組計劃分別在《科學》和《自然》雜志上公布了人類基因組精細圖譜及其初步分析結果。其中,政府資助的人類基因組計劃採取基因圖策略,而Celera公司採取了「鳥槍策略」。至此,兩個不同的組織使用不同的方法都實現了他們共同的目標:完成對整個人類基因組的測序的工作;並且,兩者的結果驚人的相似。整個人類基因組測序工作的基本完成,為人類生命科學開辟了一個新紀元,它對生命本質、人類進化、生物遺傳、個體差異、發病機制、疾病防治、新葯開發、健康長壽等領域,以及對整個生物學都具有深遠的影響和重大意義,標志著人類生命科學一個新時代的來臨。

眾多的發現

1、分析得知:全部人類基因組約有2.91Gbp,約有39000多個基因;平均的基因大小有27kbp;其中G+C含量偏低,僅佔38%,而2號染色體中G+C的含量最多;到目前仍有9%的鹼基對序列未被確定,19號染色體是含基因最豐富的染色體,而13號染色體含基因量最少等等(具體信息可參見cmbi 特別報道:生命科學的重大進展)。

2、目前已經發現和定位了26000多個功能基因,其中尚有42%的基因尚不知道功能,在已知基因中酶佔10.28%,核酸酶佔7.5%,信號傳導佔12.2%,轉錄因子佔6.0%,信號分子佔1.2%,受體分子佔5.3%,選擇性調節分子佔3.2%,等。發現並了解這些功能基因的作用對於基因功能和新葯的篩選都具有重要的意義。

3、基因數量少得驚人:一些研究人員曾經預測人類約有14萬個基因,但Celera公司將人類基因總數定在2.6383萬到3.9114萬個之間,不超過40,000,只是線蟲或果蠅基因數量的兩倍,人有而鼠沒有的基因只有300個。如此少的基因數目,而能產生如此復雜的功能,說明基因組的大小和基因的數量在生命進化上可能不具有特別重大的意義,也說明人類的基因較其他生物體更'有效',人類某些基因的功能和控制蛋白質產生的能力與其他生物的不同。這將對我們目前的許多觀念產生重大的挑戰,它為後基因組時代中生物醫學的發展提供新的非凡的機遇。但由於基因剪切,EST資料庫的重復以及一些技術和方法上的誤差,將來亦可能人類的基因數會多於4萬。

4、人類單核苷酸多態性的比例約為1/1250bp,不同人群僅有140萬個核苷酸差異,人與人之間99.99%的基因密碼是相同的。並且發現,來自不同人種的人比來自同一人種的人在基因上更為相似。在整個基因組序列中,人與人之間的變異僅為萬分之一,從而說明人類不同「種屬」之間並沒有本質上的區別。

5、人類基因組中存在「熱點」和大片"荒漠"。在染色體上有基因成簇密集分布的區域,也有大片的區域只有「無用DNA」 ——不包含或含有極少基因的成分。基因組上大約有1/4的區域沒有基因的片段。在所有的DNA中,只有1%-1.5%DNA能編碼蛋白,在人類基因組中98%以上序列都是所謂的「無用DNA」,分布著300多萬個長片斷重復序列。這些重復的「無用」序列,決不是無用的,它一定蘊含著人類基因的新功能和奧秘,包含著人類演化和差異的信息。經典分子生物學認為一個基因只能表達一種蛋白質,而人體中存在著非常復雜繁多的蛋白質,提示一個基因可以編碼多種蛋白質,蛋白質比基因具有更為重要的意義

6、男性的基因突變率是女性的兩倍,而且大部分人類遺傳疾病是在Y染色體上進行的。所以,可能男性在人類的遺傳中起著更重要的作用。

7、人類基因組中大約有200多個基因是來自於插入人類祖先基因組的細菌基因。這種插入基因在無脊椎動物是很罕見的,說明是在人類進化晚期才插入我們基因組的。可能是在我們人類的免疫防禦系統建立起來前,寄生於機體中的細菌在共生過程中發生了與人類基因組的基因交換。

8、發現了大約一百四十萬個單核苷酸多態性,並進行了精確的定位,初步確定了30多種致病基因。隨著進一步分析,我們不僅可以確定遺傳病、腫瘤、心血管病、糖尿病等危害人類生命健康最嚴重疾病的致病基因,尋找出個體化的防治葯物和方法,同時對進一步了解人類的進化產生重大的作用。

9、人類基因組編碼的全套蛋白質(蛋白質組)比無脊椎動物編碼的蛋白質組更復雜。人類和其他脊椎動物重排了已有蛋白質的結構域,形成了新的結構。也就是說人類的進化和特徵不僅靠產生全新的蛋白質,更重要的是要靠重排和擴展已有的蛋白質,以實現蛋白質種類和功能的多樣性。有人推測一個基因平均可以編碼2-10種蛋白質,以適應人類復雜的功能。

模式生物:酵母(yeast)、大腸桿菌(Escherichia coli)、果蠅(Drosophila melanogaster)、線蟲(Caenorhabditis elegans)、小鼠(Mus musculus)、擬南芥、水稻、玉米等等其它一些模式生物的基因組計劃也都相繼完成或正在順利進行。

目前基因組學的研究出現了幾個重心的轉移:一是將已知基因的序列與功能聯系在一起的功能基因組學研究;二是從作圖為基礎的基因分離轉向以序列為基礎的基因分離;三是從研究疾病的起因轉向探索發病機理;四是從疾病診斷轉向疾病易感性研究。

在後基因組時代,如果在已完成基因組測序的物種之間進行整體的比較、分析,希望在整個基因組的規模上了解基因組和蛋白質組的功能意義,包括基因組的表達與調控、基因組的多樣化和進化規律以及基因及其產物在生物體生長、發育、分化、行為、老化和治病過程中的作用機制都必須發展新的演算法以充分利用超級計算機的超級計算能力。

美國和英國科學家2006年5月18日在英國《自然》雜志網路版上發表了人類最後一個染色體——1號染色體的基因測序。

在人體全部22對常染色體中,1號染色體包含基因數量最多,達3141個,是平均水平的兩倍,共有超過2.23億個鹼基對,破譯難度也最大。一個由150名英國和美國科學家組成的團隊歷時10年,才完成了1號染色體的測序工作。

科學家不止一次宣布人類基因組計劃完工,但推出的均不是全本,這一次殺青的「生命之書」更為精確,覆蓋了人類基因組的99.99%。解讀人體基因密碼的「生命之書」宣告完成,歷時16年的人類基因組計劃書寫完了最後一個章節。

2、疾病基因的定位克隆

人類基因組計劃的直接動因是要解決包括腫瘤在內的人類疾病的分子遺傳學問題。6000多個單基因遺傳病和多種大面積危害人類健康的多基因遺傳病的致病基因及相關基因,代表了對人類基因中結構和功能完整性至關重要的組成部分。所以,疾病基因的克隆在HGP中占據著核心位置,也是計劃實施以來成果最顯著的部分。

在遺傳和物理作圖工作的帶動下,疾病基因的定位、克隆和鑒定研究已形成了,從表位→蛋白質→基因的傳統途徑轉向「反求遺傳學」或「定位克隆法」的全新思路。隨著人類基因圖的構成,3000多個人類基因已被精確地定位於染色體的各個區域。今後,一旦某個疾病位點被定位,就可以從局部的基因圖中遴選出相關基因進行分析。這種被稱為「定位候選克隆」的策略,將大大提高發現疾病基因的效率。

3、多基因病的研究

目前,人類疾病的基因組學研究已進入到多基因疾病這一難點。由於多基因疾病不遵循孟德爾遺傳規律,難以從一般的家系遺傳連鎖分析取得突破。這方面的研究需要在人群和遺傳標記的選擇、數學模型的建立、統計方法的 改進等方面進行艱苦的努力。近來也有學者提出,用比較基因表達譜的方法來識別疾病狀態下基因的激活或受抑。實際上,「癌腫基因組解剖學計劃(Cancer Genome Anatomy Project,CGAP」就代表了在這方面的嘗試。

展望

1、生命科學工業的形成

由於基因組研究與制葯、生物技術、農業、食品、化學、化妝品、環境、能源和計算機等工業部門密切相關,更重要的是基因組的研究可以轉化為巨大的生產力,國際上一批大型制葯公司和化學工業公司大規模紛紛投巨資進軍基因組研究領域,形成了一個新的產業部門,即生命科學工業。

2、功能基因組學

人類基因組計劃當前的整體發展趨勢是什麼?一方面,在順利實現遺傳圖和物理圖的製作後,結構基因組學正在向完成染色體的完整核酸序列圖的目標奮進。另一方面,功能基因組學已提上議事日程。人類基因組計劃已開始進入由結構基因組學向功能基因組學過渡、轉化的過程。在功能基因組學研究中,可能的核心問題有:基因組的表達及其調控、基因組的多樣性、模式生物體基因組研究等。

2)蛋白質組學研究

蛋白質組學研究是要從整體水平上研究蛋白質的水平和修飾狀態。目前正在發展標准化和自動化的二維蛋白質凝膠電泳的工作體系。首先用一個自動系統來提取人類細胞的蛋白質,繼而用色譜儀進行部分分離,將每區段中的蛋白質裂解,再用質譜儀分析,並在蛋白質資料庫中通過特徵分析來認識產生的多肽。

蛋白質組研究的另一個重要內容是建立蛋白質相互關系的目錄。生物大分子之間的相互作用構成了生命活動的基礎。組裝基因組各成分間的詳盡作圖已在T7噬菌體(55個基因)獲得成功。如何在模式生物(如酵母)和人類基因組的研究中建立自動方法,認識不同的生化通路,是值得探討的問題。

3)生物信息學的應用

目前,生物信息學已大量應用於基因的發現和預測。然而,利用生物信息學去發現基因的蛋白質產物的功能更為重要。模式生物體中越來越多的蛋白質構建編碼單位被識別,無疑為基因和蛋白質同源關系的搜尋和家族的分類提供了極其寶貴的信息。同時,生物信息學的演算法、程序也在不斷改善,使得不僅能夠從一級結構,也能從估計結構上發現同源關系。但是,利用計算機模擬所獲得的理論數據,還需要經過實驗經過的驗證和修正。

⑵基因組多樣性的研究

人類是一個具有多態性的群體。不同群體和個體在生物學性狀以及在對疾病的易感性與抗性上的差別,反映了進化過程中基因組與內、外部環境相互作用的結果。開展人類基因組多樣性的系統研究,無論對於了解人類的起源和進化,還是對於生物醫學均會產生重大的影響。

1)對人類DNA的再測序

可以預測,在完成第一個人類基因組測序後,必然會出現對各人種、群體進行再測序和精細基因分型的熱潮。這些資料與人類學、語言學的資料項結合,將有可能建立一個全人類的資料庫資源,從而更好地了解人類的歷史和自身特徵。另外,基因組多樣性的研究將成為疾病基因組學的主要內容之一,而群體遺傳學將日益成為生物醫葯研究中的主流工具。需要對各種常見多因素疾病(如高血壓、糖尿病和精神分裂症等)的相關基因及癌腫相關基因在基因組水平進行大規模的再測序,以識別其變異序列。

總之,模式生物體的基因組計劃為人類基因組的研究提供了大量的信息。今後,模式生物體的研究方向是將人類基因組8~10萬個編碼基因的大部分轉化為已知生化功能的多成分核心機制。而要獲得酶一種人類進化保守性核心機制的精細途徑,以及它們的紊亂導致疾病的各種途徑的知識,將只能來自對人類自身的研究。

通過功能基因組學的研究,人類最終將將能夠了解哪些進化機制已經確實發生,並考慮進化過程還能夠有哪些新的潛能。一種新的解答發育問題的方法可能是,將蛋白質功能域和調控順序進行重新的組合,建立新的基因網路和形態發生通路。也就是說,未來的生物科學不僅能夠認識生物體是如何構成和進化的,而且更為誘人的是產生構建新的生物體的可能潛力。該計劃在人類科學史上又豎起了一座新的里程碑!這是一項改變世界,影響人類生活的壯舉,隨著時間的推移,它的偉大意義將愈顯昭彰。

疊編輯本

⑼ 人類基因組計劃成果,不是進展

推進了以佳學基因為代表的基因解碼、基因解讀專業服務機構的產生。

⑽ 人類基因組計劃

■人類基因組計劃的研究現狀與展望------發表日期:2004年3月30日

一、研究現狀
1、人類基因組測序
1990年~1998年,人類基因組序列已完成和正在測序的共計約330Mb,占人基因組的11%左右;已識別出人類疾病相關的基因200個左右。此外,細菌、古細菌、支原體和酵母等17種生物的全基因組的測序已經完成。
值得一提的是,企業與研究部門的攜手,將大大地促進測序工作的完成。美國的基因組研究所(The Institute of Genome Research, TIGR)與PE(Perkin-Elmar)公司合作建立新公司,三年內投資2億美元,預計於2002年完成全序列的測定。這一進度將比美國政府資助的HGP的預定目標提前三年。美國加州的一家遺傳學數據公司(Incyte)宣布(1998年〕,兩年內測定基因組中的蛋白質編碼序列以及密碼子中的單核苷酸的多態性,最後將繪制一幅人的10萬個基因的定點陣圖。與Incyte公司合作的HGS(Human Genome Science)公司的負責人宣稱,截止1998年8月,該公司已鑒定出10萬多個基因(人體基因約為12萬個),並且得到了95%以上基因的EST(expressed sequence tag)或其部分序列。
1998年9月14日美國國家人類基因組計劃研究所(NHGRI)和美國能源部基因組研究計劃的負責人在一次咨詢會議上宣布,美國政府資助的人類基因組計劃將於2001年完成大部分蛋白質編碼區的測序,約占基因組的三分之一,測序的差錯率不超過萬分之一。同時還要完成一幅「工作草圖」,至少覆蓋基因組的90%,差錯率為百分之一。2003年完成基因組測序,差錯率為萬分之一。這一時間表顯示,計劃將比開始的目標提前兩年完成。
2、疾病基因的定位克隆
人類基因組計劃的直接動因是要解決包括腫瘤在內的人類疾病的分子遺傳學問題。6000多個單基因遺傳病和多種大面積危害人類健康的多基因遺傳病的致病基因及相關基因,代表了對人類基因中結構和功能完整性至關重要的組成部分。所以,疾病基因的克隆在HGP中占據著核心位置,也是計劃實施以來成果最顯著的部分。
在遺傳和物理作圖工作的帶動下,疾病基因的定位、克隆和鑒定研究已形成了,從表位→蛋白質→基因的傳統途徑轉向「反求遺傳學」或「定位克隆法」的全新思路。隨著人類基因圖的構成,3000多個人類基因已被精確地定位於染色體的各個區域。今後,一旦某個疾病位點被定位,就可以從局部的基因圖中遴選出相關基因進行分析。這種被稱為「定位候選克隆」的策略,將大大提高發現疾病基因的效率。
3、多基因病的研究
目前,人類疾病的基因組學研究已進入到多基因疾病這一難點。由於多基因疾病不遵循孟德爾遺傳規律,難以從一般的家系遺傳連鎖分析取得突破。這方面的研究需要在人群和遺傳標記的選擇、數學模型的建立、統計方法的 改進等方面進行艱苦的努力。近來也有學者提出,用比較基因表達譜的方法來識別疾病狀態下基因的激活或受抑。實際上,「癌腫基因組解剖學計劃(Cancer Genome Anatomy Project,CGAP」就代表了在這方面的嘗試。
4、中國的人類基因組研究
國際HGP 研究的飛速發展和日趨激烈的基因搶奪戰已引起了中國政府和科學界的高度重視。在政府的資助和一批高水平的生命科學家帶領下,我國已建成了一批實力較強的國家級生命科學重點實驗室,組建了北京、上海人類基因組研究中心。有了研究人類基因組的條件和基礎,並引進和建立了一批基因組研究中的新技術。中國的HGP在多民族基因保存、基因組多樣性的比較研究方面取得了令人滿意的成果,同時在白血病、食管癌、肝癌、鼻咽癌等易感基因研究方面亦取得了較大進展。
首先建立了寡核苷酸引物介導的人類高分辨染色體顯微切割和顯微基因克隆技術;已建立的17種染色體特異性DNA文庫和24種染色體區特異性DNA文庫及其探針;構建了人X染色體YAC圖譜,已完成了人X染色體Xp11.2-p21.3跨度的約35cM STS-YAC圖譜的構建;建立了YAC-cDNA篩選技術。
目前的研究工作還包括: 疾病和功能相關新基因的分離、測序和克隆的技術和方法學的創新研究;中國少數民族HLA分型研究及特種基因的分析; 人胎腦cDNA文庫的構建和新基因的克隆研究。
中國是世界上人口最多的國家,有56 個民族和極為豐富的病種資源,並且由於長期的社會封閉,在一些地區形成了極為難得的族群和遺傳隔離群,一些多世代、多個體的大家系具有典型的遺傳性狀,這些都是克隆相關基因的寶貴材料。但是,由於我國的HGP 研究工作起步較晚、底子薄、資金投入不足,缺乏一支穩定的、高素質的青年生力軍, 我國的HGP 研究工作與國外近年來的驚人發展速度相比,差距還很大,並且有進一步加大的危險。如果我們在這場基因爭奪戰中不能堅守住自己的陣地,那麼在21 世紀的競爭中我們又將處於被動地位:我們不能自由地應用基因診斷和基因治療的權力,我們不能自由地進行生物葯物的生產和開發,我們亦不能自由地推動其他基因相關產業的發展。
二、展望
1、生命科學工業的形成
由於基因組研究與制葯、生物技術、農業、食品、化學、化妝品、環境、能源和計算機等工業部門密切相關,更重要的是基因組的研究可以轉化為巨大的生產力,國際上一批大型制葯公司和化學工業公司大規模紛紛投巨資進軍基因組研究領域,形成了一個新的產業部門,即生命科學工業。
世界上一些大的制葯集團紛紛投資建立基因組研究所。Ciba-Geigy 和Ssandoz合資組建了Novartis 公司,並斥資2.5億美元建立研究所,開展基因組研究工作。Smith Kline 公司花1.25億美元加快測序的進度,將葯物開發項目的25%建立在基因組學之上。Glaxo-Wellcome 在基因組研究領域投入4,700萬美元,將研究人員增加了一倍。
大型化學工業公司向生命科學工業轉軌。孟山都公司早在1985年就開始轉向生命科學工業。至1997年,該公司向生物技術和基因組研究的投入已高達66億美元。1998年4月,杜邦公司宣布改組成三個實業單位,由生命科學領頭。1998年5月,該公司又宣布放棄能源公司Conaco,將其改造成一家生命科學公司。Dow化學公司用9億美元購入Eli Lilly公司40%的股票,從事穀物和食品研究,後又成立了生命科學公司。Hoechst公司則出售了它的基本化學品部門,轉項投資生物技術和制葯。
傳統的農業和食品部門也出現了向生物技術和制葯合並的趨勢。Genzyme Transgenics 公司培養出的基因工程羊能以較高的產量生產抗凝血酶III,一群羊的酶產量相當於投資1.15億美元工廠的產量。據估計,轉基因動物生產的葯物成本是大規模細胞培養法的十分之一。一些公司還在研究生產能抗骨質疏鬆的穀物,以及大規模生產和加工基因工程食品。
能源、采礦和環境工業也已在分子水平上向基因組研究匯合。例如,用產甲烷菌Methanobacterium 作為一種新能源。用抗輻射的細菌Deinococcus radiorans清除放射性物質的污染,並在轉入tod基因後,在高輻射環境下清除多種有害化學物質的污染。
2、功能基因組學
人類基因組計劃當前的整體發展趨勢是什麼?一方面,在順利實現遺傳圖和物理圖的製作後,結構基因組學正在向完成染色體的完整核酸序列圖的目標奮進。另一方面,功能基因組學已提上議事日程。人類基因組計劃已開始進入由結構基因組學向功能基因組學過渡、轉化的過程。在功能基因組學研究中,可能的核心問題有:基因組的表達及其調控、基因組的多樣性、模式生物體基因組研究等。
(1)基因組的表達及其調控
1)基因轉錄表達譜及其調控的研究
一個細胞的基因轉錄表達水平能夠精確而特異地反映其類型、發育階段以及反應狀態,是功能基因組學的主要內容之一。為了能夠全面地評價全部基因的表達,需要建立全新的工具系統,其定量敏感性水平應達到小於1個拷貝/細胞,定性敏感性應能夠區分剪接方式,還須達到檢測單細胞的能力。近年來發展的DNA微陣列技術,如DNA晶元,已有可能達到這一目標。
研究基因轉錄表達不僅是為了獲得全基因組表達的數據,以作為數學聚類分析。關鍵問題是要解析控制整個發育過程或反應通路的基因表達網路的機制。網路概念對於生理和病理條件下的基因表達調控都是十分重要的。一方面,大多數細胞中基因的產物都是與其它基因的產物互相作用的;另一方面,在發育過程中大多數的基因產物都是在多個時間和空間表達並發揮其功能,形成基因表達的多效性。在一個意義上,每個基因的表達模式只有放到它所在的調控網路的大背景下,才會有真正的意義。進行這方面的研究,有必要建立高通量的小鼠胚胎原位雜交技術。
2)蛋白質組學研究
蛋白質組學研究是要從整體水平上研究蛋白質的水平和修飾狀態。目前正在發展標准化和自動化的二維蛋白質凝膠電泳的工作體系。首先用一個自動系統來提取人類細胞的蛋白質,繼而用色譜儀進行部分分離,將每區段中的蛋白質裂解,再用質譜儀分析,並在蛋白質資料庫中通過特徵分析來認識產生的多肽。
蛋白質組研究的另一個重要內容是建立蛋白質相互關系的目錄。生物大分子之間的相互作用構成了生命活動的基礎。組裝基因組各成分間的詳盡作圖已在T7噬菌體(55個基因)獲得成功。如何在模式生物(如酵母)和人類基因組的研究中建立自動方法,認識不同的生化通路,是值得探討的問題。
3)生物信息學的應用
目前,生物信息學已大量應用於基因的發現和預測。然而,利用生物信息學去發現基因的蛋白質產物的功能更為重要。模式生物體中越來越多的蛋白質構建編碼單位被識別,無疑為基因和蛋白質同源關系的搜尋和家族的分類提供了極其寶貴的信息。同時,生物信息學的演算法、程序也在不斷改善,使得不僅能夠從一級結構,也能從估計結構上發現同源關系。但是,利用計算機模擬所獲得的理論數據,還需要經過實驗經過的驗證和修正。
(2)基因組多樣性的研究
人類是一個具有多態性的群體。不同群體和個體在生物學性狀以及在對疾病的易感性與抗性上的差別,反映了進化過程中基因組與內、外部環境相互作用的結果。開展人類基因組多樣性的系統研究,無論對於了解人類的起源和進化,還是對於生物醫學均會產生重大的影響。
1)對人類DNA的再測序
可以預測,在完成第一個人類基因組測序後,必然會出現對各人種、群體進行再測序和精細基因分型的熱潮。這些資料與人類學、語言學的資料項結合,將有可能建立一個全人類的資料庫資源,從而更好地了解人類的歷史和自身特徵。另外,基因組多樣性的研究將成為疾病基因組學的主要內容之一,而群體遺傳學將日益成為生物醫葯研究中的主流工具。需要對各種常見多因素疾病(如高血壓、糖尿病和精神分裂症等)的相關基因及癌腫相關基因在基因組水平進行大規模的再測序,以識別其變異序列。
2)對其它生物的測序
對進化過程各個階段的生物進行系統的比較DNA測序,將揭開生命35億年的進化史。這樣的研究不僅能勾畫出一張詳盡的系統進化樹,而且將顯示進化過程中最主要的變化所發生的時間及特點,比如新基因的出現和全基因組的復制。
認識不同生物中基因序列的保守性,將能夠使我們有效地認識約束基因及其產物的功能性的因素。對序列差異性的研究則有助於認識產生大自然多樣性的基礎。在不同生物體之間建立序列變異與基因表達的時空差異之間的相關性,將有助於揭示基因的網路結構。
(3)開展對模式生物體的研究
1)比較基因組研究
在人類基因組的研究中,模式生物體的研究佔有極其重要的地位。盡管模式生物體的基因組的結構相對簡單,但是它們的核心細胞過程和生化通路在很大程度上是保守的。這項研究的意義是:1〕有助於發展和檢驗新的相關技術,如大規模測序、大規模表達譜檢驗、大規模功能篩選等;2〕通過比較和鑒定,能夠了解基因組的進化,從而加速對人類基因組結構和功能的了解;3〕模式生物體間的比較研究,為闡明基因表達機制提供了重要的線索。
目前對於基因組總體結構組成方面的知識,主要來源於模式生物體的基因組序列分析。通過對不同物種間基因調控序列的計算機分析,已發現了一定比例的保守性核心調控序列。根據這些序列建立的表達模式資料庫對破譯基因調控網路提供了必要的條件。
2)功能缺失突變的研究
識別基因功能最有效的方法,可能是觀察基因表達被阻斷後在細胞和整體所產生的表型變化。在這方面,基因剔除方法(knock-out)是一項特別有用的工具。目前。國際上已開展了對酵母、線蟲和果蠅的大規模功能基因組學研究,其中進展最快的是酵母。歐共體為此專門建立了一個稱為EUROFAN(European Functional Analysis Network)的研究網路。美國、加拿大和日本也啟動了類似的計劃。

隨著線蟲和果蠅基因組測序的完成,將來也可能開展對這兩種生物的類似性研究。一些突變株系和技術體系建立後,不僅能夠成為研究單基因功能的有效手段,而且為研究基因冗餘性和基因間的相互作用等深層次問題奠定了基礎。小鼠作為哺乳動物中的代表性模式生物,在功能基因組學的研究中展有特殊的地位。同源重組技術可以破壞小鼠的任何一個基因,這種方法的缺點是費用高。利用點突變、缺失突變和插入突變造成的隨機突變是另一中可能的途徑。對於人體細胞而言,建立反義寡核苷酸和核酶瞬間阻斷基因表達的體系可能更加合適。蛋白質水平的剔除術也許是說明基因功能最有力的手段。利用組合化學方法有望生產出化學剔除試劑,用於激活或失活各種蛋白質。
總之,模式生物體的基因組計劃為人類基因組的研究提供了大量的信息。今後,模式生物體的研究方向是將人類基因組8~10萬個編碼基因的大部分轉化為已知生化功能的多成分核心機制。而要獲得酶一種人類進化保守性核心機制的精細途徑,以及它們的紊亂導致疾病的各種途徑的知識,將只能來自對人類自身的研究。
通過功能基因組學的研究,人類最終將將能夠了解哪些進化機制已經確實發生,並考慮進化過程還能夠有哪些新的潛能。一種新的解答發育問題的方法可能是,將蛋白質功能域和調控順序進行重新的組合,建立新的基因網路和形態發生通路。也就是說,未來的生物科學不僅能夠認識生物體是如何構成和進化的,而且更為誘人的是產生構建新的生物體的可能潛力。

閱讀全文

與人類基因組計劃成果相關的資料

熱點內容
湖北省醫療糾紛預防與處理辦法 瀏覽:230
星光創造營後勤在哪 瀏覽:581
北京辦理知識產權 瀏覽:177
交通銀行信用卡有效期是幾年 瀏覽:913
公司協議股權轉讓 瀏覽:531
啥叫擔保物權 瀏覽:60
馬鞍山到徐州的火車 瀏覽:703
羊年限定金克絲多少錢 瀏覽:573
公共基本衛生服務結核項目試題 瀏覽:896
寶雞市工商局電話號碼 瀏覽:81
基本公共衛生服務督導工作方案 瀏覽:454
信息化成果總結 瀏覽:948
債務糾紛律師費必須提供發票嗎 瀏覽:876
手機我的世界創造模式怎麼去天堂 瀏覽:716
專利代理人個人總結 瀏覽:312
工商局黨建工作述職報告 瀏覽:685
創造力閱讀理解答案 瀏覽:866
金華質監局和工商局合並 瀏覽:334
衛生院公共衛生服務考核結果 瀏覽:693
專利權的內容有哪幾項 瀏覽:750