導航:首頁 > 創造發明 > 為什麼要發明三角函數

為什麼要發明三角函數

發布時間:2021-11-30 15:23:29

❶ 為什麼要發明三角函數

歷史表明,重要數學概念對數學發展的作用是不可估量的,函數概念對數學發展的影響,可以說是貫穿古今、曠日持久、作用非凡,回顧函數概念的歷史發展,看一看函數概念不斷被精煉、深化、豐富的歷史過程,是一件十分有益的事情,它不僅有助於我們提高對函數概念來龍去脈認識的清晰度,而且更能幫助我們領悟數學概念對數學發展,數學學習的巨大作用.
(一)
??馬克思曾經認為,函數概念來源於代數學中不定方程的研究.由於羅馬時代的丟番圖對不定方程已有相當研究,所以函數概念至少在那時已經萌芽.
??自哥白尼的天文學革命以後,運動就成了文藝復興時期科學家共同感興趣的問題,人們在思索:既然地球不是宇宙中心,它本身又有自轉和公轉,那麼下降的物體為什麼不發生偏斜而還要垂直下落到地球上?行星運行的軌道是橢圓,原理是什麼?還有,研究在地球表面上拋射物體的路線、射程和所能達到的高度,以及炮彈速度對於高度和射程的影響等問題,既是科學家的力圖解決的問題,也是軍事家要求解決的問題,函數概念就是從運動的研究中引申出的一個數學概念,這是函數概念的力學來源.
(二)
??早在函數概念尚未明確提出以前,數學家已經接觸並研究了不少具體的函數,比如對數函數、三角函數、雙曲函數等等.1673年前後笛卡兒在他的解析幾何中,已經注意到了一個變數對於另一個變數的依賴關系,但由於當時尚未意識到需要提煉一般的函數概念,因此直到17世紀後期牛頓、萊布尼茲建立微積分的時候,數學家還沒有明確函數的一般意義.
??1673年,萊布尼茲首次使用函數一詞表示「冪」,後來他用該詞表示曲線上點的橫坐標、縱坐標、切線長等曲線上點的有關幾何量.由此可以看出,函數一詞最初的數學含義是相當廣泛而較為模糊的,幾乎與此同時,牛頓在微積分的討論中,使用另一名詞「流量」來表示變數間的關系,直到1689年,瑞士數學家約翰·貝努里才在萊布尼茲函數概念的基礎上,對函數概念進行了明確定義,貝努里把變數x和常量按任何方式構成的量叫「x的函數」,表示為yx.
??當時,由於連接變數與常數的運算主要是算術運算、三角運算、指數運算和對數運算,所以後來歐拉就索性把用這些運算連接變數x和常數c而成的式子,取名為解析函數,還將它分成了「代數函數」與「超越函數」.
??18世紀中葉,由於研究弦振動問題,達朗貝爾與歐拉先後引出了「任意的函數」的說法.在解釋「任意的函數」概念的時候,達朗貝爾說是指「任意的解析式」,而歐拉則認為是「任意畫出的一條曲線」.現在看來這都是函數的表達方式,是函數概念的外延.
(三)
??函數概念缺乏科學的定義,引起了理論與實踐的尖銳矛盾.例如,偏微分方程在工程技術中有廣泛應用,但由於沒有函數的科學定義,就極大地限制了偏微分方程理論的建立.1833年至1834年,高斯開始把注意力轉向物理學.他在和W·威伯爾合作發明電報的過程中,做了許多關於磁的實驗工作,提出了「力與距離的平方成反比例」這個重要的理論,使得函數作為數學的一個獨立分支而出現了,實際的需要促使人們對函數的定義進一步研究.
??後來,人們又給出了這樣的定義:如果一個量依賴著另一個量,當後一量變化時前一量也隨著變化,那麼第一個量稱為第二個量的函數.「這個定義雖然還沒有道出函數的本質,但卻把變化、運動注入到函數定義中去,是可喜的進步.」
??在函數概念發展史上,法國數學家富里埃的工作影響最大,富里埃深刻地揭示了函數的本質,主張函數不必局限於解析表達式.1822年,他在名著《熱的解析理論》中說,「通常,函數表示相接的一組值或縱坐標,它們中的每一個都是任意的……,我們不假定這些縱坐 ... 展開全部>

❷ 三角函數誰發明的

歷史表明,重要數學概念對數學發展的作用是不可估量的,函數概念對數學發展的影響,可以說是貫穿古今、曠日持久、作用非凡,回顧函數概念的歷史發展,看一看函數概念不斷被精煉、深化、豐富的歷史過程,是一件十分有益的事情,它不僅有助於我們提高對函數概念來龍去脈認識的清晰度,而且更能幫助我們領悟數學概念對數學發展,數學學習的巨大作用. (一) 馬克思曾經認為,函數概念來源於代數學中不定方程的研究.由於羅馬時代的丟番圖對不定方程已有相當研究,所以函數概念至少在那時已經萌芽. 自哥白尼的天文學革命以後,運動就成了文藝復興時期科學家共同感興趣的問題,人們在思索:既然地球不是宇宙中心,它本身又有自轉和公轉,那麼下降的物體為什麼不發生偏斜而還要垂直下落到地球上?行星運行的軌道是橢圓,原理是什麼?還有,研究在地球表面上拋射物體的路線、射程和所能達到的高度,以及炮彈速度對於高度和射程的影響等問題,既是科學家的力圖解決的問題,也是軍事家要求解決的問題,函數概念就是從運動的研究中引申出的一個數學概念,這是函數概念的力學來源. (二) 早在函數概念尚未明確提出以前,數學家已經接觸並研究了不少具體的函數,比如對數函數、三角函數、雙曲函數等等.1673年前後笛卡兒在他的解析幾何中,已經注意到了一個變數對於另一個變數的依賴關系,但由於當時尚未意識到需要提煉一般的函數概念,因此直到17世紀後期牛頓、萊布尼茲建立微積分的時候,數學家還沒有明確函數的一般意義. 1673年,萊布尼茲首次使用函數一詞表示「冪」,後來他用該詞表示曲線上點的橫坐標、縱坐標、切線長等曲線上點的有關幾何量.由此可以看出,函數一詞最初的數學含義是相當廣泛而較為模糊的,幾乎與此同時,牛頓在微積分的討論中,使用另一名詞「流量」來表示變數間的關系,直到1689年,瑞士數學家約翰·貝努里才在萊布尼茲函數概念的基礎上,對函數概念進行了明確定義,貝努里把變數x和常量按任何方式構成的量叫「x的函數」,表示為yx. 當時,由於連接變數與常數的運算主要是算術運算、三角運算、指數運算和對數運算,所以後來歐拉就索性把用這些運算連接變數x和常數c而成的式子,取名為解析函數,還將它分成了「代數函數」與「超越函數」. 18世紀中葉,由於研究弦振動問題,達朗貝爾與歐拉先後引出了「任意的函數」的說法.在解釋「任意的函數」概念的時候,達朗貝爾說是指「任意的解析式」,而歐拉則認為是「任意畫出的一條曲線」.現在看來這都是函數的表達方式,是函數概念的外延. (三) 函數概念缺乏科學的定義,引起了理論與實踐的尖銳矛盾.例如,偏微分方程在工程技術中有廣泛應用,但由於沒有函數的科學定義,就極大地限制了偏微分方程理論的建立.1833年至1834年,高斯開始把注意力轉向物理學.他在和W·威伯爾合作發明電報的過程中,做了許多關於磁的實驗工作,提出了「力與距離的平方成反比例」這個重要的理論,使得函數作為數學的一個獨立分支而出現了,實際的需要促使人們對函數的定義進一步研究. 後來,人們又給出了這樣的定義:如果一個量依賴著另一個量,當後一量變化時前一量也隨著變化,那麼第一個量稱為第二個量的函數.「這個定義雖然還沒有道出函數的本質,但卻把變化、運動注入到函數定義中去,是可喜的進步.」 在函數概念發展史上,法國數學家富里埃的工作影響最大,富里埃深刻地揭示了函數的本質,主張函數不必局限於解析表達式.1822年,他在名著《熱的解析理論》中說,「通常,函數表示相接的一組值或縱坐標,它們中的每一個都是任意的……,我們不假定這些縱坐標服從一個共同的規律;他們以任何方式一個挨一個.」在該書中,他用一個三角級數和的形式表達了一個由不連續的「線」所給出的函數.更確切地說就是,任意一個以2π為周期函數,在〔-π,π〕區間內,可以由 表示出,其中 富里埃的研究,從根本上動搖了舊的關於函數概念的傳統思想,在當時的數學界引起了很大的震動.原來,在解析式和曲線之間並不存在不可逾越的鴻溝,級數把解析式和曲線溝通了,那種視函數為解析式的觀點終於成為揭示函數關系的巨大障礙. 通過一場爭論,產生了羅巴切夫斯基和狄里克萊的函數定義. 1834年,俄國數學家羅巴切夫斯基提出函數的定義:「x的函數是這樣的一個數,它對於每個x都有確定的值,並且隨著x一起變化.函數值可以由解析式給出,也可以由一個條件給出,這個條件提供了一種尋求全部對應值的方法.函數的這種依賴關系可以存在,但仍然是未知的.」這個定義建立了變數與函數之間的對應關系,是對函數概念的一個重大發展,因為「對應」是函數概念的一種本質屬性與核心部分. 1837年,德國數學家狄里克萊(Dirichlet)認為怎樣去建立x與y之間的關系無關緊要,所以他的定義是:「如果對於x的每一值,y總有完全確定的值與之對應,則y是x的函數.」 根據這個定義,即使像如下表述的,它仍然被說成是函數(狄里克萊函數): f(x)= 1 (x為有理數), 0 (x為無理數). 在這個函數中,如果x由0逐漸增大地取值,則f(x)忽0忽1.在無論怎樣小的區間里,f(x)無限止地忽0忽1.因此,它難用一個或幾個式子來加以表示,甚至究竟能否找出表達式也是一個問題.但是不管其能否用表達式表示,在狄里克萊的定義下,這個f(x)仍是一個函數. 狄里克萊的函數定義,出色地避免了以往函數定義中所有的關於依賴關系的描述,以完全清晰的方式為所有數學家無條件地接受.至此,我們已可以說,函數概念、函數的本質定義已經形成,這就是人們常說的經典函數定義. (四) 生產實踐和科學實驗的進一步發展,又引起函數概念新的尖銳矛盾,本世紀20年代,人類開始研究微觀物理現象.1930年量子力學問世了,在量子力學中需要用到一種新的函數——δ-函數, 即ρ(x)= 0,x≠0, ∞,x=0. 且 δ-函數的出現,引起了人們的激烈爭論.按照函數原來的定義,只允許數與數之間建立對應關系,而沒有把「∞」作為數.另外,對於自變數只有一個點不為零的函數,其積分值卻不等於零,這也是不可想像的.然而,δ-函數確實是實際模型的抽象.例如,當汽車、火車通過橋梁時,自然對橋梁產生壓力.從理論上講,車輛的輪子和橋面的接觸點只有一個,設車輛對軌道、橋面的壓力為一單位,這時在接觸點x=0處的壓強是 P(0)=壓力/接觸面=1/0=∞. 其餘點x≠0處,因無壓力,故無壓強,即 P(x)=0.另外,我們知道壓強函數的積分等於壓力,即 函數概念就在這樣的歷史條件下能動地向前發展,產生了新的現代函數定義:若對集合M的任意元素x,總有集合N確定的元素y與之對應,則稱在集合M上定義一個函數,記為y=f(x).元素x稱為自變元,元素y稱為因變元. 函數的現代定義與經典定義從形式上看雖然只相差幾個字,但卻是概念上的重大發展,是數學發展道路上的重大轉折,近代的泛函分析可以作為這種轉折的標志,它研究的是一般集合上的函數關系. 函數概念的定義經過二百多年來的錘煉、變革,形成了函數的現代定義,應該說已經相當完善了.不過數學的發展是無止境的,函數現代定義的形式並不意味著函數概念發展的歷史終結,近二十年來,數學家們又把函數歸結為一種更廣泛的概念—「關系」. 設集合X、Y,我們定義X與Y的積集X×Y為 X×Y={(x,y)|x∈X,y∈Y}. 積集X×Y中的一子集R稱為X與Y的一個關系,若(x,y)∈R,則稱x與y有關系R,記為xRy.若(x,y)R,則稱x與y無關系. 現設f是X與Y的關系,即fX×Y,如果(x,y),(x,z)∈f,必有y=z,那麼稱f為X到Y的函數.在此定義中,已在形式上迴避了「對應」的術語,全部使用集合論的語言了. 從以上函數概念發展的全過程中,我們體會到,聯系實際、聯系大量數學素材,研究、發掘、拓廣數學概念的內涵是何等重要.

❸ 為什麼要學三角函數

三角函數怎麼學?
三角函數是數學中屬於初等函數中的超越函數的一類函數。它們的本質是任意角的集合與一個比值的集合的變數之間的映射。通常的三角函數是在平面直角坐標系中定義的,其定義域為整個實數域。另一種定義是在直角三角形中,但並不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴展到復數系。
由於三角函數的周期性,它並不具有單值函數意義上的反函數。
三角函數在復數中有較為重要的應用。在物理學中,三角函數也是常用的工具。
基本初等內容
它有六種基本函數(初等基本表示):
函數名
正弦
餘弦
正切
餘切
正割
餘割
正弦函數
sinθ=y/r
餘弦函數
cosθ=x/r
正切函數
tanθ=y/x
餘切函數
cotθ=x/y
正割函數
secθ=r/x
餘割函數
cscθ=r/y
以及兩個不常用,已趨於被淘汰的函數:
正矢函數
versinθ
=1-cosθ
余矢函數
vercosθ
=1-sinθ
同角三角函數間的基本關系式:
·平方關系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
·積的關系:
sinα=tanα*cosα
cosα=cotα*sinα
tanα=sinα*secα
cotα=cosα*cscα
secα=tanα*cscα
cscα=secα*cotα
·倒數關系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
三角函數恆等變形公式:
·兩角和與差的三角函數:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·輔助角公式:
asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中
sint=b/(a^2+b^2)^(1/2)
cost=a/(a^2+b^2)^(1/2)
·倍角公式:
sin(2α)=2sinα·cosα
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
·半形公式:
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
·萬能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·其他:
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0
以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanatanbtan(a+b)+tana+tanb-tan(a+b)=0

❹ 為什麼要學三角函數

首先,勾股定理,只是針對直角三角形,也是最初級的明白三角函數的簡單計算.
到達高中,就會明白,三角函數的具體內涵,只有兩個角,一條邊,如何計算出三角形的形狀,就會進入高級的三角函數,如正弦定理、餘弦定理的運用,和差化積等公式的運用,就不止簡簡單單的形狀了.
只是由小學數學,1+1=2,到乘法口訣,要你一時掌握乘法口訣,你也無法吸收,只能從最初級學起,原理都是一樣的.希望對你有所幫助.
掌握一種計算技能,才是關鍵,至於考試,則是衡量的一個標准.

❺ 為什麼要叫三角函數

因為是三角形
有三個角
並且有自變數和因變數
例:sin(A)(自變數)=a/h
(因變數)
所以叫三角函數
Lz.是問這個吧..............................

❻ 請問三角函數里sin cos tan cot 都是誰發明的,為什麼而發明

sine(正弦)一詞始來於阿拉伯人雷基自奧蒙坦。他是十五世紀西歐數學界的領導人物,他於1464年完成的著作《論各種三角形》,1533年開始發行,這是一本純三角學的書,使三角學脫離天文學,獨立成為一門數學分科。 cosine(餘弦)及cotangent(餘切)為英國人根日爾首先使用,最早在1620年倫敦出版的他所著的《炮兵測量學》中出現。 secant(正割)及tangent(正切)為丹麥數學家托馬斯·芬克首創,最早見於他的《圓幾何學》一書中。cosecant(餘割)一詞為銳梯卡斯所創。最早見於他1596年出版的《宮廷樂章》一書。 1626年,阿貝爾特·格洛德最早推出簡寫的三角符號:「sin」、「tan」、「sec」。1675年,英國人奧屈特最早推出餘下的簡寫三角符號:「cos」、「cot」、「csc」。但直到1748年,經過數學家歐拉的引用後,才逐漸通用起來。

❼ 為什麼要研究三角函數的圖象和性質

解析:
(1)
三角函數在高中階段的感覺好像就是一堆公式
(2)
大學階段,三角函數將是N多課程中的基本知識點
所以,有必要全面研究通過三角函數的圖像和性質

❽ 我們為什麼要學三角函數

三角函數怎麼學?
三角函數是數學中屬於初等函數中的超越函數的一類函數。它們的本質是任意角的集合與一個比值的集合的變數之間的映射。通常的三角函數是在平面直角坐標系中定義的,其定義域為整個實數域。另一種定義是在直角三角形中,但並不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴展到復數系。
由於三角函數的周期性,它並不具有單值函數意義上的反函數。
三角函數在復數中有較為重要的應用。在物理學中,三角函數也是常用的工具。
基本初等內容
它有六種基本函數(初等基本表示):
函數名
正弦
餘弦
正切
餘切
正割
餘割
正弦函數
sinθ=y/r
餘弦函數
cosθ=x/r
正切函數
tanθ=y/x
餘切函數
cotθ=x/y
正割函數
secθ=r/x
餘割函數
cscθ=r/y
以及兩個不常用,已趨於被淘汰的函數:
正矢函數
versinθ
=1-cosθ
余矢函數
vercosθ
=1-sinθ
同角三角函數間的基本關系式:
·平方關系:
sin^2(α)
cos^2(α)=1
tan^2(α)
1=sec^2(α)
cot^2(α)
1=csc^2(α)
·積的關系:
sinα=tanα*cosα
cosα=cotα*sinα
tanα=sinα*secα
cotα=cosα*cscα
secα=tanα*cscα
cscα=secα*cotα
·倒數關系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
三角函數恆等變形公式:
·兩角和與差的三角函數:
cos(α
β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ
sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α
β)=(tanα
tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1
tanα·tanβ)
·輔助角公式:
Asinα
Bcosα=(A^2
B^2)^(1/2)sin(α
t),其中
sint=B/(A^2
B^2)^(1/2)
cost=A/(A^2
B^2)^(1/2)
·倍角公式:
sin(2α)=2sinα·cosα
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
·半形公式:
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1
cosα)/2
tan^2(α/2)=(1-cosα)/(1
cosα)
tan(α/2)=sinα/(1
cosα)=(1-cosα)/sinα
·萬能公式:
sinα=2tan(α/2)/[1
tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1
tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·積化和差公式:
sinα·cosβ=(1/2)[sin(α
β)
sin(α-β)]
cosα·sinβ=(1/2)[sin(α
β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α
β)
cos(α-β)]
sinα·sinβ=-(1/2)[cos(α
β)-cos(α-β)]
·和差化積公式:
sinα
sinβ=2sin[(α
β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α
β)/2]sin[(α-β)/2]
cosα
cosβ=2cos[(α
β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α
β)/2]sin[(α-β)/2]
·其他:
sinα
sin(α
2π/n)
sin(α
2π*2/n)
sin(α
2π*3/n)
……
sin[α
2π*(n-1)/n]=0
cosα
cos(α
2π/n)
cos(α
2π*2/n)
cos(α
2π*3/n)
……
cos[α
2π*(n-1)/n]=0
以及
sin^2(α)
sin^2(α-2π/3)
sin^2(α
2π/3)=3/2
tanAtanBtan(A
B)
tanA
tanB-tan(A
B)=0

❾ 為什麼三角函數很重要

三角函數是數學中屬於初等函數中的超越函數的一類函數。它們的本質是任意角的集合與一個比值的集合的變數之間的映射。通常的三角函數是在平面直角坐標系中定義的,其定義域為整個實數域。另一種定義是在直角三角形中,但並不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴展到復數系。 由於三角函數的周期性,它並不具有單值函數意義上的反函數。 三角函數在復數中有較為重要的應用。在物理學中,三角函數也是常用的工具。

閱讀全文

與為什麼要發明三角函數相關的資料

熱點內容
三興商標織造有限公司 瀏覽:657
加強和改進公共服務實施方案 瀏覽:991
迷你世界創造熔岩號角 瀏覽:479
愛奇藝激活碼有效期 瀏覽:507
醫療糾紛官司南方周末 瀏覽:855
公共服務類大樓的物業管理方案 瀏覽:284
電影版權買賣合同範本 瀏覽:167
口罩在商標注冊屬於哪個類目 瀏覽:256
基本公共衛生服務質控小結 瀏覽:668
數字版權的權源 瀏覽:565
駐馬店置地弘潤山轉讓 瀏覽:146
穂康投訴 瀏覽:146
嘉興萬聯知識產權代理有限公司 瀏覽:344
公共文化服務體系的建立和完善 瀏覽:278
淄博市工商局王彬 瀏覽:867
國辦發明電200330號 瀏覽:602
公共服務事項自查報告 瀏覽:872
2014年社區矛盾糾紛排查調處工作方案 瀏覽:873
公共衛生服務項目考試題庫 瀏覽:245
購買軟體使用權合同 瀏覽:134