Ⅰ 流體力學:孔口與管嘴出流實驗的相關問題
口形狀對出流能力影響各不相同,圓角管嘴和圓錐管嘴的流股形態為光滑圓柱(主要由於內收縮斷面處存在真空,過流能力大),直角管嘴為圓柱形麻花狀扭變(局部阻力相對大),孔口出流是具有側收縮的圓柱流股。(孔口出流存在收縮斷面,並且和孔口邊緣以及H等關系密切,過流能力小)
增大過流能力:用流線型管或者圓角管嘴,圓錐管嘴。一般來說流量系數大,過流能力就大。
Ⅱ 試驗成果
(一)二氧化碳驅油技術能夠使特低滲透扶楊油層建立起有效驅動體系
通過井溫、壓力梯度測試,搞清了注入的液態CO2在井筒內的相態分布,系統分析了注入井、采出井動態變化特徵。
1.應用井溫、壓力梯度測試技術,搞清了CO2在井筒內的相態分布
為搞清液態CO2在井筒內的相態、溫度、壓力變化情況,在正常注入的情況下,錄取了井筒內的壓力、溫度梯度資料。從測試結果看,液態CO2大約在1300m開始氣化,氣化後放熱使溫度梯度增大,壓力梯度減小。井底壓力為29.5MPa,折算井筒中液態CO2平均比重(相對密度)為0.89;井底溫度63.8℃,比油層溫度低22℃左右(圖6-21)。
圖6-21 壓力、壓力梯度曲線
2005年4月,對注氣井進行了壓力降落試井,累計關井576h,壓力從29.85MPa下降到28.95MPa,壓降速度為0.0016MPa/h。用有限導流垂直裂縫模型和均質徑向流油藏模型解釋的結果見表6-30。兩種解釋方法得到的結果基本一致,井筒儲存系數很大,油藏滲透率很低((1.26~1.28)×10-3μm2),屬特低滲透油藏。表皮系數低於-5.9,說明注入的CO2對近井地帶地層有顯著的改善作用。
表6-30 注入井芳188-138試井資料解釋結果
2.注氣壓力較低、油層吸氣能力較強
未壓裂的芳188-138注氣井自2004年7月以來,平均日注液態CO220~40t;注入壓力表現出穩中有降的趨勢,由2004年7月的13.0MPa下降到2007年的10.5~11.0MPa。尤其是2006年下半年以來,隨著2口見氣較早的井(芳190-136,芳190-140井)氣油比上升,注氣井注入壓力下降幅度有所加快,與室內實驗結果基本一致。
未壓裂的注氣井在日注液態CO220~40t(相當於日注水40~70m3)的情況下,比州2試驗區壓裂投注的注水井(平均日注水30m3左右)注入壓力低5MPa左右。
另外,從州2試驗區注水井與芳48注氣試驗區注氣井霍爾曲線對比情況看(圖6-22),未壓裂的注氣井注入能力是壓裂投注注水井的4.8倍。可見,扶楊油層注氣壓力較低,吸氣能力較強。
圖6-22 州2與芳48試驗區霍爾曲線對比
3.采出井見到較為明顯的注氣效果
試驗區於2002年12月投產,截至2007年底累計注氣20674t(0.413PV),累計注采比為2.93;累積產油9690t,采出程度6.09%,採油速度0.90%;綜合含水7.0%。
(1)注CO2驅油滲流阻力小,油井見效快
由於CO2具有黏度和密度小的特點,注CO2驅油滲流阻力小,注氣井和採油井間壓力分布與注水驅高滲透油藏類似,注氣井和採油井井底壓力損失小,注采井間壓力梯度大,從而使特低滲透油藏建立起有效驅動體系。
試驗區正常注氣後,大致3個月左右,滲透率相對較高的芳190-136和芳190-140井陸續見到注氣效果,日產油穩中有升。而與之鄰近的州2注水開發試驗區自投產以來產量一直呈下降趨勢,未見到受效顯示。如芳190-136井,2004年8月開始受效,日產油上升,到2005年7月上升到最高點2.5t/d,隨後受見氣影響,產量逐漸下降(圖6-23)。
圖6-23 芳190-136井日產油曲線
(2)產量恢復程度較高
試驗區5口油井中,芳188-137井未壓裂直接投產,初期日產量0.02t,其餘4口井均為壓裂投產,見效後產量恢復程度為44.1%~71.0%(表6-31)。2006年1月試驗區產量恢復到最高,日產量達8.3t,產量恢復程度達61%。注氣累計增加原油占總產量的57.8%。
表6-31 芳48試驗區見效情況分析
受效高峰期的採油速度高達1.89%,平均採油強度0.25t/d·m,是相鄰注水開發區塊的3倍以上。分析油井受效較好,主要有以下原因:一是氣驅控製程度高(100%),試驗區只選取了主力層(FⅠ7)注氣,該層為分布穩定的河道砂體,連通較好,氣驅控製程度高達100%;二是注入速度高,2004年7月以來,試驗區注入速度保持在0.15~0.18PV/a,使油井見到了較好的氣驅效果。
(3)油井見氣後產量呈雙曲規律遞減
根據試驗區進入產量遞減階段以來的實際產量(圖6-24),進行擬合求解,得出試驗區日產油量呈雙曲遞減規律,遞減指數2.371,R=0.9980。
松遼盆地三肇凹陷特低滲透扶楊油層開發理論與實踐
式中:qt為開始遞減第t月時日產量;qi為遞減前日產油;Di為初始遞減率。
圖6-24 實際日產油與計算日產油對比
(4)見氣井地層壓力保持水平較高
2005年4~6月,對注氣井組進行了整體試井,芳190-136和芳190-140井關井末點壓力分別為11.6和13.1MPa,明顯高於其餘3口井(表6-32)。由於這兩口井為試驗區的主要見效井,隨著油井見氣後地層壓力上升;芳188-137井盡管井距較近,但由於該井未壓裂,且受效較差,壓力恢復曲線表現為典型的特低滲透儲層特徵;關井15d最高壓力僅3.6MPa。
表6-32 注氣試驗井組試井資料解釋結果
(二)氣體示蹤及微地震氣驅前緣測試技術,有效指導了氣驅試驗的分析與調整
1.氣體示蹤劑監測技術
2006年5月,以室內實驗為基礎,優選了性能穩定的F6氣體為示蹤劑,並進行了礦場試驗,監測結果見表6-33。從表中可以看出,注入氣體向芳190-140井推進速度最快(5.45m/d),芳190-136井次之(3.13m/d),芳188-137井較慢(0.99m/d),芳187-138井未見氣,芳190-138井見氣較晚,未檢測到示蹤劑。
表6-33 芳188-138井注氣氣體示蹤劑(F6)監測結果
從示蹤劑峰值看,芳190-140井最高(20792μg/m3),芳190-136井次之(256μg/m3),芳188-137井盡管見到示蹤劑最早,但峰值最低(61μg/m3),表明注入的示蹤劑優先向滲透率較高的芳190-140井運移,其次為190-136井和188-137井。示蹤劑峰值高低與儲層物性和氣油比高低具有較好的一致性。
2.微地震氣驅前緣監測技術
微地震法氣驅前緣監測技術基於地球物理、岩石力學、信號處理及震波傳輸等理論和油田生產實際情況,通過監測注氣引起微裂縫重新開啟及造成新的微裂縫時產生的微震波,確定微震震源位置,進一步確定監測井的氣驅前緣、注入氣波及范圍和優勢注氣方向,為注氣方案優化調整提供科學依據。2005年8月對注氣井組進行了微地震氣驅前緣測試(圖6-25),結合該井的注入數據及測井等資料,取得了以下認識:
一是CO2氣驅存在主、次流兩個方向,主流方向呈東南164.6°及西南260.8°兩個走向,次流方向略呈北偏東43.3°走向。
二是CO2氣驅前緣波及面形狀呈不規則的「Y」字型,分析氣驅前緣形態主要受該井區儲層非均質性影響,注入CO2氣推進速度不均勻,在東南及西南方向CO2氣推進速度較快,在北西及北偏東方向的CO2氣推進速度次之;而其他方向的CO2氣推進速度相對較慢。
三是CO2氣驅前緣波及面積約為7.6×104m2。
四是芳190-140井和芳190-136井位於CO2氣驅前緣的兩個主流方向上,為主要見效井;芳188-137井為次要見效井,因為CO2氣驅前緣向前發展的趨勢明顯且已接近該井;芳187-138井處在氣驅前緣的次流方向上,但由於該井距氣驅前緣相對較遠,受效也不明顯;芳190-138井的方向氣驅前緣推進較慢,未見到注氣效果。
3.脈沖注氣有效提高了CO2利用率
通過氣體示蹤及微地震氣驅前緣測試技術搞清了扶楊油層非均質特徵。為防止CO2氣大量突破後造成資源浪費,改善注氣驅油效果,應用數值模擬技術優選了脈沖注氣方案(注氣時關突破井,停注時突破井恢復生產)為實施方案,取得了較好效果。
設計了6套方案,考慮了不同的注入速度、注入量和脈沖周期(表6-34)。
圖6-25 微地震測試結果
表6-34 脈沖注氣方案設計參數
注:5∶2表示關生產井注氣5個月,然後停注採油2個月。
從各方案預測的開發指標(表6-35)可以看出,脈沖注氣開發效果主要與注氣速度、注氣量及脈沖持續時間有關。綜合考慮,持續高速度大排量脈沖注氣效果較好。
表6-35 脈沖注氣開發指標預測結果
綜合以上方案預測指標,采出程度最高的是方案F106,交替周期為6個月(注4個月,停注後采出2個月)。因此優選方案F106(注氣速度為40t/d,注4個月,停注後采出2個月)為實施方案。
根據方案優選結果,2006年開展了脈沖注氣試驗,先後分3個段塞注入液態CO25239t。取得了以下認識:
一是注氣壓力略有下降。2006年脈沖注氣後,前面兩個段塞,日注氣量在37t左右,注氣壓力穩定在12.5MPa左右;最後一個段塞注入時,注氣壓力下降到11.5MPa,下降了1.0MPa。說明注氣井有較強的吸氣能力,井組之間有較好的連通關系,停注期間采出井開井,恢復注氣後注氣壓力有所下降。
二是見氣井開井後,氣油比下降,CO2利用率明顯提高。以芳190-136井為例(圖6-26),該井2006年5月因出氣量大關井,燜井一段時間後,於2006年9月恢復生產。氣油比由465m3/m3下降到130m3/m3。之後持續生產,氣油比逐漸上升到2007年4月份的337m3/m3,比見氣高峰期低210m3/m3。表明通過脈沖注氣減小了注采壓差,改變了地層流體的液流方向,使見氣井出氣量大幅度減小,降低了氣油比,提高了CO2利用率。
圖6-26 芳190-136井氣油比變化曲線
另外,為進一步減少油井生產過程中造成的CO2損失,對油井開井制度進行了優化。芳188-137井不同關井時間的產量變化情況見圖6-27,關井3d後恢復生產1d的產量最高。優選確定了關3d開井1d的生產工作制度,平均日產油1.0t左右。其餘3口見氣井與芳188-137井不同關井時間的產量變化趨勢基本相同,也執行了關3d開井1d的工作制度。
圖6-27 芳188-137井不同關井時間產量變化曲線
可見,通過脈沖注氣和油井生產制度優化,有效提高了CO2利用率。
(三)氣油比分析技術進一步驗證了芳48斷塊為非混相驅
1.氣油比分析技術
氣油比是評價注氣驅油效果和效益的一項十分重要的指標,由於芳48注氣井組產量低,無法現場測試生產氣油比。因此,我們通過對采出氣的組分變化分析,對生產氣油比進行了估算,在現場得到較好應用。
設原始氣油比為GOR1,目前氣油比為GOR2,CO2氣未突破時地面氣組成為y1i,其中CO2的摩爾含量為y1CO2,注入CO2氣組成為y2i,CO2摩爾含量為y2CO2。設地面條件下氣的摩爾體積為M(mol/m3)。那麼未突破時采出1m3油時,采出氣為GOR1m3;CO2突破後采出1m3油時,采出氣為GOR2m3。采出氣的摩爾數分別為:GOR1/M;GOR2/M。突破後的氣相當於未突破時的氣混入了一定量的CO2氣,那麼對采出1m3油來考慮,見氣前後采出氣中的非CO2氣組分的摩爾量是相等的,因此有:
松遼盆地三肇凹陷特低滲透扶楊油層開發理論與實踐
因此氣突破後的氣油比GOR2為:
松遼盆地三肇凹陷特低滲透扶楊油層開發理論與實踐
利用該公式計算了芳188-137井、芳190-136井、芳190-138井、芳190-140井的氣油比,2007年底,4口井的氣油比在117~273m3/m3(表6-36)。
表6-36 4口見氣井2007年底氣油比計算結果
2.芳48斷塊非混相特徵分析
理論和實踐均證明:混相驅的驅油效率遠高於非混相驅,而注氣開採的驅油效率很大程度上取決於驅替壓力。只有當驅替壓力高於最小混相壓力(Minimum Miscibility Pres-sure,MMP)時才能達到混相驅替。也就是說,混相驅和非混相驅應用的界限就是最小混相壓力。我國多數油田由於原油性質較差,達不到混相條件,只能是非混相驅替。在礦場實際過程中可通過氣油比的變化特徵判斷混相或非混相驅替。
非混相驅替過程中,注入孔隙體積與氣油比的關系大致可分為3個階段。第一階段和第二階段氣油比變化不明顯,第三階段氣油比急劇上升。即氣體突破前,氣油比基本不變。突破後,氣油比有所增大,但由於建立了油氣混合帶,隨之又出現了一個明顯的台階,持續一段時間以後,氣油比才迅速增大(圖6-28)。也就是說,在氣油比迅速上升之前存在一個明顯的過渡性台階。圖6-28所對應的實驗壓力為20.6MPa,比混相壓力(29MPa)低8.4MPa,為非混相驅替。
圖6-28 芳48非混相驅長岩心實驗壓差、氣油比變化曲線
混相驅與非混相驅的氣油比變化規律則明顯不同。由於混相驅替建立的油氣混合帶較窄,因此,采出端見氣後,氣油比迅速上升(圖6-29),中間沒有明顯的過渡帶。圖6-29對應的實驗壓力為50MPa,比混相壓力(29MPa)高21MPa,為典型的混相驅。
圖6-29 芳48混相驅長岩心實驗壓差、氣油比曲線
根據室內實驗得出的混相與非混相驅的氣油比變化規律,為芳48試驗區的混相特徵分析提供了依據。
試驗區見氣較早的芳190-136井的氣油比變化曲線見圖6-26。該井於2005年3月見氣,之後氣油比逐漸上升,到2006年8月氣油比達到最高(600m3/m3左右),這期間共注氣11500t,折算地下體積0.23PV,後期由於採取脈沖注氣使氣油比明顯下降。根據室內實驗得出的混相與非混相驅的氣油比判斷標准,芳48試驗區為典型的非混相驅。
(四)腐蝕狀況監測表明,地面及井下管柱無明顯腐蝕,滿足了開發需要
2006年9月,開展了注氣試驗區腐蝕現狀調查研究。對芳188-137、芳190-140井地面管線進行了實驗室分析,並對這2口井安裝了腐蝕試驗試片。另外,在芳190-138井油套環空內放置了J55鋼腐蝕試驗試片,進行井下腐蝕狀況監測,取得了以下認識:
1.地面管道無明顯腐蝕現象
從芳188-137、芳190-140井地面管道直管段及彎頭部分剖開後的外觀情況看,管道基本完好,內表面無蝕坑、破損、裂紋等現象,未見有明顯腐蝕現象發生。2006年9月28日在這2口井的地面管線內部放置20#鋼腐蝕試驗試片,2006年11月15日取出,試驗周期47d,除去表層油污後,仍可見金屬光澤,試片表面無蝕坑、破損等現象,在試驗期內腐蝕掛片未見有明顯腐蝕現象發生。
2.井下試片腐蝕現象不明顯
2006年9月28日,在芳190-138井油套環空內放置J55鋼腐蝕試驗試片,2006年11月15日取出,試驗周期47d,也未見腐蝕現象發生。
3.腐蝕速率評價
芳48斷塊注氣試驗井組現場腐蝕試驗分析結果見表6-37。地面和井下試片均未見明顯腐蝕,介質腐蝕性等級為低級,平均腐蝕速率為0.0028~0.0032mm/a。
表6-37 芳48斷塊典型介質現場腐蝕試驗結果
分析芳48注氣試驗區地面及井下管柱腐蝕較弱,主要有以下原因:一是油井含水率低。芳188-137井、芳190-138井基本不含水,芳190-140井含水也在10%以下,這是試驗井腐蝕較弱的主要原因;二是試驗周期短,對腐蝕試驗效果有一定影響。
(五)結論及認識
1)CO2驅油技術能夠使特低滲透扶楊油層建立起有效驅動體系,作為一項難采儲量動用技術,具有廣闊的發展前景。
2)室內實驗測得扶楊油層最小混相壓力為29MPa,比原始地層壓力(20.4MPa)高8.6MPa,結合現場試驗氣油比變化規律綜合分析表明,芳48斷塊CO2驅油為非混相驅。
3)室內可行性評價實驗和油藏地質建模、數值模擬研究,較好地指導了試驗方案優化設計,礦場試驗表明,方案符合程度較高。
4)井溫、壓力梯度測試技術搞清了井筒中CO2的相態分布特徵;氣體示蹤及微地震氣驅前緣測試技術揭示了扶楊油層非均質性強的特點,有效指導了氣驅試驗的分析與調整。
5)脈沖注氣結合油井工作制度優化能夠有效解決因儲層非均質性強引起的油井受效不均衡,提高了CO2利用率;CO2吞吐作為注氣驅油的一項引效措施,具有操作方便,成本低等優點。
6)注CO2驅油實現了特低滲透扶楊油層的有效動用,主要表現在油井見效快、產量恢復程度高,見效高峰期的採油速度是同類型注水開發區塊的3倍以上;油井見氣後產量呈雙曲遞減。
7)適合CO2驅油的撬裝注氣裝置、KQ65-35-FF注入井井口、油管防腐和油井防氣工藝技術,基本滿足了試驗區開發需要。
8)油藏深部封竄技術抑制了CO2驅油過程中氣竄的影響,可作為提高注入氣波及體積、改善注氣開發效果的儲備技術。
Ⅲ 還有兩題,請告訴我流體力學里"孔口"名詞辨析和"管嘴"名詞辨析分別是
當在容器的孔口處接上斷面與孔口形狀相同、長度l = (3 ~ 4)d (其中d 為管道直徑)的
短管,此短管稱為管嘴。
孔口:液體流過並具有閉合濕周的擋水壁面開口
Ⅳ 流體力學實驗:孔口和管嘴出流實驗,為什麼局部阻力系數算出來之後有的大於0,有的小於0急!!!
按你的實驗描述不可能為負
除非有外力或者高速流體引射
再檢查下實驗數據或者計算公式吧
Ⅳ 在孔口、管嘴斷面面積相等的條件下,開孔口的位置的變化對孔口和管嘴的出流流量有無影響為什麼
沒有示意圖?
我就按我的理解試試回答您的問題:
孔口的位置對孔口出流量當然有影響啦:孔口的位置越低,單位時間出流量就越大,因為水面和孔口的差大了 -- 壓力差就大了。
Ⅵ 結合觀測不同類型管嘴與孔口出流的流股特徵,分析流量系數不同的原因及增大過流能力的途徑
口形狀對出流能力影響各不相同,圓角管嘴和圓錐管嘴的流股形態為光滑圓柱(主要由於內收縮斷面處存在真空,過流能力大),直角管嘴為圓柱形麻花狀扭變(局部阻力相對大),孔口出流是具有側收縮的圓柱流股。(孔口出流存在收縮斷面,並且和孔口邊緣以及H等關系密切,過流能力小)
增大過流能力:用流線型管或者圓角管嘴,圓錐管嘴。一般來說流量系數大,過流能力就大。
管嘴出流,因為在1/2d處出現流束收縮為最小,之後由於空氣阻力,流速降低,流束擴散。在管嘴中由於收縮作用,產生一定的真空度,加強出流能力。
(6)孔口管嘴實驗成果分析擴展閱讀:
收縮斷面的真空是有限的,當真空度達到7m以上水柱時,由於液體在低於飽和蒸汽壓時會發生氣化,以及空氣將會自管嘴出口處吸入,從而收縮斷面處的真空被破壞,管嘴不能保持滿管出流而如同孔口出流一樣。因此收縮斷面真空度得限制決定了管嘴的作用水頭H有一個極限值,規定H=9m.
另外,管嘴的長度也有一定的限制。長度過短,水流收縮後來不及擴大到整個管斷面,不能阻止空氣進入;長度過長,沿程損失增大比重,管嘴出流變為短管出流。
所有,管嘴正常工作條件是:
(1)作用水頭H<=9m;
(2)管嘴長度L=(3-4)d 。