❶ 插值法公式
以下是我的個人觀點:
首先你得分清楚插值和擬合這兩個的區別,
擬合是指你做一條曲線或直線,使得你的數據點跟這條線的「誤差」最小。注意,這個要求並不要求所有的數據點在我們的擬合曲線上。
插值是指你做一條曲線或直線完全經過這些點,就是說數據點一定都要在插值曲線上。
插值也有好多種:比如拉格朗日插值,分段插值,樣條插值(樣條插值要求你還要知道這些數據點的一階導數)
我們知道兩點確定一條直線(一次多項式),三點確定一條拋物線(二次多項式),試想一下有10個點是不是可以確定一個9次多項式(9次多項式裡面還有一個常數項,就是10個未知數,我們有10個數據點,剛好可以求解)
(**)拉格朗日插值就是上面的這種插值。但是它就是把這些多項式系數重新表示了一下(就是不用去求上面所說的10個系數)。你求出這些系數後,只要將你想要的x的值往裡一代,馬上就得到你想要的函數值。但這種插值在頭尾附近會出現一些不好的振盪現象(龍格現象)
(**)分段插值,還是按照上面的原則,比如說,我兩個點兩個點地確定一條直線(比如1,2點連起來,2,3點連起來),最後所有直線的集合(這時應當是一系列的折線)這個分段函數也是經過所有的數據點。當然你也可以三個點三個點地確定一條拋物線。用這一方面時,你要先確定你想要的x值在哪一個區間里,然後用這一區間的表達式來計算出函數值就可以了。本方法不會出現龍格現象
(***)樣條插值,上面提到分段插值是一系列折線,折線使得不光滑,樣條就是用其導數值,使得它們變光滑。
下面說計算方法吧!至於表達式,你如果理解了上面,你去找本「計算方法」或「數值計算」的書,上面都有表達式。應當不難。
另外你還可以藉助於MATLAB這樣的軟體來計算。
比如你的原始數據是X,Y,你想要求y(x=5)的值
X=[2,6,10,14,18,22,26,30,34,38,41,42,45,49,53,57,61,65,69,73,77,81]; %自變數的值
Y=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]; %自變數相應的函數值
X0=5; %你想要的點的值
N=22; %這個是點的個數
Doc=2; %分段插值中你想用幾個點插值
你可以用下面的語句得到y(x=5);
Y1=lagrange(X,Y,X0) %拉格朗日插值
Y2=interp1(X,Y,X0,'linear') %分段兩點線性插值
Y2=interp1(X,Y,X0,'spline') %分段兩點線性插值
可能說的不好,你如果想系統地學點,可能得看一下相關的書。
❷ 財務管理中插值法怎麼計算
求實際利率是要用內插法(又叫插值法)計算的。「內插法」的原理是根據比例關系專建立一個方程,然後屬,解方程計算得出所要求的數據。學習之前先來做一個小測試吧點擊測試我合不合適學會計❸ 財務管理中插值法怎麼計算
財務管理插值法公式為,已知折現率a1的利率為b1,折現率a2的利率為b2,要想求折現率a3的利率b3,公式為:學習之前先來做一個小測試吧點擊測試我合不合適學會計❹ 會計的插值法怎麼算
插值法又稱"內插法",是利用函數f (x)在某區間中插入若干點的函數值,作出適當的特定函數,在這些點上取已知值,在區間的其他點上用這特定函數的值作為函數f (x)的近似值,這種方法稱為插值法。如果這特定函數是多項式,就稱它為插值多項式。
舉個例子:
年金的現值計算公式為 P=A*(P/A,i,n) 此公式中P,i,n已知兩個便可以求出第三個(這里的i便是您問題中的r)
所以,當已知P和n時,求i便需要使用插值法計算。 您提出問題的截圖是一般演算法,解出以上方程太過復雜,所以需要插值法簡化計算。
例: P/A=2.6087=(P/A,i,3)
查年金現值系數表可知
r P/A
8% 2.5771
所求r 2.6087
7% 2.6243
插值法計算: (8%-7%)/(8%-r)=(2.5771-2.6243)/(2.5771-2.6087)
求得 r=7.33%
以上為插值法全部內容舉例說明,除此之外復利的終值與現值、年金的終值都可以使用插值法求的利率或報酬率。
❺ 插值法計算問題
例如:假設與A1對應的數據是B1,與A2對應的數據是B2,現在已知與A對應的數據是B,A介於A1和A2之間,即下對應關系:
A1 B1
A(?) B
A2 B2
則可以按照(A1-A)/(A1-A2)=(B1-B)/(B1-B2)計算得出A的數值,其中A1、A2、B1、B2、B都是已知數據。
驗證如下:根據:(A1-A)/(A1-A2)=(B1-B)/(B1-B2)可知:
(A1-A)=(B1-B)/(B1-B2)×(A1-A2)
A=A1-(B1-B)/(B1-B2)×(A1-A2)
=A1+(B1-B)/(B1-B2)×(A2-A1)
例如:某人向銀行存入5000元,在利率為多少時才能保證在未來10年中每年末收到750元?
5000/750=6.667 或 750*m=5000
查年金現值表,期數為10,利率i=8%時,系數為6.710;i=9%,系數為6.418。說明利率在8-9%之間,設為x%
8% 6.710
x% 6.667
9% 6.418
(x%-8%)/(9%-8%)=(6.667-6.71)/(6.418-6.71) 計算得出 x=8.147。
❻ 插值法計算公式
將你假設的數字代入,得到方程
(69.65-▲Z)/(250-291)=(▲Z-69)/(291-300)
等式變換,化簡,得到(▲Z-69)*41=9*(69.65-▲Z)
所以解得▲Z=69.117
❼ 什麼是插值法,怎麼算
"以下面的例題為例:2008年1月1日甲公司購入乙公司當日發行的面值600 000元、期限3年、票面利率8%、每年年末付息且到期還本的債券作為可供出售金融資產核算,實際支付的購買價款為620 000元。則甲公司2008年12月31日因該可供出售金融資產應確認的投資收益是()元。(已知PVA(7%,3)=2.2463,PVA(6%,3)=2.673,PV(7%,3)=0.8163,PV(6%,3)=0.8396)
題目未給出實際利率,需要先計算出實際利率。600 000×PV(r,3)+600 000×8%×PVA(r,3)=620 000,採用內插法計算,得出r=6.35%。甲公司2008年12月31日因該可供出售金融資產應確認的投資收益=620 000×6.35%=39 370(元)。
插值法計算過程如下:
已知PVA(7%,3)=2.2463,PVA(6%,3)=2.673,PV(7%,3)=0.8163,PV(6%,3)=0.8396)
600 000×PV(r,3)+600 000×8%×PVA(r,3)=620 000
R=6%時
600000*0.8396+600000*8%*2.673=503760+128304=632064
R=7%時
600000*0.8163+600000*8%*2.2463=489780+107823=597603
6% 632064
r 620000
7% 597603
(6%-7%)/(6%-R)=(632064-597603)/(632064-620000)
解得R=6.35%
注意上面的式子的數字順序可以變的,但一定要對應。如可以為
(R-7%)/(7%-6%)=(620000-597603)/(597603-632064)也是可以的,當然還有其他的順序"
❽ 會計里的插值法怎麼計算
折價發行 票面利率為4% 說明實際利率大於4%。
用5%代入折現率計算出一個價格。看下價格 如果價格高於95用6%再算一個,低於95 那就4% 算出來100。
本題應該是高於95,那你用6%代入折現率,計算出一個價格。
兩個利率 5,6,兩個價格,以及目標價格95,用插值法就可以計算出目標折現率。
插值法的原理類似平均。即兩個價格的差是利率的差的某個倍數。
❾ 插值法怎麼算
要查表,我手邊沒有表,而且已經學過很多年了,只隨便說個數字,舉例說明:先假定r=4%,查表計算出數值=900
再假定r=5%,查表計算出數值=1100
然後計算(1100-900)/(5%-4%)=(1000-900)/(r-4%)
200(r-4%)=1
r=4.5%
如果你第一次選取是數值是3%,計算出數值=800,第二次選取4%,計算=900,都低於1000,那麼就要繼續試5%,6%……直到計算結果一個小於1000,另一個大於1000,而且與1000越接近,差值法計算出r越准確,如果選項一個1%,一個20%,查表後得出數值,確實也能計算,但不會很准
❿ 插值法如何計算,請詳解
將你假設的數字代入,得到方程
(69.65-▲Z)/(250-291)=(▲Z-69)/(291-300)
等式變換,化簡,得到(▲Z-69)*41=9*(69.65-▲Z)
所以解得▲Z=69.117