① 磁芯材料,什麼是磁芯材料
(1)鐵基非晶合金(Fe-basedamorphousalloys)
鐵基非晶合金是由80%Fe及20%Si,B類金屬元素所構成,它具有高飽和磁感應強度(1.54T),鐵基非晶合金與硅鋼的損耗比較磁導率、激磁電流和鐵損等各方面都優於硅鋼片的特點,特別是鐵損低(為取向硅鋼片的1/3-1/5),代替硅鋼做配電變壓器可節能60-70%。鐵基非晶合金的帶材厚度為0.03mm左右,廣泛應用於配電變壓器、大功率開關電源、脈沖變壓器、磁放大器、中頻變壓器及逆變器鐵芯,適合於10kHz以下頻率使用
(2)鐵鎳基、鈷基非晶合金(Fe-Nibased-amorphousalloy)
鐵鎳基非晶合金是由40%Ni、40%Fe及20%類金屬元素所構成,它具有中等飽和磁感應強度〔0.8T〕、較高的初始磁導率和很高的最大磁導率以及高的機械強度和優良的韌性。在中、低頻率下具有低的鐵損。空氣中熱處理不發生氧化,經磁場退火後可得到很好的矩形回線。價格比1J79便宜30-50%。鐵鎳基非晶合金的應用范圍與中鎳坡莫合金相對應,但鐵損和高的機械強度遠比晶態合金優越;代替1J79,廣泛用於漏電開關、精密電流互感器鐵芯、磁屏蔽等。鐵鎳基非晶合金是國內開發最早,也是目前國內非晶合金中應用量最大的非晶品種,年產量近200噸左右.空氣中熱處理不發生氧化鐵鎳基非晶合金(1K503)獲得國家發明專利和美國專利權。
(4)鐵基納米晶合金(Nanocrystallinealloy)
鐵基納米晶合金是由鐵元素為主,加入少量的Nb、Cu、Si、B元素所構成的合金經快速凝固工藝所形成的一種非晶態材料,這種非晶態材料經熱處理後可獲得直徑為10-20nm的微晶,彌散分布在非晶態的基體上,被稱為微晶、納米晶材料或納米晶材料。納米晶材料具有優異的綜合磁性能:高飽和磁感(1.2T)、高初始磁導率(8×104)、低Hc(0.32A/M),高磁感下的高頻損耗低(P0.5T/20kHz=30W/kg),電阻率為80μΩ/cm,比坡莫合金(50-60μΩ/cm)高,經縱向或橫向磁場處理,可得到高Br(0.9)或低Br值(1000Gs)。是目前市場上綜合性能最好的材料;適用頻率范圍:50Hz-100kHz,最佳頻率范圍:20kHz-50kHz。廣泛應用於大功率開關電源、逆變電源、磁放大器、高頻變壓器、高頻變換器、高頻扼流圈鐵芯、電流互感器鐵芯、漏電保護開關、共模電感鐵芯。
參考資料:http://bbs.big-bit.com/forum-116-1.html
② 磁心什麼時候發明的
美國物理學家王安1950年提出了利用磁性材料製造存儲器的思想。福雷斯特則將這一思想變成了現實。 為了實現磁芯存儲,福雷斯特需要一種物質,這種物質應該有一個非常明確的磁化閾值。他找到在新澤西生產電視機用鐵氧體變換器的一家公司的德國老陶瓷專家,利用熔化鐵礦和氧化物獲取了特定的磁性質。 對磁化有明確閾值是設計的關鍵。這種電線的網格和芯子織在電線網上,被人稱為芯子存儲,它的有關專利對發展計算機非常關鍵。這個方案可靠並且穩定。磁化相對來說是永久的,所以在系統的電源關閉後,存儲的數據仍然保留著。既然磁場能以電子的速度來閱讀,這使互動式計算有了可能。更進一步,因為是電線網格,存儲陣列的任何部分都能訪問,也就是說,不同的數據可以存儲在電線網的不同位置,並且閱讀所在位置的一束比特就能立即存取。這稱為隨機存取存儲器(RAM),它是互動式計算的革新概念。福雷斯特把這些專利轉讓給麻省理工學院,學院每年靠這些專利收到1500萬~2000萬美元。 最先獲得這些專利許可證的是IBM,IBM最終獲得了在北美防衛軍事基地安裝「旋風」的商業合同。更重要的是,自20世紀50年代以來,所有大型和中型計算機也採用了這一系統。磁芯存儲從20世紀50年代、60年代,直至70年代初,一直是計算機主存的標准方式。
③ 磁芯材料有那些
(1)鐵基非晶合金(Fe-basedamorphousalloys)
鐵基非晶合金是由80%Fe及20%Si,B類金屬元素所構成,它具有高飽和磁感應強度(1.54T),鐵基非晶合金與硅鋼的損耗比較磁導率、激磁電流和鐵損等各方面都優於硅鋼片的特點,特別是鐵損低(為取向硅鋼片的1/3-1/5),代替硅鋼做配電變壓器可節能60-70%。鐵基非晶合金的帶材厚度為0.03mm左右,廣泛應用於配電變壓器、大功率開關電源、脈沖變壓器、磁放大器、中頻變壓器及逆變器鐵芯,適合於10kHz以下頻率使用
(2)鐵鎳基、鈷基非晶合金(Fe-Nibased-amorphousalloy)
鐵鎳基非晶合金是由40%Ni、40%Fe及20%類金屬元素所構成,它具有中等飽和磁感應強度〔0.8T〕、較高的初始磁導率和很高的最大磁導率以及高的機械強度和優良的韌性。在中、低頻率下具有低的鐵損。空氣中熱處理不發生氧化,經磁場退火後可得到很好的矩形回線。價格比1J79便宜30-50%。鐵鎳基非晶合金的應用范圍與中鎳坡莫合金相對應,但鐵損和高的機械強度遠比晶態合金優越;代替1J79,廣泛用於漏電開關、精密電流互感器鐵芯、磁屏蔽等。鐵鎳基非晶合金是國內開發最早,也是目前國內非晶合金中應用量最大的非晶品種,年產量近200噸左右.空氣中熱處理不發生氧化鐵鎳基非晶合金(1K503)獲得國家發明專利和美國專利權。
(4)鐵基納米晶合金(Nanocrystallinealloy)
鐵基納米晶合金是由鐵元素為主,加入少量的Nb、Cu、Si、B元素所構成的合金經快速凝固工藝所形成的一種非晶態材料,這種非晶態材料經熱處理後可獲得直徑為10-20nm的微晶,彌散分布在非晶態的基體上,被稱為微晶、納米晶材料或納米晶材料。納米晶材料具有優異的綜合磁性能:高飽和磁感(1.2T)、高初始磁導率(8×104)、低Hc(0.32A/M),高磁感下的高頻損耗低(P0.5T/20kHz=30W/kg),電阻率為80μΩ/cm,比坡莫合金(50-60μΩ/cm)高,經縱向或橫向磁場處理,可得到高Br(0.9)或低Br值(1000Gs)。是目前市場上綜合性能最好的材料;適用頻率范圍:50Hz-100kHz,最佳頻率范圍:20kHz-50kHz。廣泛應用於大功率開關電源、逆變電源、磁放大器、高頻變壓器、高頻變換器、高頻扼流圈鐵芯、電流互感器鐵芯、漏電保護開關、共模電感鐵芯。
④ 什麼是磁芯存儲器呢
很早就淘汰了吧~~估計只能存儲 0.5K 的數據,而且速度慢,易失~
⑤ 磁芯與磁鐵的區別
磁鐵不是人發明的,是天然的磁鐵礦。古希臘人和中國人發現自然界中有種天然磁化的石頭,稱其為「吸鐵石」。這種石頭可以魔術般的吸起小塊的鐵片,而且在隨意擺動後總是指向同一方向。早期的航海者把這種磁鐵作為其最早的指南針在海上來辨別方向。最早發現及使用磁鐵的應該是中國人,也就是「指南針」,是中國四大發明之一。
磁芯是人造的。磁芯是由各種氧化鐵混合物組成的一種燒結磁性金屬氧化物。例如,錳-鋅鐵氧體和鎳-鋅鐵氧體是典型的磁芯體材料。錳-鋅鐵氧體具有高磁導率和高磁通密度的特點,且在低於1MHz 的頻率時,具有較低損耗的特性。鎳-鋅鐵氧體具有極高的阻抗率、不到幾百的低磁導率等特性,及在高於1MHz的頻率亦產生較低損耗等。鐵氧體磁芯用於各種電子設備的線圈和變壓器中。
⑥ 電腦誰發明的
電子計算機(英語:Computer),又稱計算機或電腦,是一種利用電子學原理根據一系列指令來對數據進行處理的機器。
在現代,機械計算機的應用已經完全被電子計算機所取代,因此電子計算機在中國大陸地區通常也直接簡稱為計算機。其所相關的技術研究叫計算機科學。而「計算機技術」指的是將計算機科學的成果應用於工程實踐所派生的諸多技術性和經驗性成果的總合。「計算機技術」與「計算機科學」是兩個相關而又不同的概念,它們的不同在於前者偏重於實踐而後者偏重於理論。此外,電子計算機亦被形象地稱作電腦。
本來,計算機的英文原詞「computer」是指從事數據計算的人。而他們往往都需要藉助某些機械計算設備或模擬計算機。這些早期計算設備的祖先包括有算盤,以及可以追溯到公元前87年的被古希臘人用於計算行星移動的安提基特拉機器。隨著中世紀末期歐洲數學與工程學的再次繁榮,1623年德國博學家Wilhelm Schickard率先研製出了歐洲第一部計算設備,這是一個能進行六位以內數加減法,並能通過鈴聲輸出答案的「計算鍾」。使用轉動齒輪來進行操作。
1642年法國數學家布萊士·帕斯卡在英國數學家William Oughtred所製作的「計算尺」的基礎上,將其加以改進,使能進行八位計算。還賣出了許多製品,成為當時一種時髦的商品。
1801年,法國人Joseph Marie Jacquard對織布機的設計進行改進,使用一系列打孔的紙卡片來作為編織復雜圖案的程序。盡管這種被稱作「Jacquard式織布機」的機器並不被認為是一部真正的計算機,但是其可編程性質使之被視為現代計算機發展過程中重要的一步。
查爾斯·巴比奇(Charles Babbage)於1820年構想和設計了第一部完全可編程計算機。但由於技術條件、經費限制,以及無法忍耐對設計不停的修補,這部計算機在他有生之年始終未能問世。約到19世紀晚期,許多後來被證明對計算機科學有著重大意義的技術相繼出現,包括打孔卡片以及真空管。德裔美籍統計學家赫爾曼·何樂禮(Hermann Hollerith)設計了一部製表用的機器,其中便應用打孔卡片來進行大規模自動數據處理。
在20世紀前半葉,為了迎合科學計算的需要,許多專門用途的、復雜度不斷增長的模擬計算機被研製出來。這些計算機都是用它們所針對的特定問題的機械或電子模型作為計算基礎。20世紀三四十年代,計算機的性能逐漸強大並且通用性得到提升,現代計算機的關鍵特色被不斷地加入進來。
1937年,年僅21歲的麻省理工學院研究生克勞德·香農(Claude Shannon)發表了他的偉大論文《對繼電器和開關電路中的符號分析》,文中首次提及數字電子技術的應用。他向人們展示了如何使用開關來實現邏輯和數學運算。此後,他通過研究萬尼瓦爾·布希的微分模擬器進一步鞏固了他的想法。這是一個標志著二進制電子電路設計和邏輯門應用開始的重要時刻,而作為這些關鍵思想誕生的先驅,應當包括:Almon Strowger,他為一個含有邏輯門電路的設備申請了專利;尼古拉·特斯拉(Nikola Tesla),他早在1898年就曾申請含有邏輯門的電路設備;Lee De Forest,於1907年他用真空管代替了繼電器。
Commodore公司在1980年代生產的Amiga 500電腦
HP Jornada 690 打開了手機和電腦結合的早期概念沿著這樣一條上下求索的漫漫長途去定義所謂的「第一部電子計算機」可謂相當困難。1941年5月12日,德國工程師Konrad Zuse完成了他的圖靈完全機電一體計算機「Z3」,這是第一部具有自動二進制數學計算特色以及可行的編程功能的計算機,但還不是「電子」計算機。此外,其他值得注意的成就主要有:1941年夏天誕生的阿塔納索夫-貝瑞計算機是世界上第一部電子計算機,它使用了真空管計算器,二進制數值,可復用內存;在英國於1943年被展示的神秘的巨像計算機(Colossus computer),盡管編程能力極其有限,但是它使人們確信使用真空管既值得信賴,又能實現電氣化的再編程;哈佛大學的馬克一號;以及基於二進制的「ENIAC」,全名為「電子數值積分計算器」,這是第一部通用意圖的計算機,但由於其結構設計不夠彈性化,導致對它的每一次再編程都要重新連接電氣線路。
1940年代的第二次世界大戰中,為訓練轟炸機飛行員,美國海軍曾向麻省理工學院探詢,是否能夠開發出一款可以控制飛行模擬器的計算機。軍方當初的設想只是希望通過該計算機將飛行員模擬操作產生的數據實時反映到儀表盤上。與之前的模擬設備不同,軍方要求該計算機應基於空氣動力學設計,與實物無限接近,以便進行各種航空訓練。於是麻省理工創造了旋風工程,其製造出了世界上第一台能夠實時處理數據的「旋風電腦」,並發明了磁芯存儲器。這為個人電腦的發展做出了歷史性的貢獻。
開發埃尼阿克的小組針對其缺陷又進一步完善了設計,並最終呈現出今天我們所熟知的馮·諾伊曼結構(程序存儲體系結構)。這個體系是當今所有計算機的基礎。20世紀40年代中晚期,大批基於此一體系的計算機開始被研製,其中以英國最早。盡管第一部研製完成並投入運轉的是「小規模實驗機」(Small-Scale Experimental Machine,SSEM),但真正被開發出來的實用機很可能是EDSAC。
在整個20世紀50年代,真空管計算機居於統治地位。1958年9月12日在後來英特爾的創始人、Robert Noyce的領導下,發明了集成電路。不久又推出了微處理器。1959年到1964年間設計的計算機一般被稱為第二代計算機。
到了60年代,晶體管計算機將其取而代之。晶體管體積更小,速度更快,價格更加低廉,性能更加可靠,這使得它們可以被商品化生產。1964年到1972年的計算機一般被稱為第三代計算機。大量使用集成電路,典型的機型是IBM360系列。
到了70年代,集成電路技術的引入極大地降低了計算機生產成本,計算機也從此開始走向千家萬戶。1972年以後的計算機習慣上被稱為第四代計算機。基於大規模集成電路,及後來的超大規模集成電路。1972年4月1日 INTEL推出8008微處理器。1976年,史蒂夫·喬布斯(Stephen Jobs)和斯蒂夫·沃茲尼亞克(Stephen Wozinak)創辦蘋果計算機公司。並推出其 Apple I 計算機。1977年5月Apple II 型計算機發布。1979年6月1日 INTEL 發布了8位的8088微處理器。
1982年, 微電腦開始普及,大量進入學校和家庭。1982年1月Commodore 64計算機發布,價格595美元。1982年2月80286發布。時鍾頻率提高到20MHz,並增加了保護模式,可訪問640KB內存。支持1MB以上的虛擬內存。每秒運行270萬條指令,集成了134000個晶體管。
1990年11月,微軟發布第一代MPC(Multimedia PC,多媒體個人電腦標准):處理器至少為80286/12 MHz(後來增加到80386SX/16 MHz),有光碟機,傳輸率不少於150 KB/sec。1994年10月10日Intel發布75MHzPentium處理器。1995年11月1日,Pentium Pro發布。主頻可達200MHz,每秒鍾完成4.4億條指令,集成了550萬個晶體管。1997年1月8日Intel發布Pentium MMX,對游戲和多媒體功能進行了增強。
此後計算機的變化日新月異,1965年發表的摩爾定律不斷被應證,預測在未來10—15年仍依然適用。
⑦ 磁芯大戰的約翰·馮·諾依曼簡介
約翰·馮·諾依曼 20世紀即將過去,21世紀就要到來.我們站在世紀之交的大門檻,回顧20世紀科學技術的輝煌發展時,不能不提及20世紀最傑出的數學家之一的馮·諾依曼.眾所周知,1946年發明的電子計算機,大大促進了科學技術的進步,大大促進了社會生活的進步.鑒於馮·諾依曼在發明電子計算機中所起到關鍵性作用,他被西方人譽為"計算機之父".而在經濟學方面,他也有突破性成就,被譽為「博弈論之父」。在物理領域,馮·諾依曼在30年代撰寫的《量子力學的數學基礎》已經被證明對原子物理學的發展有極其重要的價值。在化學方面也有相當的造詣,曾獲蘇黎世高等技術學院化學系大學學位。與同為猶太人的哈耶克一樣,他無愧是上世紀最偉大的全才之一。 約翰·馮·諾依曼 ( John Von Nouma,1903-1957),美藉匈牙利人,1903年12月28日生於匈牙利的布達佩斯,父親是一個銀行家,家境富裕,十分注意對孩子的教育.馮·諾依曼從小聰穎過人,興趣廣泛,讀書過目不忘.據說他6歲時就能用古希臘語同父親閑談,一生掌握了七種語言.最擅德語,可在他用德語思考種種設想時,又能以閱讀的速度譯成英語.他對讀過的書籍和論文.能很快一句不差地將內容復述出來,而且若干年之後,仍可如此.1911年一1921年,馮·諾依曼在布達佩斯的盧瑟倫中學讀書期間,就嶄露頭角而深受老師的器重.在費克特老師的個別指導下並合作發表了第一篇數學論文,此時馮·諾依曼還不到18歲.1921年一1923年在蘇黎世大學學習.很快又在1926年以優異的成績獲得了布達佩斯大學數學博士學位,此時馮·諾依曼年僅22歲.1927年一1929年馮·諾依曼相繼在柏林大學和漢堡大學擔任數學講師。1930年接受了普林斯頓大學客座教授的職位,西渡美國.1931年他成為美國普林斯頓大學的第一批終身教授,那時,他還不到30歲。1933年轉到該校的高級研究所,成為最初六位教授之一,並在那裡工作了一生. 馮·諾依曼是普林斯頓大學、賓夕法尼亞大學、哈佛大學、伊斯坦堡大學、馬里蘭大學、哥倫比亞大學和慕尼黑高等技術學院等校的榮譽博士.他是美國國家科學院、秘魯國立自然科學院和義大利國立林且學院等院的院土. 1954年他任美國原子能委員會委員;1951年至1953年任美國數學會主席. 1954年夏,馮·諾依曼被使現患有癌症,1957年2月8日,在華盛頓去世,終年54歲. 馮·諾依曼在數學的諸多領域都進行了開創性工作,並作出了重大貢獻.在第二次世界大戰前,他主要從事運算元理論、集合論等方面的研究.1923年關於集合論中超限序數的論文,顯示了馮·諾依曼處理集合論問題所特有的方式和風格.他把集會論加以公理化,他的公理化體系奠定了公理集合論的基礎.他從公理出發,用代數方法導出了集合論中許多重要概念、基本運算、重要定理等.特別在1925年的一篇論文中,馮·諾依曼就指出了任何一種公理化系統中都存在著無法判定的命題. 1933年,馮·諾依曼解決了希爾伯特第5問題,即證明了局部歐幾里得緊群是李群.1934年他又把緊群理論與波爾的殆周期函數理論統一起來.他還對一般拓撲群的結構有深刻的認識,弄清了它的代數結構和拓撲結構與實數是一致的. 他對運算元代數進行了開創性工作,並奠定了它的理論基礎,從而建立了運算元代數這門新的數學分支.這個分支在當代的有關數學文獻中均稱為馮·諾依曼代數.這是有限維空間中矩陣代數的自然推廣. 馮·諾依曼還創立了博奕論這一現代數學的又一重要分支. 1944年發表了奠基性的重要論文《博奕論與經濟行為》.論文中包含博奕論的純粹數學形式的闡述以及對於實際博奕應用的詳細說明.文中還包含了諸如統計理論等教學思想.馮·諾依曼在格論、連續幾何、理論物理、動力學、連續介質力學、氣象計算、原子能和經濟學等領域都作過重要的工作. 馮·諾依曼對人類的最大貢獻是對計算機科學、計算機技術和數值分析的開拓性工作. 現在一般認為ENIAC機是世界第一台電子計算機,它是由美國科學家研製的,於1946年2月14日在費城開始運行.其實由湯米、費勞爾斯等英國科學家研製的"科洛薩斯"計算機比ENIAC機問世早兩年多,於1944年1月10日在布萊奇利園區開始運行.ENIAC機證明電子真空技術可以大大地提高計算技術,不過,ENIAC機本身存在兩大缺點:(1)沒有存儲器;(2)它用布線接板進行控制,甚至要搭接幾天,計算速度也就被這一工作抵消了.ENIAC機研製組的莫克利和埃克特顯然是感到了這一點,他們也想盡快著手研製另一台計算機,以便改進. 1944年,諾伊曼參加原子彈的研製工作,該工作涉及到極為困難的計算。在對原子核反應過程的研究中,要對一個反應的傳播做出「是」或「否」的回答。解決這一問題通常需要通過幾十億次的數學運算和邏輯指令,盡管最終的數據並不要求十分精確,但所有的中間運算過程均不可缺少,且要盡可能保持准確。他所在的洛·斯阿拉莫斯實驗室為此聘用了一百多名女計算員,利用台式計算機從早到晚計算,還是遠遠不能滿足需要。無窮無盡的數字和邏輯指令如同沙漠一樣把人的智慧和精力吸盡。 被計算機所困擾的諾伊曼在一次極為偶然的機會中知道了ENIAC計算機的研製計劃,從此他投身到計算機研製這一宏偉的事業中,建立了一生中最大的豐功偉績。 1944年夏的一天,正在火車站候車的諾伊曼巧遇戈爾斯坦,並同他進行了短暫的交談。當時,戈爾斯坦是美國彈道實驗室的軍方負責人,他正參與ENIAC計算機的研製工作。在交談在,戈爾斯坦告訴了諾伊曼有關ENIAC的研製情況。具有遠見卓識的諾伊曼為這一研製計劃所吸引,他意識到了這項工作的深遠意義。 馮·諾依曼由ENIAC機研製組的戈爾德斯廷中尉介紹參加ENIAC機研製小組後,便帶領這批富有創新精神的年輕科技人員,向著更高的目標進軍.1945年,他們在共同討論的基礎上,發表了一個全新的"存儲程序通用電子計算機方案"--EDVAC(Electronic Discrete Variable AutomaticCompUter的縮寫).在這過程中,馮·諾依曼顯示出他雄厚的數理基礎知識,充分發揮了他的顧問作用及探索問題和綜合分析的能力。諾伊曼以「關於EDVAC的報告草案」為題,起草了長達101頁的總結報告。報告廣泛而具體地介紹了製造電子計算機和程序設計的新思想。這份報告是計算機發展史上一個劃時代的文獻,它向世界宣告:電子計算機的時代開始了。 EDVAC方案明確奠定了新機器由五個部分組成,包括:運算器、邏輯控制裝置、存儲器、輸入和輸出設備,並描述了這五部分的職能和相互關系.報告中,諾伊曼對EDVAC中的兩大設計思想作了進一步的論證,為計算機的設計樹立了一座里程碑。 設計思想之一是二進制,他根據電子元件雙穩工作的特點,建議在電子計算機中採用二進制。報告提到了二進制的優點,並預言,二進制的採用將大簡化機器的邏輯線路。 實踐證明了諾伊曼預言的正確性。如今,邏輯代數的應用已成為設計電子計算機的重要手段,在EDVAC中採用的主要邏輯線路也一直沿用著,只是對實現邏輯線路的工程方法和邏輯電路的分析方法作了改進。 程序內存是諾伊曼的另一傑作。通過對ENIAC的考察,諾伊曼敏銳地抓住了它的最大弱點--沒有真正的存儲器。ENIAC只在20個暫存器,它的程序是外插型的,指令存儲在計算機的其他電路中。這樣,解題之前,必需先相好所需的全部指令,通過手工把相應的電路聯通。這種准備工作要花幾小時甚至幾天時間,而計算本身只需幾分鍾。計算的高速與程序的手工存在著很大的矛盾。 針對這個問題,諾伊曼提出了程序內存的思想:把運算程序存在機器的存儲器中,程序設計員只需要在存儲器中尋找運算指令,機器就會自行計算,這樣,就不必每個問題都重新編程,從而大大加快了運算進程。這一思想標志著自動運算的實現,標志著電子計算機的成熟,已成為電子計算機設計的基本原則。 1946年7,8月間,馮·諾依曼和戈爾德斯廷、勃克斯在EDVAC方案的基礎上,為普林斯頓大學高級研究所研製IAS計算機時,又提出了一個更加完善的設計報告《電子計算機邏輯設計初探》.以上兩份既有理論又有具體設計的文件,首次在全世界掀起了一股"計算機熱",它們的綜合設計思想,便是著名的"馮·諾依曼機",其中心就是有存儲程序原則--指令和數據一起存儲.這個概念被譽為'計算機發展史上的一個里程碑".它標志著電子計算機時代的真正開始,指導著以後的計算機設計.自然一切事物總是在發展著的,隨著科學技術的進步,今天人們又認識到"馮·諾依曼機"的不足,它妨礙著計算機速度的進一步提高,而提出了"非馮·諾依曼機"的設想. 馮·諾依曼還積極參與了推廣應用計算機的工作,對如何編製程序及搞數值計算都作出了傑出的貢獻. 馮·諾依曼於1937年獲美國數學會的波策獎;1947年獲美國總統的功勛獎章、美國海軍優秀公民服務獎;1956年獲美國總統的自由獎章和愛因斯坦紀念獎以及費米獎. 馮·諾依曼逝世後,未完成的手稿於1958年以《計算機與人腦》為名出版.他的主要著作收集在六卷《馮·諾依曼全集》中,1961年出版. 另外,馮·諾依曼40年代出版的著作《博弈論和經濟行為》,使他在經濟學和決策科學領域豎起了一塊豐碑。他被經濟學家公認為博弈論之父。當時年輕的約翰·納什在普林斯頓求學期間開始研究發展這一領域,並在1994年憑借對博弈論的突出貢獻獲得了諾貝爾經濟學獎。
⑧ 變壓器是誰發明的
好象很難說是誰發明的,就象問微電腦,電子管,三極體,是誰發明的一樣. 19世紀下半葉,隨著科學理論的成熟,以電機的發明和電力的應用為標志 的第二技術革命爆發了。 18世紀以來,奧斯物發現了電流的磁效應,法拉第發現了電磁感應原理。這就為電動機和發電機的製造奠定了理論和實驗基礎。1891年俄國工程師多列沃——多布羅活爾斯其提出了三相羝流電理論,發明三相交流發電機。變壓器,電動機燈泡也先後被發明。最終導致了資本主義電氣化時代的到來。 亨利(1797—1878),1797年12月17日生於美國紐約州奧爾貝尼市,1822年畢業於奧爾貝尼學院,1826年被聘為奧爾貝尼學院物理學教授,1867年任美國科學院第一任院長。 1829年,亨利改進電磁鐵,他用絕緣導線密繞在鐵芯上,製成了能提起近一噸重物的強電磁鐵。同年,亨利在用實驗證明不同長度的導線對電磁鐵的提舉力的影響時,發現了電流的自感現象:斷開通有電流的長導線可以產生明亮的火花。1832年,他在發表的論文中宣布發現自感現象。1835年1月,亨利向美國哲學會介紹了他的研究結果,他用14個實驗定性地確定了各種形狀導體的電感的相對大小。他還發現了變壓器工作的基本定律。 家用電器上「好店123」呀!
⑨ 什麼是磁芯存儲器
半導體存儲器用半導體的通斷狀態來記錄數據,體積可以做的很小,想想cpu里集成了多少個半導體.磁芯存儲器用磁芯的磁極方向來存儲數據,體積大,速度慢,現在好象沒人用了(也許什麼特殊環境下有用).
⑩ 磁性材料的簡史
中國是世界上最先發現物質磁性現象和應用磁性材料的國家。早在戰國時期就有關於天然磁性材料(如磁鐵礦)的記載。11世紀就發明了製造人工永磁材料的方法。1086年《夢溪筆談》記載了指南針的製作和使用。1099~1102年有指南針用於航海的記述,同時還發現了地磁偏角的現象。近代,電力工業的發展促進了金屬磁性材料──硅鋼片(Si-Fe合金)的研製。永磁金屬從 19世紀的碳鋼發展到後來的稀土永磁合金,性能提高二百多倍。隨著通信技術的發展,軟磁金屬材料從片狀改為絲狀再改為粉狀,仍滿足不了頻率擴展的要求。20世紀40年代,荷蘭J.L.斯諾伊克發明電阻率高、高頻特性好的鐵氧體軟磁材料,接著又出現了價格低廉的永磁鐵氧體。50年代初,隨著電子計算機的發展,美籍華人王安首先使用矩磁合金元件作為計算機的內存儲器,不久被矩磁鐵氧體記憶磁芯取代,後者在60~70年代曾對計算機的發展起過重要的作用。50年代初人們發現鐵氧體具有獨特的微波特性,製成一系列微波鐵氧體器件。壓磁材料在第一次世界大戰時即已用於聲納技術,但由於壓電陶瓷的出現,使用有所減少。後來又出現了強壓磁性的稀土合金。非晶態(無定形)磁性材料是近代磁學研究的成果,在發明快速淬火技術後,1967年解決了制帶工藝,正向實用化過渡。