導航:首頁 > 證書轉讓 > 量子研究成果

量子研究成果

發布時間:2021-12-05 08:20:09

Ⅰ 解釋一下量子力學 尤其量子糾纏及學術界最新研究成果

量子力學的基本內容
量子力學的基本原理包括量子態的概念,運動方程、理論概念和觀測物理量之間的對應規則和物理原理。
在量子力學中,一個物理體系的狀態由態函數表示,態函數的任意線性疊加仍然代表體系的一種可能狀態。狀態隨時間的變化遵循一個線性微分方程,該方程預言體系的行為,物理量由滿足一定條件的、代表某種運算的算符表示;測量處於某一狀態的物理體系的某一物理量的操作,對應於代表該量的算符對其態函數的作用;測量的可能取值由該算符的本徵方程決定,測量的期待值由一個包含該算符的積分方程計算。
(一般而言,量子力學並不對一次觀測確定地預言一個單獨的結果.取而代之,它預言一組可能發生的不同結果,並告訴我們每個結果出現的概率.也就是說,如果我們對大量類似的系統作同樣地測量,每一個系統以同樣的方式起始,我們將會找到測量的結果為A出現一定的次數,為B出現另一不同的次數等等.人們可以預言結果為A或B的出現的次數的近似值,但不能對個別測量的特定結果做出預言.)
態函數的平方代表作為其變數的物理量出現的幾率。根據這些基本原理並附以其他必要的假設,量子力學可以解釋原子和亞原子的各種現象。
根據狄拉克符號表示,態函數,用<Ψ|和|Ψ>表示,態函數的概率密度用ρ=<Ψ|Ψ>表示,其概率流密度用(ħ/2mi)(Ψ*▽Ψ-Ψ▽Ψ*)表示,其概率為概率密度的空間積分。
態函數可以表示為展開在正交空間集里的態矢比如|Ψ(x)>=∑|ρ_i>,其中|ρ_i>為彼此正交的空間基矢,<m|n>=δm,n為狄拉克函數,滿足正交歸一性質。
態函數滿足薛定諤波動方程,iħ(d/dt)|m>=H|m>,分離變數後就能得到不含時狀態下的演化方程H|m>=En|m>,En是能量本徵值,H是哈密頓能量運算元。
於是經典物理量的量子化問題就歸結為薛定諤波動方程的求解問題。
關於量子力學的解釋涉及許多哲學問題,其核心是因果性和物理實在問題。按動力學意義上的因果律說,量子力學的運動方程也是因果律方程,當體系的某一時刻的狀態被知道時,可以根據運動方程預言它的未來和過去任意時刻的狀態。
但量子力學的預言和經典物理學運動方程(質點運動方程和波動方程)的預言在性質上是不同的。在經典物理學理論中,對一個體系的測量不會改變它的狀態,它只有一種變化,並按運動方程演進。因此,運動方程對決定體系狀態的力學量可以作出確定的預言。
但在量子力學中,體系的狀態有兩種變化,一種是體系的狀態按運動方程演進,這是可逆的變化;另一種是測量改變體系狀態的不可逆變化。因此,量子力學對決定狀態的物理量不能給出確定的預言,只能給出物理量取值的幾率。在這個意義上,經典物理學因果律在微觀領域失效了。
據此,一些物理學家和哲學家斷言量子力學擯棄因果性,而另一些物理學家和哲學家則認為量子力學因果律反映的是一種新型的因果性——幾率因果性。量子力學中代表量子態的波函數是在整個空間定義的,態的任何變化是同時在整個空間實現的。
20世紀70年代以來,關於遠隔粒子關聯的實驗表明,類空分離的事件存在著量子力學預言的關聯。這種關聯是同狹義相對論關於客體之間只能以不大於光速的速度傳遞物理相互作用的觀點相矛盾的。於是,有些物理學家和哲學家為了解釋這種關聯的存在,提出在量子世界存在一種全局因果性或整體因果性,這種不同於建立在狹義相對論基礎上的局域因果性,可以從整體上同時決定相關體系的行為。
量子力學用量子態的概念表徵微觀體系狀態,深化了人們對物理實在的理解。微觀體系的性質總是在它們與其他體系,特別是觀察儀器的相互作用中表現出來。
人們對觀察結果用經典物理學語言描述時,發現微觀體系在不同的條件下,或主要表現為波動圖象,或主要表現為粒子行為。而量子態的概念所表達的,則是微觀體系與儀器相互作用而產生的表現為波或粒子的可能性。
量子力學表明,微觀物理實在既不是波也不是粒子,真正的實在是量子態。真實狀態分解為隱態和顯態,是由於測量所造成的,在這里只有顯態才符合經典物理學實在的含義。微觀體系的實在性還表現在它的不可分離性上。量子力學把研究對象及其所處的環境看作一個整體,它不允許把世界看成由彼此分離的、獨立的部分組成的。關於遠隔粒子關聯實驗的結論,也定量地支持了量子態不可分離 . 不確定性指經濟行為者在事先不能准確地知道自己的某種決策的結果。或者說,只要經濟行為者的一種決策的可能結果不止一種,就會產生不確定性。
不確定性也指量子力學中量子運動的不確定性。由於觀測對某些量的干擾,使得與它關聯的量(共軛量)不準確。這是不確定性的起源。
不確定性,經濟學中關於風險管理的概念,指經濟主體對於未來的經濟狀況(尤其是收益和損失)的分布范圍和狀態不能確知。
在量子力學中,不確定性指測量物理量的不確定性,由於在一定條件下,一些力學量只能處在它的本徵態上,所表現出來的值是分立的,因此在不同的時間測量,就有可能得到不同的值,就會出現不確定值,也就是說,當你測量它時,可能得到這個值,可能得到那個值,得到的值是不確定的。只有在這個力學量的本徵態上測量它,才能得到確切的值。
在經典物理學中,可以用質點的位置和動量精確地描述它的運動。同時知道了加速度,甚至可以預言質點接下來任意時刻的位置和動量,從而描繪出軌跡。但在微觀物理學中,不確定性告訴我們,如果要更准確地測量質點的位置,那麼測得的動量就更不準確。也就是說,不可能同時准確地測得一個粒子的位置和動量,因而也就不能用軌跡來描述粒子的運動。這就是不確定性原理的具體解釋。
波爾波爾,量子力學的傑出貢獻者,波爾指出:電子軌道量子化概念。波爾認為,原子核具有一定的能級,當原子吸收能量,原子就躍遷更高能級或激發態,當原子放出能量,原子就躍遷至更低能級或基態,原子能級是否發生躍遷,關鍵在兩能級之間的差值。根據這種理論,可從理論計算出里德伯常理,與實驗符合的相當好。可波爾理論也具有局限性,對於較大原子,計算結果誤差就很大,波爾還是保留了宏觀世界中,軌道的概念,其實電子在空間出現的坐標具有不確定性,電子聚集的多,就說明電子在這里出現的概率較大,反之,概率較小。很多電子聚集在一起,可以形象的稱為電子雲。
[編輯本段]
量子力學詮釋:粒子的振動
、霍金膜上的四維量子論
類似10維或11維的「弦論」=振動的弦、震盪中的象弦一樣的微小物體。
霍金膜上四維世界的量子理論的近代詮釋(鄧宇等,80年代):
振動的量子(波動的量子=量子鬼波)=平動微粒子的振動;振動的微粒子;震盪中的象量子(粒子)一樣的微小物體。
波動量子=量子的波動=微粒子的平動+振動
=平動+振動
=矢量和
量子鬼波的DENG'S詮釋:微粒子(量子)平動與振動的矢量和
粒子波、量子波=粒子的震盪(平動粒子的震動)
[編輯本段]
「波」和「粒子」統一的數學關系
振動粒子的量子論詮釋
物質的粒子性由能量 E 和動量 p 刻劃,波的特徵則由電磁波頻率 ν 和其波長 λ 表達,這兩組物理量的比例因子由普朗克常數 h(h=6.626*10^-34J•s) 所聯系。
E=hv , E=mc^2 聯立兩式,得:m=hv/c^2(這是光子的相對論質量,由於光子無法靜止,因此光子無靜質量)而p=mc
則p=hv/c(p 為動量)
粒子波的一維平面波的偏微分波動方程,其一般形式為
∂ξ/∂x=(1/u)(∂ξ/∂t) 5
三維空間中傳播的平面粒子波的經典波動方程為
∂ξ/∂x+∂ξ/∂y+∂ξ/∂z=(1/u)(∂ξ/∂t) 6
波動方程實際是經典粒子物理和波動物理的統一體,是運動學與波動學的統一.波動學是運動學的一部分,是運動學的延伸,即平動與振動的矢量和.對象不同,一個是連續介質,一個是定域的粒子,都可以具有波動性.(鄧宇等,80年代)
經典波動方程1,1'式或4--6式中的u,隱含著不連續的量子關系E=hυ和德布羅意關系λ=h/p,由於u=υλ,故可在u=υλ的右邊乘以含普朗克常數h的因子(h/h),就得到
u=(υh)(λ/h)
=E/p
鄧關系u=E/p,使經典物理與量子物理,連續與不連續(定域)之間產生了聯系,得到統一.
2.粒子的波動與德布羅意物質波的統一
德布羅意關系λ=h/p,和量子關系E=hυ(及薛定諤方程)這兩個關系式實際表示的是波性與粒子性的統一關系, 而不是粒性與波性的兩分.德布羅意物質波是粒波一體的真物質粒子,光子,電子等的波動.
[編輯本段]
量子力學的誕生
19世紀末20世紀初,經典物理已經發展到了相當完善的地步,但在實驗方面又遇到了一些嚴重的困難,這些困難被看作是「晴朗天空的幾朵烏雲」,正是這幾朵烏雲引發了物理界的變革。下面簡述幾個困難:
⑴黑體輻射問題
完全黑體(空窖)在與熱輻射達到平衡時,輻射能量密度隨頻率的變化有一個曲線。W.Wien從熱力學普遍理論考慮以及分析實驗數據得出一個半經典的公式,公式與實驗曲線大部分符合得不錯,但在長波波段,公式與實驗有明顯的偏離。這促使Planck去改進Wien的公式得到了一個兩參數的Planck公式,公式與實驗數據符合得相當好。
⑵光電效應
由於紫外線照射,大量電子從金屬表面逸出。經研究發現,光電效應呈現以下幾個特點:
a. 有一個確定的臨界頻率,只有入射光的頻率大於臨界頻率,才會有光電子逸出。
b. 每個光電子的能量只與照射光的頻率有關。
c. 入射光頻率大於臨界頻率時,只要光一照上,幾乎立刻觀測到光電子。
以上3個特點,c是定量上的問題,而a、b在原則上無法用經典物理來解釋。
⑶原子的線狀光譜及其規律
光譜分析積累了相當豐富的資料,不少科學家對它們進行了整理與分析,發現原子光譜是呈分立的線狀光譜而不是連續分布。譜線的波長也有一個很簡單的規律。
⑷原子的穩定性
Rutherford模型發現後,按照經典電動力學,加速運動的帶電粒子將不斷輻射而喪失能量。故,圍繞原子核運動的電子終會因大量喪失能量而』掉到』原子核中去。這樣原子也就崩潰了。但現實世界表明,原子是穩定的存在著。
⑸固體與分子得比熱問題
在溫度很低的時候能量均分定理不適用。
Planck-Einstein的光量子理論
量子理論是首先在黑體輻射問題上突破的。Planck為了從理論上推導他的公式,提出了量子的概念-h,不過在當時沒有引起很多人的注意。Einstein利用量子假設提出了光量子的概念,從而解決了光電效應的問題。Einstein還進一步把能量不連續的概念用到了固體中原子的振動上去,成功的解決了固體比熱在T→0K時趨於0的現象。光量子概念在Compton散射實驗中得到了直接的驗證。
Bohr的量子論
Bohr把Planck-Einstein的概念創造性的用來解決原子結構和原子光譜的問題,提出了他的原子的量子論。主要包括兩個方面:
a. 原子能且只能穩定的存在分立的能量相對應的一系列的狀態中。這些狀態成為定態。
b. 原子在兩個定態之間躍遷時,吸收或發射的頻率v是唯一的,由hv=En-Em 給出。 Bohr的理論取得了很大的成功,首次打開了人們認識原子結構的大門,它存在的問題和局限性也逐漸為人們發現。
De Broglie的物質波
在Planck與Einstein的光量子理論及Bohr的原子量子論的啟發下,考慮到光具有波粒二象性,de Broglie根據類比的原則,設想實物理子也具有波粒二象性。他提出這個假設,一方面企圖把實物粒子與光統一起來,另一方面是為了更自然的去理解能量的不連續性,以克服Bohr量子化條件帶有人為性質的缺點。實物粒子波動性的直接證明,是在1927年的電子衍射實驗中實現的。
量子力學的建立
量子力學本身是在1923-1927年一段時間中建立起來的。兩個等價的理論---矩陣力學和波動力學幾乎同時提出。矩陣力學的提出與Bohr的早期量子論有很密切的關系。Heisenberg一方面繼承了早期量子論中合理的內核,如能量量子化、定態、躍遷等概念,同時又摒棄了一些沒有實驗根據的概念,如電子軌道的概念。Heisenberg、Bohn和Jordan的矩陣力學,從物理上可觀測量,賦予每一個物理量一個矩陣,它們的代數運算規則與經典物理量不同,遵守乘法不可易的代數。波動力學來源於物質波的思想。Schr dinger在物質波的啟發下,找到一個量子體系物質波的運動方程-Schr dinger方程,它是波動力學的核心。後來Schr dinger還證明,矩陣力學與波動力學完全等價,是同一種力學規律的兩種不同形式的表述。事實上,量子理論還可以更為普遍的表述出來,這是Dirac和Jordan的工作。
量子物理學的建立是許多物理學家共同努力的結晶,它標志著物理學研究工作第一次集體的勝利。
[編輯本段]
量子力學的產生與發展
量子力學是描述微觀世界結構、運動與變化規律的物理科學。它是20世紀人類文明發展的一個重大飛躍,量子力學的發現引發了一系列劃時代的科學發現與技術發明,對人類社會的進步做出重要貢獻。
19世紀末正當人們為經典物理取得重大成就的時候,一系列經典理論無法解釋的現象一個接一個地發現了。德國物理學家維恩通過熱輻射能譜的測量發現的熱輻射定理。德國物理學家普朗克為了解釋熱輻射能譜提出了一個大膽的假設:在熱輻射的產生與吸收過程中能量是以hV為最小單位,一份一份交換的。這個能量量子化的假設不僅強調了熱輻射能量的不連續性,而且與輻射能量和頻率無關由振幅確定的基本概念直接相矛盾,無法納入任何一個經典範疇。當時只有少數科學家認真研究這個問題。
著名科學家愛因斯坦經過認真思考,於1905年提出了光量子說。1916年美國物理學家密立根發表了光電效應實驗結果,驗證了愛因斯坦的光量子說。
1913年丹麥物理學家玻爾為解決盧瑟福原子行星模型的不穩定(按經典理論,原子中電子繞原子核作圓周運動要輻射能量,導致軌道半徑縮小直到跌落進原子核,與正電荷中和),提出定態假設:原子中的電子並不像行星一樣可在任意經典力學的軌道上運轉,穩定軌道的作用量fpdq必須為h的整數倍(角動量量子化),即fpdq=nh,n稱之為量子數。玻爾又提出原子發光過程不是經典輻射,是電子在不同的穩定軌道態之間的不連續的躍遷過程,光的頻率由軌道態之間的能量差AE=hV確定,即頻率法則。這樣,玻爾原子理論以它簡單明晰的圖像解釋了氫原子分立光譜線,並以電子軌道態直觀地解釋了化學元素周期表,導致了72號元素鉛的發現,在隨後的短短十多年內引發了一系列的重大科學進展。這在物理學史上是空前的。
由於量子論的深刻內涵,以玻爾為代表的哥本哈根學派對此進行了深入的研究,他們對對應原理、矩陣力學、不相容原理、測不準關系、互補原理。量子力學的幾率解釋等都做出了貢獻。
1923年4月美國物理學家康普頓發表了X射線被電子散射所引起的頻率變小現象,即康普頓效應。按經典波動理論,靜止物體對波的散射不會改變頻率。而按愛因斯坦光量子說這是兩個「粒子」碰撞的結果。光量子在碰撞時不僅將能量傳遞而且也將動量傳遞給了電子,使光量子說得到了實驗的證明。
光不僅僅是電磁波,也是一種具有能量動量的粒子。1924年美籍奧地利物理學家泡利發表了「不相容原理」:原子中不能有兩個電子同時處於同一量子態。這一原理解釋了原子中電子的殼層結構。這個原理對所有實體物質的基本粒子(通常稱之為費米子,如質子、中子、誇克等)都適用,構成了量子統計力學———費米統計的基點。為解釋光譜線的精細結構與反常塞曼效應,泡利建議對於原於中的電子軌道態,除了已有的與經典力學量(能量、角動量及其分量)對應的三個量子數之外應引進第四個量子數。這個量子數後來稱為「自旋」,是表述基本粒子一種內在性質的物理量。
1924年,法國物理學家德布羅意提出了表達波粒二象性的愛因斯坦———德布羅意關系:E=hV,p=h/入,將表徵粒子性的物理量能量、動量與表徵波性的頻率、波長通過一個常數h相等。
1925年,德國物理學家海森伯和玻爾,建立了量子理論第一個數學描述———矩陣力學。1926年,奧地利科學家提出了描述物質波連續時空演化的偏微分方程———薛定諤方程,給出了量子論的另一個數學描述——波動力學。1948年,費曼創立了量子力學的路徑積分形式。
量子力學在低速、微觀的現象范圍內具有普遍適用的意義。它是現代物理學基礎之一,在現代科學技術中的表面物理、半導體物理、凝聚態物理、粒子物理、低溫超導物理、量子化學以及分子生物學等學科的發展中,都有重要的理論意義。量子力學的產生和發展標志著人類認識自然實現了從宏觀世界向微觀世界的重大飛躍。
[編輯本段]
量子力學處理微觀體系的步驟:
1. 根據體系的物理條件,寫出它的勢能函數,進一步寫出 Hamilton算符及 Schrodingger方程。
2. 解Schrodinger方程,根據邊界條件求ψn和En。
3. 描繪出ψn、︱ψn︱等的圖形,並討論其分布特點。
4. 由上面求得的,進一步求出各個對應狀態的各種力學量的數值,從中了解體系的質。
5. 聯系實際問題,對求得的結果加以應用。
量子力學在小說《我們無處安放的青春》中的解釋....
羅慧:在量子力學的世界裡邊只有變數沒有常數。就好比今天我在這給你們講課。從量子力學的角度來看,因為里邊充滿了太多的變數,這個概率接近於零,也就是說這完全是一個偶然。所以,我想我們大家都應該珍惜這個偶然。
李然:就說量子力學吧,在量子力學的世界裡面,只有變數沒有常數,就好像我能遇見你,如果從量子力學的角度來看,裡面充滿了太多變數,這個概率接近於零,也就是說這完全是一個偶然,所以我們大家都應該珍惜這個偶然.

Ⅱ 量子糾纏等一系列研究獲得重大突破,意味著什麼

量子研究方面中國處於世界領先地位,我們中國的量子研究可以說是世界一流水平,中國科學家在量子研究方面,擁有很多的研究成果,而且中國科學家的一些實驗,更是讓世界感到震驚,我們中國科學家對於量子研究的深入程度,已經完全的超越世界水平。

近期有一個好消息傳來,美國最著名的克利夫蘭獎頒發給中國墨子號探測器的研究團隊,這是表彰我國科學家在千公里級星地雙向量子糾纏分發方面做出的貢獻,中國科學家推動大尺度量子通信實驗方面,成績十分的卓越,我們的數據是世界最先進的數據。


我國的科學家還通過國際合作,取得了一系列的成就,我國科學家和奧地利科學院的國際合作,通過墨子號量子衛星首次實現了北京和維也納之間的量子保密通信,這項技術更是為中國進入量子時代,開啟了一個全新的途徑,增加了中國科學技術的砝碼。

Ⅲ 物理學界2019年最新研究成果

量子控制方面的最新發現,將可能會實現基於量子力學的超快量子計算:光誘導無能隙超導,超導電流的量子節拍。太赫茲和納米尺度的物質和能量的量子世界(每秒幾萬億次周期和十億分之一米),對我們大多數人來說仍然是一個謎。愛荷華州立大學物理學和天文學教授王繼剛(音譯)說:我喜歡研究超導率超過千兆赫(每秒數十億次)的量子控制,這是目前最先進的量子計算應用瓶頸。



使用太赫茲光作為控制旋鈕來加速超電流,超導性是電在某些材料中無電阻的運動,通常發生在非常非常冷的溫度下。太赫茲光是高頻率光,每秒幾萬億次的頻率周期,它本質上是非常強和強大的微波爆發,在很短的時間內發射。王和一組研究人員證明,這種光可以用來控制超導態的一些基本量子特性。



包括宏觀超電流流動、對稱性破壞以及獲得某些被認為是對稱性所禁止的超高頻量子振盪。這聽起來既深奧又奇怪,但它可以有非常實際的應用。光誘導的超導電流為電磁設計量子工程應用的涌現,材料特性和集體相干振盪開辟了一條前進的道路,其研究於2019年7月1日發表在《自然光子學》(Nature Photonics)上。換句話說,這一發現可以幫助物理學家通過推動超電流,創造出速度極快的量子計算機。



如何控制、訪問和操縱量子世界的特殊特性,並將它們與現實世界的問題聯系起來,是當今科學界的一大推動。美國國家科學基金會(National Science Foundation)將這一「量子飛躍」納入了未來研發的「十大理念」。科學基金會對量子研究的支持總結說:通過利用這些量子系統的相互作用,下一代用於感測、計算、建模和通信的技術將更加精確和高效。

Ⅳ 目前我國量子科技的研究主要在哪些領域

目前量子科技的研究,主要還集中在量子通信、量子計算和量子精密測量等領域。專家指出,量子技術的前景應用非常好,但真正應用到百姓生活可能還要數年。千萬不要因為這些不科學的炒作,擾亂了市場,使這個領域失去民心。

專家認為,對於量子通信的概念炒得過熱的行為,市場監管部門應加強監管,通過整治虛假廣告等手段予以規制。同時,還需要加強科普,讓科學的概念能在權威平台一錘定音,讓概念無法被不良商家所利用。消費者也要擦亮眼睛,涉及科學概念,應從正規平台獲取信息。

Ⅳ 量子技術到底有多強大能給我們的生活帶來什麼

量子技術是研究電子、原子、分子等微觀粒子的運動規律的理論。作為物理學的基礎理論之一的量子力學,在無數近代科學技術和化學中都得到了廣泛應用。量子力學,早期也稱波動力學或矩陣力學,通過用波函數描述微觀粒子的運動狀態,以薛定諤方程確定波函數的變化規律,並用算符或矩陣方法對各物理量進行計算。量子技術根植於復雜磅礴的量子力學,大到在尖端科技,小到在生活的方方面面,都貢獻出了巨大的便利。

量子技術本身對於國家實力有巨大幫助,更能穩定一個國家的地位。無數科學家已前仆後繼,嘔心瀝血,他們的研究成果為國家做出了巨大的貢獻。我輩應當以這些偉大的科學家為榜樣,哪怕不能在前端領域做出成果,也要努力學習,獲得知識,爭取用自己的力量為祖國謀復興。

Ⅵ 量子理論的最新研究成果是什麼量子學家眼中的物質是什麼

建議買本《環球科學》.這東西千變萬化,沒人能回答你.
物質?有6種量子理論,各種唯心和唯物,每種理論對於物質的看法都是不同的.要看你支持哪個.
量子論沒有真正的正確.

Ⅶ 量子力學的成就主要有哪些

量子力學發展了百年的歷史,成為了研究微觀粒子世界運動學的基礎,主要成就是能描述微觀粒子的運動,正如牛頓定律描述宏觀世界一樣,最漂亮的工作是完美的解決了氫原子模型,但多粒子系統的處理並不能夠得到精確解,可以通過數值解得到,對於微觀多粒子系統的解決還依賴於量子統計和多體理論的發展

Ⅷ 量子理論的最新研究成果是什麼量子學家眼中的物質是什麼

建議買本《環球科學》。這東西千變萬化,沒人能回答你。
物質?有6種量子理論,各種唯心和唯物,每種理論對於物質的看法都是不同的。要看你支持哪個。
量子論沒有真正的正確。

Ⅸ 武漢有量子科學研究成果嗎

答案:武漢有量子科學研究成果
武漢理工大學材料學院熊傳溪教內授、董麗傑教授課容題組在半導體納米晶的功能化研究上取得了重大進展:通過高分子表面修飾,使得CdSe/CdS/ZnS量子點不僅在無溶劑存在時表現出奇異的流動性能,並且展現出比初始量子點更為優異的光致發光能力。

Ⅹ 中國量子計算機取得了怎樣的成果

在悉尼大學教授史蒂夫·弗拉米亞(Steve Flammia)看來,這項實驗最大的亮點是通過技術改進達到的實驗規模。

中國科學技術大學潘建偉、陸朝陽團隊構建的一套光量子計算系統,最近在高斯玻色采樣(Gaussian Boson Sampling)問題上取得重要突破,求解速度達到目前全球最快的超級計算機的一百萬億倍,遠遠超過經典計算機。這意味著中國科學家首次實現 “量子霸權”(quantum supremacy),另一個說法是量子優越性(quantum computational advantage),即在某個特定問題上的計算能力遠超現有最強的傳統計算機,而傳統計算機在有限時間內無法完成計算。

閱讀全文

與量子研究成果相關的資料

熱點內容
商標注冊網先咨政岳知識產權放心 瀏覽:658
公眾號版權投訴材料 瀏覽:841
簽訂無固定期限合同的好處 瀏覽:727
油汀發明 瀏覽:216
論文轉讓網 瀏覽:282
通州門面轉讓最新消息 瀏覽:165
第二屆紫金知識產權國際峰會 瀏覽:4
2010年4月自考知識產權法答案 瀏覽:259
3系馬年限量版價格 瀏覽:952
快餐店轉讓協議 瀏覽:407
小蘿莉和猴神大叔版權 瀏覽:290
產權年限到期後怎麼辦 瀏覽:83
銅川58同城轉讓 瀏覽:477
著作權使用許可範本 瀏覽:846
第三次工業革命的成果 瀏覽:414
火石創造筆試題 瀏覽:545
河南醫院轉讓 瀏覽:798
工商局法制工作總結 瀏覽:359
貝倫斯發明 瀏覽:242
馬鞍山匯通大廈地址 瀏覽:278