導航:首頁 > 創造發明 > 太陽能電池發明

太陽能電池發明

發布時間:2022-03-15 21:14:01

① 是誰發明了太陽能

太陽能利用歷史回顧
據記載,人類利用太陽能已有3000多年的歷史。將太陽能作為一種能源和動力加以利用,只有300多年的歷史。真正將太陽能作為「近期急需的補充能源」,「未來能源結構的基礎」,則是近來的事。20世紀70年代以來,太陽能科技突飛猛進,太陽能利用日新月異。近代太陽能利用歷史可以從1615年法國工程師所羅門·德·考克斯在世界上發明第一台太陽能驅動的發動機算起。該發明是一台利用太陽能加熱空氣使其膨脹作功而抽水的機器。在1615年~1900年之間,世界上又研製成多台太陽能動力裝置和一些其它太陽能裝置。這些動力裝置幾乎全部採用聚光方式採集陽光,發動機功率 不大,工質主要是水蒸汽,價格昂貴,實用價值不大,大部分為太陽能愛好者個人研究製造。20世紀的100年間,太陽能科技發展歷史大體可分為七個階段,下面分別予以介紹。

第一階段(1900-1920)

在這一階段,世界上太陽能研究的重點仍是太陽能動力裝置,但採用的聚光方式多樣化,且開始採用平板集熱器和低沸點工質,裝置逐漸擴大,最大輸出功率達73.64kW,實用目的比較明確,造價仍然很高。建造 的典型裝置有:1901年,在美國加州建成一台太陽能抽水裝置,採用截頭圓錐聚光器,功率:7.36kW;1902 -1908年,在美國建造了五套雙循環太陽能發動機,採用平板集熱器和低沸點工質;1913年,在埃及開羅以南建成一台由5個拋物槽鏡組成的太陽能水泵,每個長62.5m,寬4m,總採光面積達1250m2。

第二階段(1920-1945)

在這20多年中,太陽能研究工作處於低潮,參加研究工作的人數和研究項目大為減少,其原因與礦物燃料的大量開發利用和發生第二次世界大戰(1935-1945)有關,而太陽能又不能解決當時對能源的急需,因此使太陽能研究工作逐漸受到冷落。

第三階段(1945-1965)

在第二次世界大戰結束後的20年中,一些有遠見的人士已經注意到石油和天然氣資源正在迅速減少, 呼籲人們重視這一問題,從而逐漸推動了太陽能研究工作的恢復和開展,並且成立太陽能學術組織,舉辦學術交流和展覽會,再次興起太陽能研究熱潮。 在這一階段,太陽能研究工作取得一些重大進展,比較突出的有:1955年,以色列泰伯等在第一次國際太陽熱科學會議上提出選擇性塗層的基礎理論,並研製成實用的黑鎳等選擇性塗層,為高效集熱器的發展創造了條件;1954年,美國貝爾實驗室研製成實用型硅太陽電池,為光伏發電大規模應用奠定了基礎。此外,在這一階段里還有其它一些重要成果,比較突出的有: 1952年,法國國家研究中心在比利牛斯山東部建成一座功率為50kW的太陽爐。1960年,在美國佛羅里達建成世界上第一套用平板集熱器供熱的氨-水吸收式空調系統,製冷能力為5冷噸。1961年,一台帶有石英窗的斯特林發動機問世。在這一階段里,加強了太陽能基礎理論和基礎材料的研究,取得了如太陽選擇性塗層和硅太陽電池等技術上的重大突破。平板集熱器有了很大的發展,技術上逐漸成熟。太陽能吸收式空調的研究取得進展,建成一批實驗性太陽房。對難度較大的斯特林發動機和塔式太陽能熱發電技術進行了初步研究。

第四階段(1965-1973)

這一階段,太陽能的研究工作停滯不前,主要原因是太陽能利用技術處於成長階段,尚不成熟,並且投資大,效果不理想,難以與常規能源競爭,因而得不到公眾、企業和政府的重視和支持。

第五階段(1973-1980)

自從石油在世界能源結構中擔當主角之後,石油就成了左右經濟和決定一個國家生死存亡、發展和衰退的關鍵因素,1973年10月爆發中東戰爭,石油輸出國組織採取石油減產、提價等辦法,支持中東人民的斗爭,維護本國的利益。其結果是使那些依靠從中東地區大量進口廉價石油的國家,在經濟上遭到沉重打擊。 於是,西方一些人驚呼:世界發生了「能源危機」(有的稱「石油危機」)。這次「危機」在客觀上使人們認識到:現有的能源結構必須徹底改變,應加速向未來能源結構過渡。從而使許多國家,尤其是工業發達國家,重新加強了對太陽能及其它可再生能源技術發展的支持,在世界上再次興起了開發利用太陽能熱潮。1973年,美國制定了政府級陽光發電計劃,太陽能研究經費大幅度增長,並且成立太陽能開發銀行,促進太陽能產品的商業化。日本在1974年公布了政府制定的「陽光計劃」,其中太陽能的研究開發項目有:太陽房 、工業太陽能系統、太陽熱發電、太陽電池生產系統、分散型和大型光伏發電系統等。為實施這一計劃,日本政府投入了大量人力、物力和財力。70年代初世界上出現的開發利用太陽能熱潮,對我國也產生了巨大影響。一些有遠見的科技人員,紛紛投身太陽能事業,積極向政府有關部門提建議,出書辦刊,介紹國際上太陽能利用動態;在農村推廣應用太陽灶 ,在城市研製開發太陽熱水器,空間用的太陽電池開始在地面應用……。 1975年,在河南安陽召開「全國第一次太陽能利用工作經驗交流大會」,進一步推動了我國太陽能事業的發展。這次會議之後,太陽能研究和推廣工作納入了我國政府計劃,獲得了專項經費和物資支持。一些大學和科研院所,紛紛設立太陽能課題組和研究室,有的地方開始籌建太陽能研究所。當時,我國也興起了開發利用太陽能的熱潮。 這一時期,太陽能開發利用工作處於前所未有的大發展時期,具有以下特點:

各國加強了太陽能研究工作的計劃性,不少國家制定了近期和遠期陽光計劃。開發利用太陽能成為政府行為,支持力度大大加強。國際間的合作十分活躍,一些第三世界國家開始積極參與太陽能開發利用工作。
研究領域不斷擴大,研究工作日益深入,取得一批較大成果,如CPC、真空集熱管、非晶硅太陽電池、 光解水制氫、太陽能熱發電等。
各國制定的太陽能發展計劃,普遍存在要求過高、過急問題,對實施過程中的困難估計不足,希望在較短的時間內取代礦物能源,實現大規模利用太陽能。例如,美國曾計劃在1985年建造一座小型太陽能示範衛星電站,1995年建成一座500萬kW空間太陽能電站。事實上,這一計劃後來進行了調整,至今空間太陽 能電站還未升空。
太陽熱水器、太陽電他等產品開始實現商業化,太陽能產業初步建立,但規模較小,經濟效益尚不理想
第六階段(1980-1992)

70年代興起的開發利用太陽能熱潮,進入80年代後不久開始落潮,逐漸進入低谷。世界上許多國家相繼大幅度削減太陽能研究經費,其中美國最為突出。導致這種現象的主要原因是:世界石油價格大幅度回落,而太陽能產品價格居高不下,缺乏競爭力;太陽能技術沒有重大突破,提高效率和降低成本的目標沒有實現,以致動搖了一些人開發利用太陽能的信心;核電發展較快,對太陽能的發展起到了一定的抑製作用。 受80年代國際上太陽能低落的影響,我國太陽能研究工作也受到一定程度的削弱,有人甚至提出:太陽能利用投資大、效果差、貯能難、佔地廣,認為太陽能是未來能源,主張外國研究成功後我國引進技術。雖然,持這種觀點的人是少數,但十分有害,對我國太陽能事業的發展造成不良影響這一階段,雖然太陽能開發研究經費大幅度削減,但研究工作並未中斷,有的項目還進展較大,而且促使 人們認真地去審視以往的計劃和制定的目標,調整研究工作重點,爭取以較少的投入取得較大的成果。

第七階段(1992- 至今)

由於大量燃燒礦物能源,造成了全球性的環境污染和生態破壞,對人類的生存和發展構成威脅。在這樣背景下,1992年聯合國在巴西召開「世界環境與發展大會」,會議通過了《里約熱內盧環境與發展宣言》, 《21世紀議程》和《聯合國氣候變化框架公約》等一系列重要文件,把環境與發展納入統一的框架,確立了 可持續發展的模式。這次會議之後,世界各國加強了清潔能源技術的開發,將利用太陽能與環境保護結合在 一起,使太陽能利用工作走出低谷,逐漸得到加強。世界環發大會之後,我國政府對環境與發展十分重視,提出10條對策和措施,明確要「因地制宜地開發和推廣太陽能、風能、地熱能、潮汐能、生物質能等清潔能源」,制定了《中國21世紀議程》,進一步明確 了太陽能重點發展項目。1995年國家計委、國家科委和國家經貿委制定了《新能源和可再生能源發展綱要》 (1996- 2010),明確提出我國在1996-2010年新能源和可再生能源的發展目標、任務以及相應的對策和措施 。這些文件的制定和實施,對進一步推動我國太陽能事業發揮了重要作用。 1996年,聯合國在辛巴威召開「世界太陽能高峰會議」,會後發表了《哈拉雷太陽能與持續發展宣言 》,會上討論了《世界太陽能10年行動計劃》(1996- 2005),《國際太陽能公約》,《世界太陽能戰略規劃》等重要文件。這次會議進一步表明了聯合國和世界各國對開發太陽能的堅定決心,要求全球共同行動 ,廣泛利用太陽能。1992年以後,世界太陽能利用又進入一個發展期,其特點是:太陽能利用與世界可持續發展和環境保護緊密結合,全球共同行動,為實現世界太陽能發展戰略而努力;太陽能發展目標明確,重點突出,措施得力,有利於克服以往忽冷忽熱、過熱過急的弊端,保證太陽能事業的長期發展;在加大太陽能研究開發力度的同時,注意科技成果轉化為生產力,發展太陽能產業,加速商業化進程,擴大太陽能利用領域和規模,經濟效益逐漸提高;國際太陽能領域的合作空前活躍,規模擴大,效果明顯。通過以上回顧可知,在本世紀100年間太陽能發展道路並不平坦,一般每次高潮期後都會出現低潮期,處於低潮的時間大約有45年。太陽能利用的發展歷程與煤、石油、核能完全不同,人們對其認識差別大,反復多,發展時間長。這一方面說明太陽能開發難度大,短時間內很難實現大規模利用;另一方面也說明太陽能利用還受礦物能源供應,政治和戰爭等因素的影響,發展道路比較曲折。盡管如此,從總體來看,20世紀取得的太陽能科技進步仍比以往任何一個世紀都大。

可以說是: 羅門·德·考克斯

② 太陽能光伏發電是誰發明的

羅門·德·考克斯 是利用最早的人。
太陽能發電有很多形式,大體可以分為兩類,一版種是半導體權發電,一種是太陽能熱發電。
半導體發電是利用半導體界面的光生伏特效應而將光能直接轉變為電能的一種技術。這種技術的關鍵元件是太陽能電池。太陽能電池經過串聯後進行封裝保護可形成大面積的太陽電池組件,再配合上功率控制器等部件就形成了光伏發電裝置。單晶硅、多晶硅、薄膜發電均是這種技術。也較光伏發電,現在光伏發電的效率一般在20%左右,發電的成本在1.5-3元/kwh,價格還是比較貴。
還有一種是是太陽能熱發電技術,現在一般的太陽能技術最高也就做到150-200°,再高的話太陽能的效率就很低了,這個溫度還不能達到發電的水平,都在研究階段,還有應用實例。

③ 愛因斯坦怎麼成功發明太陽能電池的

太陽能電池

假如你想用太陽能光電池為自己的居室提供能量。這些光電池能夠把太陽能轉成電能,愛因斯坦在90年前發表的一篇論文里就首次正確地分析過這一轉換原理。

他發現光子具有能量。某些光子攜帶的能量足以克服將電子集中於某種金屬的「粘性」,這就是著名的光電效應。

④ 太陽能光伏電池是什麼時候發明的

太陽光發電的歷史可以追溯到1800年,貝克勒爾發現對某種半導體材料照射光後,會引起其伏安特性改變。最終,發現了光伏效應,並以此半導體製成太陽能光伏電池。1876年,英國科學家亞當斯等在研究半導體材料時發現了硒的光伏效應。1884年,美國科學家查爾斯製成了硒太陽能光伏電池,其轉換效率很低,僅有1%。其後,對氧化銅等半導體材料研究,同樣發現有光伏效應,所以也製成了以氧化銅等半導體材料為原料的太陽能光伏電池。
1954年,美國貝爾實驗室的皮爾松、佛朗等三名科學家利用硅晶體材料開發出性能良好的太陽能光伏電池,其轉換效率達6%,經過不斷改良後,成為現在的硅太陽能光伏電池。
太陽能光伏電池是1958年開始得到應用的。當時前蘇聯發射了人造衛星,美國也發射了人造衛星,在太空領域上,展開了激烈的競爭。前蘇聯發射的人造衛星使用的是原子能電池,美國發射的先驅者1號通信衛星採用的就是太陽能光伏電池。
由於太陽能光伏電池的價格特別高(高達1500美元/w),而且剛開始性能還不穩定,因此僅用於航天器。到了20世紀60年代初才慢慢趨於穩定,70年代開始在航天器上大量使用。太陽能光伏電池的性能雖然已穩定,但價格還是很高,所以直到20世紀70年代初太陽能光伏電池還沒有得到廣泛應用,只可用於航天器、人造衛星、山頂上的差轉電台、海上航標燈、海島燈塔電源等,一些不計成本,必須用的場所。
到了1973年後,在石油危機的推動下,太陽能光伏電池進入了蓬勃發展時期,太陽能光伏電池開始在地面使用,而且地面用太陽能光伏電池的數量很快就大大超過了在航天器上的使用量。這個時期,不但出現了許多新型電池,而且因為引進了許多新技術,出現了鈍化技術、減反射技術、絨面技術、背表面場技術、異質結太陽能電池技術及聚光電池等非常有效的新技術。
1976年,美國ca公司的卡爾松發明了非晶硅太陽能光伏電池。該電池的轉換效率雖低於單晶硅,但製造時可以任意選配電壓電流比。
太陽能光伏電池的應用,到了20世紀80年代就比較廣泛了,特別是在民用電器上得到了廣泛應用,如太陽能計算器、太陽能手錶和太陽能手機充電器等。
這主要有兩個原因:一個是半導體集成電路的發展,使得電子產品消耗的電量大幅度下降,在室內燈光下,太陽能光伏電池也能產生電力,可以充分地使計算器等電子產品正常工作;另一個原因是電子產品工作所必需的電壓能從一個基片上得到,這樣一種新的集成型非晶硅太陽能光伏電池可以便宜地製造。太陽能光伏電池計算器實用化後,從手錶開始,逐漸推廣到各種電子產品的應用。
太陽能光伏電池除了可以用簡單的裝置就能夠直接發電這一優點外,在使用時還有如下的優點。
(1)不產生對環境有不良影響的排放氣體及有害物質,沒有雜訊。
(2)不僅在太陽光下可以發電,在熒光燈、白熾燈等擴散光下也可以發電。
(3)不需要更換電池。
(4)可以直接接到dc機械上。
(5)在使用場合就可以發電。
我國的太陽能光伏電池誕生的也比較早,而且我國也是應用較早的國家之一。
1959年,我國就誕生了第一隻有實用價值的太陽能光伏電池。1971年3月太陽能光伏電池首次應用於我國第二顆人造衛星(實踐1號)。而後,1973年太陽能光伏電池首次用於浮標燈。
20世紀70年代,我國開始生產太陽能光伏電池,70年代中末期引進國外關鍵設備和成套生產線,我國太陽能光伏電池的生產產業有了進一步的發展。

⑤ 太陽能電池是誰發明的

羅門·德·考克斯

⑥ 人們從蝴蝶得到啟示,發明了太陽能電池,對嗎

在大自然中,植物綻放出萬紫千紅的花朵,蝴蝶在花叢中翩翩起舞,生機盎然,因此蝴蝶被稱為「會飛的花朵」.
蝴蝶不僅給人們帶來美的享受,更重要的是,它還給予科學家以有益的啟示,解決了航天上的一大難題.
這件事說起來十分有趣.人類發射的人造衛星,在太空飛行時會受到太陽光的強烈輻射,面向太陽的一面溫度往往高達200℃,而背著太陽的一面溫度卻會降到-200℃.這樣,衛星上裝置的各種精密儀器、儀表就很容易被「烤」裂或「凍」裂,對此,科學家們傷透了腦筋.後來,他們發現了蝴蝶的鱗片具有調節體溫的作用:當太陽光直射時,鱗片會自動張開,以減小太陽光的輻射角度,從而可以少吸收太陽光的熱能;當外界氣溫下降時,鱗片又會自動閉合,緊貼體表,使太陽光直射到身上,以便吸收到更多的太陽光的熱能,因而它能使自己的體溫始終控制在正常的范圍內.就這樣,科學家模仿蝴蝶的鱗片,為人造地球衛星設計出一種控制系統,從而圓滿地解決了這一難題.

⑦ 太陽能新發明有哪些

說起來環保和可再生能源,最多的討論應該就是太陽能。陽光的易得和能源含量使得太陽能已經成為了人們生活的一部分。而除了人們日常生活見到的太陽能電板,它在其他方面的發展也可能超過了你的認知呢。

太陽能心律調節器

手機或平板電腦沒電了怎麼辦?大不了充上電開機嘛,但若是如心律調節器這類植入人體內的電子醫療設備沒電了,那後果就嚴重多了。不過,最新的研究發明了一種新技術,將太陽能電池植入人體皮膚為體內的醫療設備充電,以後的心律調節器電池的更換,就不必如此麻煩了。

瑞士的這個研究團隊研發了可穿戴在手臂上的太陽能測量設備,設備內配有大小為 3.6 平方厘米的太陽能電池,面積小到能夠植入體內,且還能量測太陽能電池產生的電力輸出。而在太陽能電池上,放上了濾光片以模擬皮膚的特性及其對光源的影響。在一年內的任何時節里,即使實驗者交回的太陽能電池所產生的電力為最低者,平均下來,也能產生 12 微瓦的電量,比一般心律調節器所需的 5 至 10 微瓦還要高。

太陽能油漆

氫是最潔凈的能源之一,燃燒後只產生水,沒有其它有害的副產物。澳大利亞的研究人員發明的太陽能油漆正是利用可再生的太陽能,將空氣中的水蒸汽轉化為氫燃料。它的獨特之處來源於兩種關鍵的組分:硫化鉬和氧化鈦。前者負責吸收水,並催化水分解,後者負責吸收太陽能,提供水分解所需能量。這種太陽能油漆擁有很多優勢,例如不需要人為添加清水或蒸餾水,系統自身就可以從空氣中吸收水分。

⑧ 利用太陽能的發明有哪些

利用太陽發明了太陽能手錶、太陽能電腦、太陽能計算器、太陽能電池板、太陽能飯灶等。

太陽能(solar energy),是一種可再生能源。是指太陽的熱輻射能,主要表現就是常說的太陽光線。在現代一般用作發電或者為熱水器提供能源。

自地球上生命誕生以來,就主要以太陽提供的熱輻射能生存,而自古人類也懂得以陽光曬干物件,並作為製作食物的方法,如制鹽和曬咸魚等。在化石燃料日趨減少的情況下,太陽能已成為人類使用能源的重要組成部分,並不斷得到發展。

太陽能的利用有光熱轉換和光電轉換兩種方式,太陽能發電是一種新興的可再生能源。廣義上的太陽能也包括地球上的風能、化學能、水能等。

優點

(1)普遍:太陽光普照大地,沒有地域的限制,無論陸地或海洋,無論高山或島嶼,都處處皆有,可直接開發和利用,便於採集,且無須開采和運輸。

(2)無害:開發利用太陽能不會污染環境,它是最清潔能源之一,在環境污染越來越嚴重的今天,這一點是極其寶貴的。

(3)巨大:每年到達地球表面上的太陽輻射能約相當於130萬億噸煤,其總量屬現今世界上可以開發的最大能源。

(4)長久:根據太陽產生的核能速率估算,氫的貯量足夠維持上百億年,而地球的壽命也約為幾十億年,從這個意義上講,可以說太陽的能量是用之不竭的。

⑨ 光伏電池的發展歷史

按時間的發展順序,太陽電池發展有關的歷史事件匯總如下:
1839年法國科學家E.Becquerel發現液體的光生伏特效應(簡稱光伏現象)。
1877年W.G.Adams和R.E.Day研究了硒(Se)的光伏效應,並製作第一片硒太陽能電池。

1883年美國發明家charlesFritts描述了第一塊硒太陽能電池的原理。
1904年Hallwachs發現銅與氧化亞銅(Cu/Cu2O)結合在一起具有光敏特性;德國物理學家愛因斯坦(AlbertEinstein)發表關於光電效應的論文。
1918年波蘭科學家Czochralski發展生長單晶硅的提拉法工藝。
1921年德國物理學家愛因斯坦由於1904年提出的解釋光電效應的理論獲得諾貝爾(Nobel)物理獎。
1930年B.Lang研究氧化亞銅/銅太陽能電池,發表「新型光伏電池」論文;W.Schottky發表「新型氧化亞銅光電池」論文。
1932年Audobert和Stora發現硫化鎘(CdS)的光伏現象。
1933年L.O.Grondahl發表「銅-氧化亞銅整流器和光電池」論文。
1941年奧爾在硅上發現光伏效應。
1951年生長p-n結,實現制備單晶鍺電池。
1953年Wayne州立大學DanTrivich博士完成基於太陽光普的具有不同帶隙寬度的各類材料光電轉換效率的第一個理論計算。
1954年RCA實驗室的P.Rappaport等報道硫化鎘的光伏現象,(RCA:RadioCorporationofAmerica,美國無線電公司)。
貝爾(Bell)實驗室研究人員D.M.Chapin,C.S.Fuller和G.L.Pearson報道4.5%效率的單晶硅太陽能電池的發現,幾個月後效率達到6%。(貝爾實驗室三位科學家關於單晶硅太陽電池的研製成功)
1955年西部電工(WesternElectric)開始出售硅光伏技術商業專利,在亞利桑那大學召開國際太陽能會議,Hoffman電子推出效率為2%的商業太陽能電池產品,電池為14mW/片,25美元/片,相當於1785USD/W。
1956年P.Pappaport,J.J.Loferski和E.G.Linder發表「鍺和硅p-n結電子電流效應」的文章。
1957年Hoffman電子的單晶硅電池效率達到8%;D.M.Chapin,C.S.Fuller和G.L.Pearson獲得「太陽能轉換器件」專利權
1958年美國信號部隊的T.Mandelkorn製成n/p型單晶硅光伏電池,這種電池抗輻射能力強,這對太空電池很重要;Hoffman電子的單晶硅電池效率達到9%;第一個光伏電池供電的衛星先鋒1號發射,光伏電池100c㎡,0.1W,為一備用的5mW話筒供電。
1959年Hoffman電子實現可商業化單晶硅電池效率達到10%,並通過用網柵電極來顯著減少光伏電池串聯電阻;衛星探險家6號發射,共用9600片太陽能電池列陣,每片2c㎡,共20W。
1960年Hoffman電子實現單晶硅電池效率達到14%。
1962年第一個商業通訊衛星Telstar發射,所用的太陽能電池功率14W。
1962年第一個商業通訊衛星Telstar發射,所用的太陽能電池功率14W。
1962年第一個商業通訊衛星Telstar發射,所用的太陽能電池功率14W。
1963年Sharp公司成功生產光伏電池組件;日本在一個燈塔安裝242W光伏電池陣列,在當時是世界最大的光伏電池陣列。
1964年宇宙飛船「光輪發射」,安裝470W的光伏陣列。
1965年PeterGlaser和A.D.Little提出衛星太陽能電站構思。
1966年帶有1000W光伏陣列大軌道天文觀察站發射。
1972年法國人在尼日一鄉村學校安裝一個硫化鎘光伏系統,用於教育電視供電。
1973年美國特拉華大學建成世界第一個光伏住宅。
1974年日本推出光伏發電的「陽光計劃」;Tyco實驗室生長第一塊EFG晶體硅帶,25mm寬,457mm長(EFG:EdgedefinedFilmFed-Growth,定邊喂膜生長)。
1977年世界光伏電池超過500KW;D.E.Carlson和C.R.Wronski在W.E.Spear的1975年控制p-n結的工作基礎上製成世界上第一個非晶硅(a-Si)太陽能電池。
1979年世界太陽能電池安裝總量達到1MW。
1980年ARCO太陽能公司是世界上第一個年產量達到1MW光伏電池生產廠家;三洋電氣公司利用非晶硅電池率先製成手持式袖珍計算器,接著完成了非晶硅組件批量生產並進行了戶外測試。
1981年名為SolarChallenger的光伏動力飛機飛行成功。
1982年世界太陽能電池年產量超過9.3MW。
1983年世界太陽能電池年產量超過21.3MW;名為SolarTrek的1KW光伏動力汽車穿越澳大利亞,20天內行程達到4000Km.
1984年面積為929c㎡的商品化非晶硅太陽能電池組件問世。
1985年單晶硅太陽能電池售價10USD/W;澳大利亞新南威爾土大學MartinGreen研製單晶硅的太陽能電池效率達到20%。
1986年6月,ARCOSolar發布G-4000———世界首例商用薄膜電池「動力組件」。
1987年11月,在3100Km穿越澳大利亞的PentaxWorldSolarChallengePV-動力汽車競賽上,GMSunraycer獲勝,平均時速約為71km/h。
1990年世界太陽能電池年產量超過46.5MW。
1991年世界太陽能電池年產量超過55.3MW;瑞士Gratzel教授研製的納米TiO2染料敏化太陽能電池效率達到7%。
1992年世界太陽能電池年產量超過57.9MW。
1993年世界太陽能電池年產量超過60.1MW。
1994年世界太陽能電池年產量超過69.4MW。
1995年世界太陽能電池年產量超過77.7MW;光伏電池安裝總量達到500MW。
1996年世界太陽能電池年產量超過88.6MW。
1997年世界太陽能電池年產量超過125.8MW。
1998年世界太陽能電池年產量超過151.7MW;多晶硅太陽能電池產量首次超過單晶硅太陽能電池。
1999年世界太陽能電池年產量超過201.3MW;美國NREL的M.A.Contreras等報道銅銦錫(CIS)太陽能電池效率達到18.8%;非晶硅太陽能電池占市場份額12.3%。
2000年世界太陽能電池年產量超過399MW;WuX.,DhereR.G.,AibinD.S.等報道碲化鎘(CdTe)太陽能電池效率達到16.4%;單晶硅太陽能電池售價約為3USD/W。
2002年世界太陽能電池年產量超過540MW;多晶硅太陽能電池售價約為2.2USD/W。
2003年世界太陽能電池年產量超過760MW;德國FraunhoferISE的LFC(Laserfired-contact)晶體硅太陽能電池效率達到20%。
2004年世界太陽能電池年產量超過1200MW;德國FraunhoferISE多晶硅太陽能電池效率達到20.3%;非晶硅太陽能電池占市場份額4.4%,降為1999年的1/3,CdTe佔1.1%;而CIS佔0.4%。
2005年世界太陽能電池年產量1759MW。
中國太陽能發電發展歷史
中國作為新的世界經濟發動機,光伏業業呈現出前所未有的活力。大量光伏企業應運而生,現在光伏產量已經達到世界領先水平。現在OFweek太陽能光伏網帶大家來回顧下中國太陽能發展歷史:
1958,中國研製出了首塊硅單晶
1968年至1969年底,半導體所承擔了為「實踐1號衛星」研製和生產硅太陽能電池板的任務。在研究中,研究人員發現,P+/N硅單片太陽電池在空間中運行時會遭遇電子輻射,造成電池衰減,使電池無法長時間在空間運行。
1969年,半導體所停止了硅太陽電池研發,隨後,天津18所為東方紅二號、三號、四號系列地球同步軌道衛星研製生產太陽電池陣。
1975年寧波、開封先後成立太陽電池廠,電池製造工藝模仿早期生產空間電池的工藝,太陽能電池的應用開始從空間降落到地面。
1998年,中國政府開始關注太陽能發電,擬建第一套3MW多晶硅電池及應用系統示範項目。
2001年,無錫尚德建立10MWp(兆瓦)太陽電池生產線獲得成功,2002年9月,尚德第一條10MW太陽電池生產線正式投產,產能相當於此前四年全國太陽電池產量的總和,一舉將我國與國際光伏產業的差距縮短了15年。
2003到2005年,在歐洲特別是德國市場拉動下,尚德和保定英利持續擴產,其他多家企業紛紛建立太陽電池生產線,使我國太陽電池的生產迅速增長。
2004年,洛陽單晶硅廠與中國有色設計總院共同組建的中硅高科自主研發出了12對棒節能型多晶硅還原爐,以此為基礎,2005年,國內第一個300噸多晶硅生產項目建成投產,從而拉開了中國多晶硅大發展的序幕。
2007,中國成為生產太陽電池最多的國家,產量從2006年的400MW一躍達到1088MW。
2008年,中國太陽電池產量達到2600MW。
2009年,中國太陽電池產量達到4000MW。
2006年世界太陽能電池年產量2500MW。
2007年世界太陽能電池年產量4450MW。
2008年世界太陽能電池年產量7900MW。
2009年世界太陽能電池年產量10700MW。
2010年世界太陽能電池年產量將達15200MW。

閱讀全文

與太陽能電池發明相關的資料

熱點內容
馬鞍山向山鎮黨委書記 瀏覽:934
服務創造價值疏風 瀏覽:788
工商登記代名協議 瀏覽:866
2015年基本公共衛生服務項目試卷 瀏覽:985
創造營陳卓璇 瀏覽:905
安徽職稱計算機證書查詢 瀏覽:680
衛生院公共衛生服務會議記錄 瀏覽:104
泉州文博知識產權 瀏覽:348
公共衛生服務培訓會議小結 瀏覽:159
馬鞍山攬山別院價格 瀏覽:56
施工索賠有效期 瀏覽:153
矛盾糾紛交辦單 瀏覽:447
2010年公需課知識產權法基礎與實務答案 瀏覽:391
侵權責任法第5556條 瀏覽:369
創造者對吉阿赫利直播 瀏覽:786
中小企業公共服務平台網路 瀏覽:846
深圳市潤之行商標製作有限公司 瀏覽:62
江莉馬鞍山 瀏覽:417
馬鞍山大事件 瀏覽:759
機動車銷售統一發票抵扣期限 瀏覽:451