『壹』 相對論誰發明
相對論是關於時空和引力的基本理論,主要由阿爾伯特·愛因斯坦(Albert Einstein)創立
『貳』 相對論是由誰發明的
相對論的提出者是:阿爾伯特·愛因斯坦。
相對論(英語:Theory of relativity)是關於時空和引力的理論,主要由愛因斯坦創立,依其研究對象的不同可分為狹義相對論和廣義相對論。
相對論和量子力學的提出給物理學帶來了革命性的變化,它們共同奠定了現代物理學的基礎。相對論極大地改變了人類對宇宙和自然的「常識性」觀念,提出了「同時的相對性」、「四維時空」、「彎曲時空」等全新的概念。
不過近年來,人們對於物理理論的分類有了一種新的認識——以其理論是否是決定論的來劃分經典與非經典的物理學,即「非經典的=量子的」。在這個意義下,相對論仍然是一種經典的理論。
(2)相對論是誰創造的擴展閱讀:
阿爾伯特·愛因斯坦(Albert.Einstein,1879年3月14日—1955年4月18日),出生於德國符騰堡王國烏爾姆市,畢業於蘇黎世聯邦理工學院,猶太裔物理學家。
愛因斯坦1879年出生於德國烏爾姆市的一個猶太人家庭(父母均為猶太人),1900年畢業於蘇黎世聯邦理工學院,入瑞士國籍。
1905年,獲蘇黎世大學哲學博士學位,愛因斯坦提出光子假設,成功解釋了光電效應,因此獲得1921年諾貝爾物理獎,1905年創立狹義相對論。1915年創立廣義相對論。1955年4月18日去世,享年76歲。
愛因斯坦為核能開發奠定了理論基礎,開創了現代科學技術新紀元,被公認為是繼伽利略、牛頓以來最偉大的物理學家。1999年12月26日,愛因斯坦被美國《時代周刊》評選為「世紀偉人」。
『叄』 相對論是誰提出來的
愛因斯坦啊,相對論分為兩種,一般相對論與狹義相對論,他主要闡述的是空間與時間的關系,它的推論證明就是光速不變原理與時間效應的關系和一般相對論的成立。籠統的來講,相對論是站在事物與事物之間的相互角度思考,來觀察他們的相對性和獨立性,他發現:每一個時間都是一個空間事物的定格,這就代表:時間與空間的相對性,他又發現,時間與速度在相對角度上的鍾慢效應,他還發現:其實二維空間中點與點之間的直線並不是最短,當一個時間中的空間做某種轉移會造成一定的空間折疊的現象,可以說,AB的重合是最短,至於AB的動態極其空間折疊需要多大的能量他沒有明確的敘述,他只是說宇宙中存在著一種平面,它承接了整個空間的質量,也就是宇宙的質量,當宇宙的質量不穩定或某一處的質量大於相對的承受力時,就會彎曲,這一點又恰好的解釋了萬有引力的存在。根據上述幾點,以及愛倫茲變換和一定的方程組證明:當一個空間的質量大於其宇宙相應的承受量,且這一時間中關於空間的相互引力以超光速進行,這種空間折疊維持的時間與速度與引力的大小有關。但其實以目前來講,相對論的可施性根本不可能,因為目前沒有任何一種能量足以改變這一時間中空間的質量,造成空間折疊與時光扭曲,有的科學家天真的以為黑洞的爆發力可以,但是他們往往忽略了量子力學的存在與時間效應,因此即使達到這種能量,使用的空間必須是無限大且沒有空間的原型,但是這樣的空間只能是虛態的模擬空間,因此地球是絕對行不通的,一些人也不明白相對論究竟在闡述什麼,他們跟的說了一個極其錯誤概念:超光速就能穿越時空。我們想像:如果我的速度超越光的速度,只是對於我來講,我的鍾比別人的鍾慢而已,這還只是相對問題,但是站在時間的立場上,我的時間軸絕不會因為我的速度比別人快就停下來了,請注意,時間與空間不能獨立,時間與空間的共同構成:時空。因此穿越時空是一中時間所對應空間中的轉移或介入,絕不是單純的時間改變或空間效應。相信你已經明白了相對論的偉大,但它卻也成為一個導致許多科學家心中瘋狂的概念!最後明確一點超光速就能穿越時空是錯誤的概念,時間與空間不能獨立,時間與空間的共同構成:時空。因此穿越時空是一中時間所對應空間中的轉移或介入,絕不是單純的時間改變或空間效應
『肆』 相對論是誰提出的
愛因斯坦的相對論。 如果你的速度跟光速一樣,你就會讓時間瞬間停止。 如果你的速度超過了光速,你就會讓時間倒流,你就會回到過去。 這是科學依據,是有真憑實據的。 每秒達到300000000千米的速度就是光速。不過至今沒有哪個國家的高科技能達到光速 分為廣義和狹義的 狹義相對論就是 狹義相對論是建立在四維時空觀上的一個理論,因此要弄清相對論的內容,要先對相對論的時空觀有個大體了解。在數學上有各種多維空間,但目前為止,我們認識的物理世界只是四維,即三維空間加一維時間。現代微觀物理學提到的高維空間是另一層意思,只有數學意義,在此不做討論。 四維時空是構成真實世界的最低維度,我們的世界恰好是四維,至於高維真實空間,至少現在我們還無法感知。一把尺子在三維空間里(不含時間)轉動,其長度不變,但旋轉它時,它的各坐標值均發生了變化,且坐標之間是有聯系的。四維時空的意義就是時間是第四維坐標,它與空間坐標是有聯系的,也就是說時空是統一的,不可分割的整體,它們是一種」此消彼長」的關系。 四維時空不僅限於此,由質能關系知,質量和能量實際是一回事,質量(或能量)並不是獨立的,而是與運動狀態相關的,比如速度越大,質量越大。在四維時空里,質量(或能量)實際是四維動量的第四維分量,動量是描述物質運動的量,因此質量與運動狀態有關就是理所當然的了。在四維時空里,動量和能量實現了統一,稱為能量動量四矢。另外在四維時空里還定義了四維速度,四維加速度,四維力,電磁場方程組的四維形式等。值得一提的是,電磁場方程組的四維形式更加完美,完全統一了電和磁,電場和磁場用一個統一的電磁場張量來描述。四維時空的物理定律比三維定律要完美的多,這說明我們的世界的確是四維的。可以說至少它比牛頓力學要完美的多。至少由它的完美性,我們不能對它妄加懷疑。 相對論中,時間與空間構成了一個不可分割的整體——四維時空,能量與動量也構成了一個不可分割的整體——四維動量。這說明自然界一些看似毫不相乾的量之間可能存在深刻的聯系。在今後論及廣義相對論時我們還會看到,時空與能量動量四矢之間也存在著深刻的聯系。 物質在相互作用中作永恆的運動,沒有不運動的物質,也沒有無物質的運動,由於物質是在相互聯系,相互作用中運動的,因此,必須在物質的相互關系中描述運動,而不可能孤立的描述運動。也就是說,運動必須有一個參考物,這個參考物就是參考系。 伽利略曾經指出,運動的船與靜止的船上的運動不可區分,也就是說,當你在封閉的船艙里,與外界完全隔絕,那麼即使你擁有最發達的頭腦,最先進的儀器,也無從感知你的船是勻速運動,還是靜止。更無從感知速度的大小,因為沒有參考。比如,我們不知道我們整個宇宙的整體運動狀態,因為宇宙是封閉的。愛因斯坦將其引用,作為狹義相對論的第一個基本原理:狹義相對性原理。其內容是:慣性系之間完全等價,不可區分。 著名的麥克爾遜--莫雷實驗徹底否定了光的以太學說,得出了光與參考系無關的結論。也就是說,無論你站在地上,還是站在飛奔的火車上,測得的光速都是一樣的。這就是狹義相對論的第二個基本原理,光速不變原理。 由這兩條基本原理可以直接推導出相對論的坐標變換式,速度變換式等所有的狹義相對論內容。比如速度變幻,與傳統的法則相矛盾,但實踐證明是正確的,比如一輛火車速度是10m/s,一個人在車上相對車的速度也是10m/s,地面上的人看到車上的人的速度不是20m/s,而是(20-10^(-15))m/s左右。在通常情況下,這種相對論效應完全可以忽略,但在接近光速時,這種效應明顯增大,比如,火車速度是0。99倍光速,人的速度也是0。99倍光速,那麼地面觀測者的結論不是1。98倍光速,而是0。999949倍光速。車上的人看到後面的射來的光也沒有變慢,對他來說也是光速。因此,從這個意義上說,光速是不可超越的,因為無論在那個參考系,光速都是不變的。速度變換已經被粒子物理學的無數實驗證明,是無可挑剔的。正因為光的這一獨特性質,因此被選為四維時空的唯一標尺。 廣義相對論 愛因斯坦的第二種相對性理論(1916年)。該理論認為引力是由空間——時間幾何(也就是,不僅考慮空間中的點之間,而是考慮在空間和時間中的點之間距離的幾何)的畸變引起的,因而引力場影響時間和距離的測量. 廣義相對論:愛因斯坦的基於科學定律對所有的觀察者(而不管他們如何運動的)必須是相同的觀念的理論。它將引力按照四維空間—時間的曲率來解釋。 廣義相對論(General Relativity?)是愛因斯坦於1915年以幾何語言建立而成的引力理論,統合了狹義相對論和牛頓的萬有引力定律,將引力改描述成因時空中的物質與能量而彎曲的時空,以取代傳統對於引力是一種力的看法。因此,狹義相對論和萬有引力定律,都只是廣義相對論在特殊情況之下的特例。狹義相對論是在沒有重力時的情況;而萬有引力定律則是在距離近、引力小和速度慢時的情況。 背景 愛因斯坦在1907年發表了一篇探討光線在狹義相對論中,重力和加速度對其影響的論文,廣義相對論的雛型就此開始形成。1912年,愛因斯坦發表了另外一篇論文,探討如何將重力場用幾何的語言來描述。至此,廣義相對論的運動學出現了。到了1915年,愛因斯坦場方程式被發表了出來,整個廣義相對論的動力學才終於完成。 1915年後,廣義相對論的發展多集中在解開場方程式上,解答的物理解釋以及尋求可能的實驗與觀測也佔了很大的一部份。但因為場方程式是一個非線性偏微分方程,很難得出解來,所以在電腦開始應用在科學上之前,也只有少數的解被解出來而已。其中最著名的有三個解:史瓦西解(the Schwarzschild solution (1916)), the Reissner-Nordstr?m solution and the Kerr solution。 在廣義相對論的觀測上,也有著許多的進展。水星的歲差是第一個證明廣義相對論是正確的證據,這是在相對論出現之前就已經量測到的現象,直到廣義相對論被愛因斯坦發現之後,才得到了理論的說明。第二個實驗則是1919年愛丁頓在非洲趁日蝕的時候量測星光因太陽的重力場所產生的偏折,和廣義相對論所預測的一模一樣。這時,廣義相對論的理論已被大眾和大多的物理學家廣泛地接受了。之後,更有許多的實驗去測試廣義相對論的理論,並且證實了廣義相對論的正確。 另外,宇宙的膨漲也創造出了廣義相對論的另一場高潮。從1922年開始,研究者們就發現場方程式所得出的解答會是一個膨漲中的宇宙,而愛因斯坦在那時自然也不相信宇宙會來漲縮,所以他便在場方程式中加入了一個宇宙常數來使場方程式可以解出一個隱定宇宙的解出來。但是這個解有兩個問題。在理論上,一個隱定宇宙的解在訴學上不是穩定。另外在觀測上,1929年,哈伯發現了宇宙其實是在膨漲的,這個實驗結果使得愛因斯坦放棄了宇宙常數,並宣稱這是我一生最大的錯誤(the biggest blunder in my career)。但根據最近的一形超新星的觀察,宇宙膨脹正在加速。所以宇宙常數似乎有敗部復活的可能性,宇宙中存在的暗能量可能就必須用宇宙常數來解釋. 基本假設 等效原理:引力和慣性力是完全等效的。 廣義相對性原理:物理定律的形式在一切參考系都是不變的。 主要內容 愛因斯坦提出「等效原理」,即引力和慣性力是等效的。這一原理建立在引力質量與慣性質量的等價性上。根據等效原理,愛因斯坦把狹義相對性原理推廣為廣義相對性原理,即物理定律的形式在一切參考系都是不變的。物體的運動方程即該參考系中的測地線方程。測地線方程與物體自身固有性質無關,只取決於時空局域幾何性質。而引力正是時空局域幾何性質的表現。物質質量的存在會造成時空的彎曲,在彎曲的時空中,物體仍然順著最短距離進行運動(即沿著測地線運動——在歐氏空間中即是直線運動),如地球在太陽造成的彎曲時空中的測地線運動,實際是繞著太陽轉,造成引力作用效應。正如在彎曲的地球表面上,如果以直線運動,實際是繞著地球表面的大圓走
『伍』 相對論的創始人是誰
阿爾伯特·愛因斯坦
·狹義相對論的概念
馬赫和休謨的哲學對愛因斯坦影響很大。馬赫認為時間和空間的量度與物質運動有關。時空的觀念是通過經驗形成的。絕對時空無論依據什麼經驗也不能把握。休謨更具體的說:空間和廣延不是別的,而是按一定次序分布的可見的對象充滿空間。而時間總是又能夠變化的對象的可覺察的變化而發現的。1905年愛因斯坦指出,邁克爾遜和莫雷實驗實際上說明關於「以太」的整個概念是多餘的,光速是不變的。而牛頓的絕對時空觀念是錯誤的。不存在絕對靜止的參照物,時間測量也是隨參照系不同而不同的。他用光速不變和相對性原理提出了洛侖茲變換。創立了狹義相對論。
狹義相對論是建立在四維時空觀上的一個理論,因此要弄清相對論的內容,要先對相對論的時空觀有個大體了解。在數學上有各種多維空間,但目前為止,我們認識的物理世界只是四維,即三維空間加一維時間。現代微觀物理學提到的高維空間是另一層意思,只有數學意義,在此不做討論。
四維時空是構成真實世界的最低維度,我們的世界恰好是四維,至於高維真實空間,至少現在我們還無法感知。我在一個帖子上說過一個例子,一把尺子在三維空間里(不含時間)轉動,其長度不變,但旋轉它時,它的各坐標值均發生了變化,且坐標之間是有聯系的。四維時空的意義就是時間是第四維坐標,它與空間坐標是有聯系的,也就是說時空是統一的,不可分割的整體,它們是一種「此消彼長」的關系。
四維時空不僅限於此,由質能關系知,質量和能量實際是一回事,質量(或能量)並不是獨立的,而是與運動狀態相關的,比如速度越大,質量越大。在四維時空里,質量(或能量)實際是四維動量的第四維分量,動量是描述物質運動的量,因此質量與運動狀態有關就是理所當然的了。在四維時空里,動量和能量實現了統一,稱為能量動量四矢。另外在四維時空里還定義了四維速度,四維加速度,四維力,電磁場方程組的四維形式等。值得一提的是,電磁場方程組的四維形式更加完美,完全統一了電和磁,電場和磁場用一個統一的電磁場張量來描述。四維時空的物理定律比三維定律要完美的多,這說明我們的世界的確是四維的。可以說至少它比牛頓力學要完美的多。至少由它的完美性,我們不能對它妄加懷疑。
相對論中,時間與空間構成了一個不可分割的整體——四維時空,能量與動量也構成了一個不可分割的整體——四維動量。這說明自然界一些看似毫不相乾的量之間可能存在深刻的聯系。在今後論及廣義相對論時我們還會看到,時空與能量動量四矢之間也存在著深刻的聯系。
·狹義論原理
物質在相互作用中作永恆的運動,沒有不運動的物質,也沒有無物質的運動,由於物質是在相互聯系,相互作用中運動的,因此,必須在物質的相互關系中描述運動,而不可能孤立的描述運動。也就是說,運動必須有一個參考物,這個參考物就是參考系。
伽利略曾經指出,運動的船與靜止的船上的運動不可區分,也就是說,當你在封閉的船艙里,與外界完全隔絕,那麼即使你擁有最發達的頭腦,最先進的儀器,也無從感知你的船是勻速運動,還是靜止。更無從感知速度的大小,因為沒有參考。比如,我們不知道我們整個宇宙的整體運動狀態,因為宇宙是封閉的。愛因斯坦將其引用,作為狹義相對論的第一個基本原理:狹義相對性原理。其內容是:慣性系之間完全等價,不可區分。
著名的麥克爾遜·莫雷實驗徹底否定了光的以太學說,得出了光與參考系無關的結論。也就是說,無論你站在地上,還是站在飛奔的火車上,測得的光速都是一樣的。這就是狹義相對論的第二個基本原理:光速不變原理。
由這兩條基本原理可以直接推導出相對論的坐標變換式,速度變換式等所有的狹義相對論內容。比如速度變幻,與傳統的法則相矛盾,但實踐證明是正確的,比如一輛火車速度是10m/s,一個人在車上相對車的速度也是10m/s,地面上的人看到車上的人的速度不是20m/s,而是(20-10^(-15))m/s左右。在通常情況下,這種相對論效應完全可以忽略,但在接近光速時,這種效應明顯增大,比如,火車速度是0.99倍光速,人的速度也是0.99倍光速,那麼地面觀測者的結論不是1.98倍光速,而是0.999949倍光速。車上的人看到後面的射來的光也沒有變慢,對他來說也是光速。因此,從這個意義上說,光速是不可超越的,因為無論在那個參考系,光速都是不變的。速度變換已經被粒子物理學的無數實驗證明,是無可挑剔的。正因為光的這一獨特性質,因此被選為四維時空的唯一標尺。
·狹義論效應
根據狹義相對性原理,慣性系是完全等價的,因此,在同一個慣性系中,存在統一的時間,稱為同時性,而相對論證明,在不同的慣性系中,卻沒有統一的同時性,也就是兩個事件(時空點)在一個慣性系內同時,在另一個慣性系內就可能不同時,這就是同時的相對性,在慣性系中,同一物理過程的時間進程是完全相同的,如果用同一物理過程來度量時間,就可在整個慣性系中得到統一的時間。在今後的廣義相對論中可以知道,非慣性系中,時空是不均勻的,也就是說,在同一非慣性系中,沒有統一的時間,因此不能建立統一的同時性。
相對論導出了不同慣性系之間時間進度的關系,發現運動的慣性系時間進度慢,這就是所謂的鍾慢效應。可以通俗的理解為,運動的鍾比靜止的鍾走得慢,而且,運動速度越快,鍾走的越慢,接近光速時,鍾就幾乎停止了。
尺子的長度就是在一慣性系中"同時"得到的兩個端點的坐標值的差。由於"同時"的相對性,不同慣性系中測量的長度也不同。相對論證明,在尺子長度方向上運動的尺子比靜止的尺子短,這就是所謂的尺縮效應,當速度接近光速時,尺子縮成一個點。
由以上陳述可知,鍾慢和尺縮的原理就是時間進度有相對性。也就是說,時間進度與參考系有關。這就從根本上否定了牛頓的絕對時空觀,相對論認為,絕對時間是不存在的,然而時間仍是個客觀量。比如在下期將討論的雙生子理想實驗中,哥哥乘飛船回來後是15歲,弟弟可能已經是45歲了,說明時間是相對的,但哥哥的確是活了15年,弟弟也的確認為自己活了45年,這是與參考系無關的,時間又是"絕對的"。這說明,不論物體運動狀態如何,它本身所經歷的時間是一個客觀量,是絕對的,這稱為固有時。也就是說,無論你以什麼形式運動,你都認為你喝咖啡的速度很正常,你的生活規律都沒有被打亂,但別人可能看到你喝咖啡用了100年,而從放下杯子到壽終正寢只用了一秒鍾。
·狹義論小結
相對論要求物理定律要在坐標變換(洛倫茲變化)下保持不變。經典電磁理論可以不加修改而納入相對論框架,而牛頓力學只在伽利略變換中形勢不變,在洛倫茲變換下原本簡潔的形式變得極為復雜。因此經典力學與要進行修改,修改後的力學體系在洛倫茲變換下形勢不變,稱為相對論力學。
狹義相對論建立以後,對物理學起到了巨大的推動作用。並且深入到量子力學的范圍,成為研究高速粒子不可缺少的理論,而且取得了豐碩的成果。然而在成功的背後,卻有兩個遺留下的原則性問題沒有解決。第一個是慣性系所引起的困難。拋棄了絕對時空後,慣性系成了無法定義的概念。我們可以說慣性系是慣性定律在其中成立的參考系。慣性定律實質一個不受外力的物體保持靜止或勻速直線運動的狀態。然而"不受外力"是什麼意思?只能說,不受外力是指一個物體能在慣性系中靜止或勻速直線運動。這樣,慣性系的定義就陷入了邏輯循環,這樣的定義是無用的。我們總能找到非常近似的慣性系,但宇宙中卻不存在真正的慣性系,整個理論如同建築在沙灘上一般。第二個是萬有引力引起的困難。萬有引力定律與絕對時空緊密相連,必須修正,但將其修改為洛倫茲變換下形勢不變的任何企圖都失敗了,萬有引力無法納入狹義相對論的框架。當時物理界只發現了萬有引力和電磁力兩種力,其中一種就冒出來搗亂,情況當然不會令人滿意。
愛因斯坦只用了幾個星期就建立起了狹義相對論,然而為解決這兩個困難,建立起廣義相對論卻用了整整十年時間。為解決第一個問題,愛因斯坦乾脆取消了慣性系在理論中的特殊地位,把相對性原理推廣到非慣性系。因此第一個問題轉化為非慣性系的時空結構問題。在非慣性系中遇到的第一隻攔路虎就是慣性力。在深入研究了慣性力後,提出了著名的等性原理,發現參考系問題有可能和引力問題一並解決。幾經曲折,愛因斯坦終於建立了完整的廣義相對論。廣義相對論讓所有物理學家大吃一驚,引力遠比想像中的復雜的多。至今為止愛因斯坦的場方程也只得到了為數不多的幾個確定解。它那優美的數學形式至今令物理學家們嘆為觀止。就在廣義相對論取得巨大成就的同時,由哥本哈根學派創立並發展的量子力學也取得了重大突破。然而物理學家們很快發現,兩大理論並不相容,至少有一個需要修改。於是引發了那場著名的論戰:愛因斯坦VS哥本哈根學派。直到現在爭論還沒有停止,只是越來越多的物理學家更傾向量子理論。愛因斯坦為解決這一問題耗費了後半生三十年光陰卻一無所獲。不過他的工作為物理學家們指明了方向:建立包含四種作用力的超統一理論。目前學術界公認的最有希望的候選者是超弦理論與超膜理論
『陸』 相對論是誰提出來的
相對論是關於時空和引力的基本理論,主要由阿爾伯特·愛因斯坦創立,依據研究的對象不同分為狹義相對論和廣義相對論。相對論的基本假設是相對性原理,即物理定律與參照系的選擇無關。
狹義相對論和廣義相對的區別是,前者討論的是勻速直線運動的參照系(慣性參照系)之間的物理定律,後者則推廣到具有加速度的參照系中(非慣性系),並在等效原理的假設下,廣泛應用於引力場中。相對論極大地改變了人類對宇宙和自然的「常識性」觀念,提出了「同時的相對性」、「四維時空」、「彎曲時空」等全新的概念。它發展了牛頓力學,推動物理學發展到一個新的高度。
狹義相對性原理是相對論的兩個基本假定,在目前實驗的觀測下,物體的運動與相對論是吻合很好的,所以目前普遍認為相對論是正確的理論。
『柒』 是誰創立的相對論
相對論是關於時空和引力的基本理論,主要由愛因斯坦創立,分為狹義相對論(特殊相對論)和廣義相對論(一般相對論)。相對論的基本假設是光速不變原理,相對性原理和等效原理。相對論和量子力學是現代物理學的兩大基本支柱。奠定了經典物理學基礎的經典力學,不適用於高速運動的物體和微觀條件下的物體。相對論解決了高速運動問題;量子力學解決了微觀亞原子條件下的問題。相對論極大的改變了人類對宇宙和自然的「常識性」觀念,提出了「同時的相對性」,「四維時空」「彎曲空間」等全新的概念。
狹義相對論
主條目:狹義相對論
狹義相對論,是只限於討論慣性系情況的相對論。牛頓時空觀認為空間是平直的、各向同性的和各點同性的的三維空間,時間是獨立於空間的單獨一維(因而也是絕對的)。狹義相對論認為空間和時間並不相互獨立,而是一個統一的四維時空整體,並不存在絕對的空間和時間。在狹義相對論中,整個時空仍然是平直的、各向同性的和各點同性的,這是一種對應於「全局慣性系」的理想狀況。狹義相對論將真空中光速為常數作為基本假設,結合狹義相對性原理和上述時空的性質可以推出洛侖茲變換。
廣義相對論
主條目:廣義相對論
廣義相對論是愛因斯坦(Albert Einstein)在1915年發表的理論。愛因斯坦提出「等效原理」,即引力和慣性力是等效的。這一原理建立在引力質量與慣性質量的等價性上(目前實驗證實,在10 �6�1 12的精確度范圍內,仍沒有看到引力質量與慣性質量的差別)。根據等效原理,愛因斯坦把狹義相對性原理推廣為廣義相對性原理,即物理定律的形式在一切參考系都是不變的。物體的運動方程即該參考系中的測地線方程。測地線方程與物體自身故有性質無關,只取決於時空局域幾何性質。而引力正是時空局域幾何性質的表現。物質質量的存在會造成時空的彎曲,在彎曲的時空中,物體仍然順著最短距離進行運動(即沿著測地線運動——在歐氏空間中即是直線運動),如地球在太陽造成的彎曲時空中的測地線運動,實際是繞著太陽轉,造成引力作用效應。正如在彎曲的地球表面上,如果以直線運動,實際是繞著地球表面的大圓走。
『捌』 相對論是誰提出的
狹義相對論提出於1905年,廣義相對論提出於1915年.愛因斯坦在1915年末完成廣義相對論的創建工作,在1916年初正式發表相關論文.
『玖』 誰發明了相對論
愛因斯坦是現代物理學的開創者和奠基人。1879年3月14日生於德國的烏爾姆,1955年4月18日卒於美國的普林斯頓。
愛因斯坦1900年畢業於瑞士蘇黎世聯邦工業大學,畢業後即失業。在朋友的幫助下,才在瑞士聯邦專利局找到工作。1905年獲蘇黎世大學博士學位。1909年任蘇黎世大學理論物理學副教授,1911年任布拉格大學教授,兩年後任德國威廉皇家物理研究所所長、柏林大學教授,當選為普魯士科學院院士。1932年受希特勒迫害離開德國,1933年10月定居美國。愛因斯坦在物理學的許多領域都有貢獻,比如研究毛細現象、闡明布朗運動、建立狹義相對論並推廣為廣義相對論、提出光的量子概念,並以量子理論完滿地解釋光電效應、輻射過程、固體比熱,發展了量子統計。並於1921年獲諾貝爾物理學獎。