⑴ 近代西方物理學發展史
1、 近代物理學時期又稱經典物理學時期,這一時期是從16世紀至19世紀,是經典物理學的誕生、發展和完善時期。
近代物理學是從天文學的突破開始的。早在公元前4世紀,古希臘哲學家亞里士多德就已提出了「地心說」,即認為地球位於宇宙的中心。公元140年,古希臘天文學家托勒密發表了他的13卷巨著《天文學大成》,在總結前人工作的基礎上系統地確立了地心說。
這一學說從表觀上解釋了日月星辰每天東升西落、周而復始的現象,又符合上帝創造人類、地球必然在宇宙中居有至高無上地位的宗教教義,因而流傳時間長達1300餘年。
公元15世紀,哥白尼經過多年關於天文學的研究,創立了科學的日心說,寫出「自然科學的獨立宣言」——《天體運行論》,對地心說發出了強有力的挑戰。
16世紀初,開普勒通過從第谷處獲得的大量精確的天文學數據進行分析,先後提出了行星運動三定律。開普勒的理論為牛頓經典力學的建立提供了重要基礎。從開普勒起,天文學真正成為一門精確科學,成為近代科學的開路先鋒。
近代物理學之父伽利略,用自製的望遠鏡觀測天文現象,使日心說的觀念深入人心。他提出落體定律和慣性運動概念,並用理想實驗和斜面實驗駁斥了亞里士多德的「重物下落快」的錯誤觀點,發現自由落體定律。
16世紀,牛頓總結前人的研究成果,系統的提出了力學三大運動定律,完成了經典力學的大一統。16世紀後期創立萬有引力定律,樹立起了物理學發展史上一座偉大的里程碑。
之後兩個世紀,是電學的大發展時期,法拉第用實驗的方法,完成了電與磁的相互轉化,並創造性地提出了場的概念。19世紀,麥克斯韋在法拉第研究的基礎上,憑借其高超的數學功底,創立了了電磁場方程組,在數學形式上完成了電與磁的完美統一,完成了電磁學的大一統。
與此同時,熱力學與光學也得到迅速發展,經典物理學逐漸趨於完善。
(1)近代物理發明創造擴展閱讀:
近代物理學發展越發緩慢,主要是因為數學模型的復雜度和詮釋的難度的提高造成的吧,或者換句話說,並不是物理學的發展變慢了,只是想把它簡單的表述給人們變得越來越難。人們無從了解,自然就覺得是學科不發展。
早在經典物理比如經典力學和熱力學,雖然數學模型也不簡單但是詮釋是很直觀的。就是說數學符號對應的物理實際是很顯而易見的。
而現代的,比如量子場論和弦論,甚至廣義相對論的數學模型比經典物理要復雜的多。而且很多數學模型還不完備,這些其實都不是大問題。關鍵是如何詮釋,如何理解量子場論中的量子場的物理實際,甚至更低級別一些,量子力學中的波函數是什麼,目前雖有一些公認的解釋但是很不令人滿意。
而且對於物理過程的概率詮釋從一方面直接從理論層面阻礙了對更基礎的物理結構的研究,這也跟我們的實驗觀察能力的限制有關。我們不能建立超越我們觀察能力的理論,或者我們可以建立任何理論但是對於超越觀察能力的部分我們不能做任何研究。
綜上所述,其實物理學現在的發展並不慢,只是人們的認知問題而已。
⑵ 物理學的初步形成到現在的近代物理經過什麼發展,各個時期的代表人物是誰
物理學是研究自然界的物質結構、物體間的相互作用和物體運動最一般規律的自然科學。物理學研究的范圍 —— 物質世界的層次和數量級物理學 (Physics)質子 10-15 m空間尺度:物 質 結 構物質相互作用物質運動規律微觀粒子Microscopic介觀物質mesoscopic宏觀物質macroscopic宇觀物質cosmological類星體 10 26 m時間尺度:基本粒子壽命 10-25 s宇宙壽命 1018 s緒 論E-15E-12E-09E-06E-031mE+03E+06E+09E+12E+15E+18E+21E+24E+27最小 的細胞原子原子核基本粒子DNA長度星系團銀河系最近恆 星的距離太陽系太陽山哈勃半徑超星系團人蛇吞尾圖,形象地表示了物質空間尺寸的層次物理現象按空間尺度劃分:量子力學經典物理學宇宙物理學按速率大小劃分: 相對論物理學非相對論物理學按客體大小劃分: 微觀系統宏觀系統 按運動速度劃分: 低速現象高速現象 實驗物理理論物理計算物理今日物理學物理學的發展。
物理學是人們對無生命自然界中物質的轉變的知識做出規律性的總結。這種運動和轉變應有兩種。一是早期人們通過感官視覺的延伸,二是近代人們通過發明創造供觀察測量用的科學儀器,實驗得出的結果,間接認識物質內部組成建立在的基礎上。物理學從研究角度及觀點不同,可分為微觀與宏觀兩部分,宏觀是不分析微粒群中的單個作用效果而直接考慮整體效果,是最早期就已經出現的,微觀物理學隨著科技的發展理論逐漸完善。
其次,物理又是一種智能。
誠如諾貝爾物理學獎得主、德國科學家玻恩所言:「如其說是因為我發表的工作里包含了一個自然現象的發現,倒不如說是因為那裡包含了一個關於自然現象的科學思想方法基礎。」物理學之所以被人們公認為一門重要的科學,不僅僅在於它對客觀世界的規律作出了深刻的揭示,還因為它在發展、成長的過程中,形成了一整套獨特而卓有成效的思想方法體系。正因為如此,使得物理學當之無愧地成了人類智能的結晶,文明的瑰寶。
大量事實表明,物理思想與方法不僅對物理學本身有價值,而且對整個自然科學,乃至社會科學的發展都有著重要的貢獻。有人統計過,自20世紀中葉以來,在諾貝爾化學獎、生物及醫學獎,甚至經濟學獎的獲獎者中,有一半以上的人具有物理學的背景;——這意味著他們從物理學中汲取了智能,轉而在非物理領域里獲得了成功。——反過來,卻從未發現有非物理專業出身的科學家問鼎諾貝爾物理學獎的事例。這就是物理智能的力量。難怪國外有專家十分尖銳地指出:沒有物理修養的民族是愚蠢的民族!
● 牛頓力學 (Mechanics)研究物體機械運動的基本規律及關於時空相對性的規律
● 電磁學 (Electromagnetism)研究電磁現象,物質的電磁運動規律及電磁輻射等規律
● 熱力學 (Thermodynamics)研究物質熱運動的統計規律及其宏觀表現
● 相對論 (Relativity)研究物體的高速運動效應以及相關的動力學規律
● 量子力學 (Quantum mechanics)研究微觀物質運動現象以及基本運動規律二.物理學的五大基本理論物理學是一門最基本的科學;是最古老,但發展最快的科學;它提供最多,最基本的科學研究手段.物理學是一切自然科學的基礎物理學派生出來的分支及交叉學科物理學構成了化學,生物學,材料科學,地球物理學等學科的基礎,物理學的基本概念和技術被應用到所有自然科學之中.物理學與數學之間有著深刻的內在聯系粒子物理學原子核物理學原子分子物理學固體物理學凝聚態物理學激光物理學等離子體物理學地球物理學生物物理學天體物理學宇宙射線物理學三. 物理學是構成自然科學的理論基礎四. 物理學與技術20世紀,物理學被公認為科學技術發展中最重要的帶頭學科
● 熱機的發明和使用,提供了第一種模式:
● 電氣化的進程,提供了第二種模式:核能的利用激光器的產生層析成像技術(CT)超導電子技術技術—— 物理—— 技術物理—— 技術—— 物理粒子散射實驗X 射線的發現受激輻射理論低溫超導微觀理論電子計算機的誕生
● 1947年 貝爾實驗室的巴丁,布拉頓和肖克來發明了晶體管,標志著信息時代的開始
● 1962年 發明了集成電路
● 70年代後期 出現了大規模集成電路
● 1925 26年 建立了量子力學
● 1926年 建立了費米 狄拉克統計
● 1927年 建立了布洛赫波的理論
● 1928年 索末菲提出能帶的猜想
● 1929年 派爾斯提出禁帶,空穴的概念同年貝特提出了費米面的概念
● 1957年 皮帕得測量了第一個費米面超晶格材料納米材料光子晶體晶體管的發明大規模集成電路電子計算機信息技術與工程
● 幾乎所有的重大新(高)技術領域的創立,事先都在物理學中經過長期的醞釀.
● 當今物理學和科學技術的關系兩種模式並存,相互交叉,相互促進"沒有昨日的基礎科學就沒有今日的技術革命". —— 李政道量子力學能帶理論人工設計材料五. 物理學的方法和科學態度提出命題推測答案理論預言實驗驗證修改理論現代物理學是一門理論和實驗高度結合的精確科學從新的觀測事實或實驗事實中提煉出來,或從已有原理中推演出來建立模型;用已知原理對現象作定性解釋,進行邏輯推理和數學演算新的理論必須提出能夠為實驗所證偽的預言一切物理理論最終都要以觀測或實驗事實為准則當一個理論與實驗事實不符時,它就面臨著被修改或被推翻 六. 怎樣學習物理學著名物理學家費曼說:科學是一種方法.它教導人們:一些事物是怎樣被了解的,什麼事情是已知的,現在了解到了什麼程度,如何對待疑問和不確定性,證據服從什麼法則;如何思考事物,做出判斷,如何區別真偽和表面現象 .著名物理學家愛因斯坦說:發展獨立思考和獨立判斷地一般能力,應當始終放在首位,而不應當把專業知識放在首位.如果一個人掌握了他的學科的基礎理論,並且學會了獨立思考和工作,他必定會找到自己的道路,而且比起那種主要以獲得細節知識為其培訓內容的人來,他一定會更好地適應進步和變化 .
● 學習的觀點:從整體上邏輯地,協調地學習物理學,了解物理學中各個分支之間的相互聯系.
● 物理學的本質:物理學並不研究自然界現象的機制(或者根本不能研究),我們只能在某些現象中感受某些自然界的規則,並試圖以這規則來解釋自然界所發生任何的事情。我們有限的智力總試圖在理解自然,並試圖改變自然,這是我們物理,甚至是所有學科,所共同追求的目標。
⑶ 發明的創造事跡
鄧稼先(1924年6月25日~1986年7月29日),身高183厘米,安徽懷寧人,著名核物理學家,中國科學院院士。一位偉大而倍受尊敬的物理學大師,我們每一位中國人都應該銘記的為祖國奉獻出一生的前輩,他在艱苦的環境下成功的為中國造出了第一枚原子彈和第一枚氫彈.
[編輯本段]鄧稼先個人概述
鄧稼先(1924年6月25日~1986年7月29日),身高183厘米,安徽懷寧人,著名核物理學家,中國科學院院士。一位偉大而倍受尊敬的物理學大師,我們每一位中國人都應該銘記的為祖國奉獻出一生的前輩,他在艱苦的環境下成功的為中國造出了第一枚原子彈和第一枚氫彈.
1948年至1950年去美國普渡大學留學,獲得了物理學博士學位,同年回國。1950年10月被分派到中國科學院工作。1956年加入中國共產黨。歷任中國科學院近代物理研究所助理研究員、原子能研究所副研究員,核工業部第九研究院院長,核工業部科技委員會副主任,國防科學工業委員會科技委員會副主任,中科院數學物理學部委員,中國核學會第一、二屆常務理事。是中共第十二屆中央委員。參加組織和領導我國核武器的研究、設計工作。是我國核武器理論研究工作的奠基者之一。從原子彈、氫彈原理的突破和試驗成功及其武器化,到新的核武器的重大原理突破和研製試驗,均做出了重大貢獻。作為主要參加者,其成果曾獲國家自然科學獎一等獎和國家科技進步獎特等獎。 被稱為「中國原子彈之父」
鄧稼先,1924年出生於安徽懷寧縣一個書香門第之家。翌年,他隨母到北京,在擔任清華、北大哲學教授的父親身邊長大。他5歲入小學,在父親指點下打下了很好的中西文化基礎。1935年,他考入志成中學,與比他高兩班、且是清華大學院內鄰居的楊振寧結為最好的朋友。鄧稼先在校園中深受愛國救亡運動的影響,1937年北平淪陷後秘密參加抗日聚會。在父親安排下,他隨大姐去了大後方昆明,並於1941年考入西南聯合大學物理系。
[編輯本段]鄧稼先生平
鄧稼先1924年6月25日出生於安徽懷寧縣一個書香門第之家,祖父是清代著名書法家和篆刻家,父親鄧以蟄是我國著名的美學家和美術史家,曾擔任清華大學、北京大學哲學教授。1925年,母親帶他來到北京,與父親生活在一起。他5歲入小學,在父親指點下打下了很好的中西文化基礎。1935年,他考入崇德中學,與比他高兩班、且是清華大學院內鄰居的楊振寧結為最好的朋友。
他從青少年時代就有了科技強國的夙願,將個人的事業與民族的興亡緊密相連。
鄧稼先在校園中深受愛國救亡運動的影響,「七·七」事變後,全家滯留北京,他秘密參加抗日聚會。在父親安排下,16歲的鄧稼先隨大姐去了大後方,在四川江津讀完高中,並於1941年考入西南聯合大學物理系,受業於王竹溪、鄭華熾等著名教授。抗日戰爭勝利時,他拿到了畢業證書,在昆明參加了中國共產黨的外圍組織「民青」,投身於爭取民主、反對國民黨獨裁統治的斗爭。翌年,他回到北平,受聘擔任了北京大學物理系助教,並在學生運動中擔任了北京大學教職工聯合會主席。
抱著學更多的本領以建設新中國之志,他於1947年通過了赴美研究生考試,於翌年秋進入美國印第安那州的普渡大學研究生院。由於他學習成績突出,不足兩年便讀滿學分,並通過博士論文答辯。此時他只有26歲,人稱「娃娃博士」。這位取得學位剛9天的「娃娃博士」毅然放棄了在美國優越的生活和工作條件,回到了一窮二白的祖國。
1950年8月,鄧稼先在美國獲得博士學位九天後,便謝絕了恩師和同校好友的挽留,毅然決定回國。同年10月,鄧稼先來到中國科學院近代物理研究所任研究員。在北京外事部門的招待會上,有人問他帶了什麼回來。他說:「帶了幾雙眼下中國還不能生產的尼龍襪子送給父親,還帶了一腦袋關於原子核的知識。」 此後的八年間,他進行了中國原子核理論的研究。1953年,他與許鹿希結婚,許鹿希是五·四運動重要學生領袖、是後來擔任全國人大常委會副委員長的許德珩的長女。1956年,鄧稼先加入了中國共產黨。
1958年秋,二機部副部長錢三強找到鄧稼先,說「國家要放一個『大炮仗』」,征詢他是否願意參加這項必須嚴格保密的工作。鄧稼先義無反顧地同意,回家對妻子只說自己「要調動工作」,不能再照顧家和孩子,通信也困難。從小受愛國思想熏陶的妻子明白,丈夫肯定是從事對國家有重大意義的工作,表示堅決支持。從此,鄧稼先的名字便在刊物和對外聯絡中消失,他的身影只出現在嚴格警衛的深院和大漠戈壁。
鄧稼先就任二機部第九研究所理論部主任後,先挑選了一批大學生,准備有關俄文資料和原子彈模型。1959年6月,蘇聯政府終止了原有協議,中共中央下決心自己動手,搞出原子彈、和人造衛星。鄧稼先擔任了原子彈的理論設計負責人後,一面部署同事們分頭研究計算,自己也帶頭攻關。在遇到一個蘇聯專家留下的核爆大氣壓的數字時,鄧稼先在周光召的幫助下以嚴謹的計算推翻了原有結論,從而解決了關系中國原子彈試驗成敗的關鍵性難題。數學家華羅庚後來稱,這是「集世界數學難題之大成」的成果。
中國研製原子彈正值三年困難時期,尖端領域的科研人員雖有較高的糧食定量,卻因缺乏油水,仍經常飢腸響如鼓。鄧稼先從岳父那裡能多少得到一點糧票的支援,卻都用來買餅干之類,在工作緊張時與同事們分享。就是在這樣艱苦的條件下,他們日夜加班。「粗估」參數的時候,要有物理直覺;晝夜不斷地籌劃計算時,要有數學見地;決定方案時,要有勇進的膽識和穩健的判斷。可是理論是否准確永遠是一個問題。不知道他在關鍵性的方案上簽字的時候,手有沒有顫抖……
鄧稼先不僅在秘密科研院所里費盡心血,還經常到飛沙走石的戈壁試驗場。他冒著酷暑嚴寒,在試驗場度過了整整8年的單身漢生活,有15次在現場領導核試驗,從而掌握了大量的第一手材料。 1964年10月,中國成功爆炸的第一顆原子彈,就是由他最後簽字確定了設計方案。他還率領研究人員在試驗後迅速進入爆炸現場采樣,以證實效果。他又同於敏等人投入對氫彈的研究。按照「鄧—於方案」,最後終於製成了氫彈,並於原子彈爆炸後的兩年零八個月試驗成功。這同法國用8年、美國用7年、蘇聯用10年的時間相比,創造了世界上最快的速度。
1972年,鄧稼先擔任核武器研究院副院長,1979年又任院長。1984年,他在大漠深處指揮中國第二代新式核武器試驗成功。翌年,他的癌擴散已無法挽救,他在國慶節提出的要求就是去看看天安門。1986年7月16日,國務院授予他全國「五一」勞動獎章。同年7月29日,鄧稼先去世。他臨終前留下的話仍是如何在尖端武器方面努力,並叮嚀:「不要讓人家把我們落得太遠……」
[編輯本段]鄧稼先貢獻
鄧稼先是中國核武器研製與發展的主要組織者、領導者,被稱為「兩彈元勛」。在原子彈、氫彈研究中,鄧稼先領導開展了爆轟物理、流體力學、狀態方程、中子輸運等基礎理論研究,完成了原子彈的理論方案,並參與指導核試驗的爆轟模擬試驗。原子彈試驗成功後,鄧稼先又組織力量,探索氫彈設計原理,選定技術途徑。領導並親自參與了1967年中國第一顆氫彈的研製和實驗工作。
鄧稼先和周光召合寫的《我國第一顆原子彈理論研究總結》,是一部核武器理論設計開創性的基礎巨著,它總結了百位科學家的研究成果,這部著作不僅對以後的理論設計起到指導作用,而且還是培養科研人員入門的教科書。鄧稼先對高溫高壓狀態方程的研究也做出了重要貢獻。為了培養年輕的科研人員,他還寫了電動力學、等離子體物理、球面聚心爆轟波理論等許多講義,即使在擔任院長重任以後,他還在工作之餘著手編寫「量子場論」和「群論」。
鄧稼先是中國知識分子的優秀代表,為了祖國的強盛,為了國防科研事業的發展,他甘當無名英雄,默默無聞地奮鬥了數十年。他常常在關鍵時刻,不顧個人安危,出現在最危險的崗位上,充分體現了他崇高無私的奉獻精神。他在中國核武器的研製方面做出了卓越的貢獻,卻鮮為人知,直到他死後,人們才知道了他的事跡。
鄧稼先雖長期擔任核試驗的領導工作,卻本著對工作極端負責任的精神,在最關鍵、最危險的時候出現在第一線。例如,核武器插雷管、鈾球加工等生死系於一發的危險時刻,他都站在操作人員身邊,既加強了管理,又給作業者以極大的鼓勵。鄧稼先詞是
踏遍戈壁共草原,
二十五年前,
連克千重關,
群力奮戰自當先,
捷音頻年傳。
蔑視核訛詐,
華夏創新篇,
君視名利如糞土,
許身國威壯河山,
功勛澤人間。
一次,航投試驗時出現降落傘事故,原子彈墜地被摔裂。鄧稼先深知危險,卻一個人搶上前去把摔破的原子彈碎片拿到手裡仔細檢驗。身為醫學教授的妻子知道他「抱」了摔裂的原子彈,在鄧稼先回北京時強拉他去檢查。結果發現在他的小便中帶有放射性物質,肝臟被損,骨髓里也侵入了放射物。隨後,鄧稼先仍堅持回核試驗基地。在步履艱難之時,他堅持要自己去裝雷管,並首次以院長的權威向周圍的人下命令:「你們還年輕,你們不能去!」1985年,鄧稼先最後離開羅布泊回到北京,仍想參加會議。醫生強迫他住院並通知他已患有癌症。他無力地倒在病床上,面對自己妻子以及國防部長張愛萍的安慰,平靜地說:「我知道這一天會來的,但沒想到它來得這樣快。」中央盡了一切力量,卻無法挽救他的生命。在鄧稼先去世前不久,組織上為他個人配備了一輛專車。他只是在家人攙扶下,坐進去並轉了一小圈,表示已經享受了國家所給的待遇。在他去世13年後,1999年國慶50周年前夕,黨中央、國務院和中央軍委又向鄧稼先追授了金質的「兩彈一星功勛獎章」。
中國能在那樣短的時間和那樣差的基礎上研製成「兩彈一星」(原子彈、氫彈和衛星),西方人總感到不可思議。楊振寧來華探親返程之前,故意問還不暴露工作性質的鄧稼先說:「在美國聽人說,中國的原子彈是一個美國人幫助研製的。這是真的嗎?」鄧稼先請示了周恩來後,寫信告訴他:「無論是原子彈,還是氫彈,都是中國人自己研製的。」楊振寧看後激動得流出了淚水。正是由於中國有了這樣一批勇於奉獻的知識分子,才挺起了堅強的民族脊樑。
1950年,鄧稼先從美國普渡大學回國,先後擔任中國科學院物理數學學部委員、國防科工委科技委副主任、核工業部第九研究院院長等職,被選為中國共產黨第十二屆中央委員會委員、全國勞動模範。他簽署了我國第一顆原子彈總體計劃。
1948年,鄧稼先懷著科學救國的理想,遠渡重洋去美國留學,在普渡大學當研究員,僅用一年多的時間就獲得了博士學位。
有人勸他留在美國,但鄧稼先婉言謝絕了。1950年10月,他懷著一顆報效祖國的赤子之心,放棄了優越的工作條件和生活環境,和二百多為位專家學者一起回到國內。一到北京,他就同他的老師王淦昌教授以及彭桓武教授投入中國近代物理研究所的建設,開設了中國原子核物理理論研究工作的嶄新局面。1956年,鄧稼先光榮地加入了中國共產黨。
當時,中央決定,依靠自己的力量發展原子彈。當鄧稼先得知自己將要參加原子彈的設計工作時,心潮起伏,興奮難眠,這是一項多麼光榮而又神聖的職業!但同時他又感到任務艱巨,擔子十分沉重。
從此,鄧稼先懷著以最快速度把事業搞上去的決心,把全部的心血都傾注到任務中去。
首先,他帶著一批剛跨出校們的大學生,日夜挑磚拾瓦搞試驗場地建設,硬是在亂墳里碾出一條柏油路來,在松樹林旁蓋起原子彈教學模型廳......
在沒有資料,缺乏試驗條件的情況下,鄧稼先挑起了探索原子彈理論的重任。為了當好原子彈設計先行工作的「龍頭」,他帶領大家刻苦學習理論,靠自己的力量搞尖端科學研究。鄧稼先向大家推薦了一攬子的書籍和資料,他認為這些都是探索原子彈理論設計奧秘的向導。
由於都是外文書,並且只有一份,鄧稼先只好組織大家閱讀,一人念,大家譯,連夜印刷。
為了解開原子彈的科學之迷,在北京近郊,科學家們決心充分發揮集體的智慧,研製出我國的「爭氣彈」。那時,由於條件艱苦,同志們使用算盤進行極為復雜的原子理論計算,為了演算一個數據,一日三班倒。算一次,要一個多月,算9次,要花費一年多時間,常常是工作到天亮。作為理論部負責人,鄧稼先跟班指導年輕人運算。每當過度疲勞,思維中斷時,他都著急地說:「唉,一個太陽不夠用呀!」
為了讓同他一起工作的年輕人也得到休息,得到工作之餘的稍許娛樂,他總是抽空與年輕人玩十分鍾的的木馬游戲。有一次,王淦昌教授看見了他們在玩這種游戲,老教授又好氣又好笑,斥責說:「這是什麼玩法,你還做兒戲呀。」 鄧稼先笑說:「這叫互相跨越!」
互相跨越,這是一種多麼親密的同志關系啊!正是靠著這種關系,鄧稼先和同事們一起克服了一個個科學難關,使我國的「兩彈研製」以驚人速度發展。
1964年10月16日,我國第一顆原子彈橫空出世......
不久,我國第一顆氫彈威震山河......
1986年7月29日,鄧稼先因癌症不幸逝世,享年62歲。人民將永遠懷念這位被稱做「兩彈」元勛的這位我國核武器研製工作的開拓者和奠基者。
[編輯本段]鄧稼先貢獻簡述及後人評價
研究了原子彈和氫彈
鄧稼先的光輝一生(徐焰)
鄧稼先,1924年出生於安徽懷寧縣一個書香門第之家。翌年,他隨母到北京,在擔任清華、北大哲學教授的父親身邊長大。他5歲入小學,在父親指點下打下了很好的中西文化基礎。1935年,他考入崇德中學,與比他高兩班、且是清華大學院內鄰居的楊振寧結為最好的朋友。鄧稼先在校園中深受愛國救亡運動的影響,1937年北平淪陷後秘密參加抗日聚會。在父親安排下,他隨大姐去了大後方昆明,並於1941年考入西南聯合大學物理系。
1945年抗戰勝利時,鄧稼先從西南聯大畢業,在昆明參加了共產黨的外圍組織「民青」,投身於爭取民主、反對國民黨獨裁統治的斗爭。翌年,他回到北平,受聘擔任了北京大學物理系助教,並在學生運動中擔任了北大教職工聯合會主席。抱著學更多的本領以建設新中國之志,他於1947年通過了赴美研究生考試,於翌年秋進入美國印第安那州的普渡大學研究生院。由於他學習成績突出,不足兩年便讀滿學分,並通過博士論文答辯。此時他只有26歲,人稱「娃娃博士」。
1950年8月,鄧稼先在美國獲得博士學位九天後,便謝絕了恩師和同校好友的挽留,毅然決定回國。同年10月,鄧稼先來到中國科學院近代物理研究所任研究員。此後的八年間,他進行了中國原子核理論的研究。1953年,他與許鹿希結婚,許鹿希是五四運動重要學生領袖、後來擔任全國人大常委會副委員長的許德珩的長女。1954年,鄧稼先加入了中國共產黨。
1958年秋,二機部副部長錢三強找到鄧稼先,說「國家要放一個『大炮仗』」,征詢他是否願意參加這項必須嚴格保密的工作。鄧稼先義無反顧地同意,回家對妻子只說自己「要調動工作」,不能再照顧家和孩子,通信也困難。從小受愛國思想熏陶的妻子明白,丈夫肯定是從事對國家有重大意義的工作,表示堅決支持。從此,鄧稼先的名字便在刊物和對外聯絡中消失,他的身影只出現在嚴格警衛的深院和大漠戈壁。
鄧稼先就任二機部第九研究所理論部主任後,先挑選了一批大學生,准備有關俄文資料和原子彈模型。1959年6月,蘇聯政府終止了原有協議,中共中央下決心自己動手,搞出原子彈、氫彈和人造衛星。鄧稼先擔任了原子彈的理論設計負責人後,一面部署同事們分頭研究計算,自己也帶頭攻關。在遇到一個蘇聯專家留下的核爆大氣壓的數字時,鄧稼先在周光召的幫助下以嚴謹的計算推翻了原有結論,從而解決了關系中國原子彈試驗成敗的關鍵性難題。數學家華羅庚後來稱,這是「集世界數學難題之大成」的成果。
鄧稼先不僅在秘密科研院所里費盡心血,還經常到飛沙走石的戈壁試驗場。1964年10月,中國成功爆炸的第一顆原子彈,就是由他最後簽字確定了設計方案。他還率領研究人員在試驗後迅速進入爆炸現場采樣,以證實效果。他又同於敏等人投入對氫彈的研究。按照「鄧—於方案」,最後終於製成了氫彈,並於原子彈爆炸後的兩年零八個月試驗成功。這同法國用8年、美國用7年、蘇聯用4年的時間相比,創造了世界上最快的速度。
1972年,鄧稼先擔任核武器研究院副院長,1979年又任院長。1984年,他在大漠深處指揮中國第二代新式核武器試驗成功。翌年,他的癌擴散已無法挽救,他在國慶節提出的要求就是去看看天安門。1986年7月16日,國務院授予他全國「五一」勞動獎章。同年7月29日,鄧稼先去世。他臨終前留下的話仍是如何在尖端武器方面努力,並叮嚀:「不要讓人家把我們落得太遠……」
鄧稼先雖長期擔任核試驗的領導工作,卻本著對工作極端負責任的精神,在最關鍵、最危險的時候出現在第一線。例如,核武器插雷管、鈾球加工等生死系於一發的危險時刻,他都站在操作人員身邊,既加強了管理,又給作業者以極大的鼓勵。
一次,航投試驗時出現降落傘事故,原子彈墜地被摔裂。鄧稼先深知危險,卻一個人搶上前去把摔破的原子彈碎片拿到手裡仔細檢驗。身為醫學教授的妻子知道他「抱」了摔裂的原子彈,在鄧稼先回北京時強拉他去檢查。結果發現在他的小便中帶有放射性物質,肝臟被損,骨髓里也侵入了放射物。隨後,鄧稼先仍堅持回核試驗基地。在步履艱難之時,他堅持要自己去裝雷管,並首次以院長的權威向周圍的人下命令:「你們還年輕,你們不能去!」1985年,鄧稼先最後離開羅布泊回到北京,仍想參加會議。醫生強迫他住院並通知他已患有癌症。他無力地倒在病床上,面對自己妻子以及國防部長張愛萍的安慰,平靜地說:「我知道這一天會來的,但沒想到它來得這樣快。」中央盡了一切力量,卻無法挽救他的生命。在鄧稼先去世前不久,組織上為他個人配備了一輛專車。他只是在家人攙扶下,坐進去並轉了一小圈,表示已經享受了國家所給的待遇。在他去世13年後,1999年國慶50周年前夕,黨中央、國務院和中央軍委又向鄧稼先追授了金質的「兩彈一星功勛獎章」。
(選自2001年6月25日《北京青年報》)
三、楊振寧與鄧稼先的友誼(徐勝藍、孟東明)
1964年10月,浩瀚的戈壁灘上空升起了一團蘑菇雲,中國第一顆原子彈爆炸成功。兩年之後,第一顆氫彈又放出炫目的光芒。這曾使全世界為之震驚。人們都知道奧本海默是美國的「原子彈之父」,薩哈羅夫是前蘇聯的「氫彈之父」,然而,中國的「兩彈」元勛是誰?
1986年6月,中國各大報紙均在首要位置介紹這位了不起的科學家:
名字鮮為人知 功績舉世矚目
「兩彈」元勛——鄧稼先
1986年6月,中央軍委主席鄧小平簽署命令,任命鄧稼先為國防科工委科技委副主任。
1986年7月,國務院授予鄧稼先全國勞動模範稱號和獎章。
核工業部為表彰鄧稼先20多年來為發展我國核武器做出的重大貢獻,為使他那不計名利、甘當無名英雄和艱苦奮斗、捨生忘死的革命精神發揚光大,號召廣大科技人員向他學習。
鄧稼先可歌可泣的優秀事跡,他那偉大的抱負和精忠報國的感人精神深深震撼著人們的心靈!
外國有一本書,題為《比一千顆太陽還亮》。鄧稼先獻身的事業,亮過一千顆太陽!他從34歲接到命令研製中國的「大炮仗」以來,告別妻子和兩個幼小的兒女,隱姓埋名進入戈壁灘。20多年來,他和他的同事們沒有任何人在報刊上占過巴掌大的版面。他們都把自己的姓名和對祖國、對人民的深愛埋在祖國最荒涼最偏僻的地方。人們常常忘記他們,只有當「大炮仗」的沖擊波沖擊各國地震監測站,引起世界一次又一次矚目的時候,人們才想起他們的存在……
1986年7月29日,為中國核武器事業奉獻畢生精力的元勛鄧稼先病逝於北京。
⑷ 近代物理學中有哪些主要成就
一、物理學在近代取得那些突出的成就
(1)經典力學體系的建立。英國科學家牛頓系統地闡述了運動三大定律--慣性定律、加速度定律、作用和反作用定律,開創了經典力學體系。同時。他還發現了萬有引力定律。牛頓力學體系正確地反映了宏觀物體低速運動的客觀規律,實現了自然科學的第一次理論性的大綜合,這是人類對自然界認識的一個飛躍。牛頓力學體系的建立是近代科學形成的標志。
(2)量子理論和量子力學的建立:德國科學家普朗克在物理學中引入量子形成量子理論。在量子理論的基礎上展導致量子力學的建立。量子理論使人們從根本上改變了近代物理學中的傳統觀念,使整個物理學和自然科學的觀念發生重大變化。
(3)相對論的產生。美籍德國物理學家愛因斯坦1905年建立了狹義相對論,從而揭示了時間、空間、質量同運動的內在聯系。
1916年,愛因斯坦又建立了廣義相對論,進一步揭示了時空結構,指出了物質間所存在的萬有引力,是由於物質的存在和分布使時間和空間的性質不均勻而引起的。相對論同量子理論一起構成了現代物理學的基本理論框架。
二、20世紀物理學的主要成就:
●1900-1926年
建立了量子力學。
●
1926年
建立了費米狄拉克統計。
●
1927年
建立了布洛赫波的理論。
●
1928年
索末菲提出能帶的猜想。
●
1929年
派爾斯提出禁帶、空穴的概念,同年貝特提出了費米面的概念。
●
1947年貝爾實驗室的巴丁、布拉頓和肖克萊發明了晶體管,標志著信息時代的開始。
●
1957年
皮帕得測量了第一個費米面超晶格材料納米材料光子。
●
1958年傑克.基爾比發明了集成電路。
●
20世紀70年代出現了大規模集成電路。
⑸ 近代物理產生的過程
利略、開普勒、笛卡爾等人工作的基礎上,把近代自然科學產生於文藝復興後期(十五物體的運動規律歸結為三條基本運動定律和一世紀),是伴隨資本主義產生而產生的,並成條萬有引力定律,由此建立起一個完整的力學為它的有力支柱。十六、十七世紀是近代科學理論體系。這樣,他將過去認為是截然無關的建立時期,無論在科學知識、科學思想還是在地球上的物體(世俗的)運動和天體(「天堂科學方法上都開創了一個新紀元。特別是物理的」)運動規律概括在一個嚴密的統一理論中。學和天文學在十七世紀都達到一個高峰。另外這是物理科學,也可以說是人類認識自然的歷隨著微積分的創立、血液循環的發現、顯微鏡史中第一次理論的大綜合。這一偉大成就,使的發明及化學元素概念的建立,數學、生物學、機械唯物論的自然觀取得統治地位,它統治整化學也都取得了重大進展。 個自然科學領域達二百多年之久。牛頓力學到在十八世紀,科學發展緩慢。但十八世紀了十九世紀中葉,顯示出無比強大的威力。1846是以英國工業革命(第一次技術革命)和法國年海天星的發現,完全證實了根據牛頓理論所民主革命載入史冊的。這兩次偉大革命,顯示作的預言。四十年代能量守恆定律的發現,揭了科學對社會的巨大影響,也為科學的進一步示了各種物質運動形式不僅可以相互轉化,而發展提供了強大的物質基礎和有力的社會保且在量上還有確定的關系。這樣,力學、熱學、證。《共產黨宣言》說:「資產階級在它不到化學甚至生物學就都貫通在一起,使牛頓力學一百年的階級統治中所創造的生產力,比過去成為各門物理科學的理論基礎,這是物理學第一切時代所創造的全部生產力還要多、還要二次偉大的綜合。分子動理論就是這次大綜合大。」法國大革命起源於啟蒙運動,啟蒙運動的產物,分子動理論是用牛頓理論研究大量的是人類歷史上最徹底的反對封建專制的思想解分子運動,這是人類第一次進入微觀領域進行放運動,它的中心內容就是科學、民主。 定量描述。由此,大至日月星辰,小至分子原經過十八世紀各方面的准備,十九世紀成子,無不為牛頓理論體系所包羅。法拉第、麥為科學技術全面發展的時期。在文化史上,十克斯韋電磁理論的建立,又把電學、磁學和光九世紀被稱為「科學世紀」,主要表現在:開學合成一體,完成了物理學第三次偉大的綜合,始出現了科學對生產的指導作用,引起了第二並為現代人類文明開辟了道路。雖然法拉第的次技術革命;許多科學部門開始從經驗的描述一些思想已經越出了牛頓的框架,但本質上仍上升為理論的概括,逐漸形成自己的統一整體,屬於經典理論體系。 新學科紛紛成立,各門科學之間的間隙也逐漸物理學的巨大成功,使當時不少物理學家得到填補,科學精神、科學思想和科學方法深認為,物理理論已接近最後完成,今後只能在入人心。 細節上作些補充和發展,物理學已發展到頂峰。
⑹ 近代物理是從哪年開始
近代物理主要是經典物理學的建立,15世紀到17世紀第一階段,主要標志是經典力學體系的建立,同時光學,熱學和靜電學也完成奠基性工作,18到19世紀是第二階段,經典物理學日趨完善,相繼建立了波動光學,熱力學,電磁場理論等完整的解析式體系。
⑺ 請列舉10名物理學家的發明創造
公元前400年,墨翟(公元前478?—前392?)在《墨經》中記載並論述了杠桿、滑輪、平衡、斜面、小孔成像及光色與溫度的關系。
公元前4世紀,亞里士多德(Aristotle,前384—前322)在其所著《物理學》中總結了若干觀察到的事實和實際的經驗。他的自然哲學支配西方近2000年。
公元前3世紀,歐幾里得(Euclid,前330?—前260?)論述光的直線傳播和反射定律。
公元前3世紀,阿基米德(Archimedes,前287?—前212)發明許多機械,包括阿基米德螺旋;發現杠桿原理和浮力定律;研究過重心。
公元前3世紀,古書《韓非子》記載有司南;《呂氏春秋》記有慈石召鐵。
公元前2世紀,劉安《前179—前122》著《准南子》,記載用冰作透鏡,用反射鏡作潛望鏡,還提到人造磁鐵和磁極斥力等。
1世紀,古書《漢書》記載尖端放電、避雷知識和有關的裝置。王充(27—97)著《論衡》,記載有關力學、熱學、聲學、磁學等方面的物理知識。希龍(Heron,62—150)創制蒸汽旋轉器,是利用蒸汔動力的最早嘗試,他還製造過虹吸管。
2世紀,托勒密(C.Ptolemaeus,100?—170?)發現大氣折射。張衡(78—139)創制地動儀,可以測報地震方位,創制渾天儀。王符(85—162)著《潛夫論》分析人眼的作用。
5世紀,祖沖之(429—500),改造指南車,精確推算л值,在天文學上精確編制《大明歷》。
8世紀,王冰(唐代人)記載並探討了大氣壓力現象。
11世紀,沈括(1031—1095)著《夢溪筆談》,記載地磁偏角的發現,凹面鏡成像原理和共振現象等。
13世紀,趙友欽(1279—1368)著《革象新書》,記載有他作過的光學實驗以及光的照度、光的直線傳播、視角與小孔成象等問題。
15世紀,達·芬奇(L.da Vinci,1452—1519)設計了大量機械,發明溫度計和風力計,最早研究永動機不可能問題。
16世紀,諾曼(R.Norman)在《新奇的吸引力》一書中描述了磁傾角的發現。
1583年,伽利略(Galileo Galilei,1564—1642)發現擺的等時性。
1586年,斯梯芬(S.Stevin,1542—1620)著《靜力學原理》,通過分析斜面上球鏈的平衡論證了力的分解。
1593年,伽利略發明空氣溫度計。
1600年,吉爾伯特(W.Gilbert,1548—1603)著《磁石》一書,系統地論述了地球是個大磁石,描述了許多磁學實驗,初次提出摩擦吸引輕物體不是由於磁力。
1605年,弗·培根(F.Bacon,1561—1626)著《學術的進展》,提倡實驗哲學,強調以實驗為基礎的歸納法,對17世紀科學實驗的興起起了很大的號召作用。
1609年,伽利略,初次測光速,未獲成功。1609年,開普勒(J.Kepler,1571—1630)著《新天文學》,提出開普勒第一、第二定律。
1619年,開普勒著《宇宙諧和論》,提出開普勒第三定律。
1620年,斯涅耳(W.Snell,1580—1626)從實驗歸納出光的反射和折射定律。
1632年,伽利略《關於托勒密和哥白尼兩大世界體系的對話》出版,支持了地動學說,首先闡明了運動的相對性原理。
1636年,麥森(M.Mersenne,1588—1648)測量聲的振動頻率,發現諧音,求出空氣中的聲速。
1638年,伽利略的《兩門新科學的對話》出版,討論了材料抗斷裂、媒質對運動的阻力、慣性原理、自由落體運動、斜面上物體的運動、拋射體的運動等問題,給出了勻速運動和勻加速運動的定義。
1643年,托里拆利(E.Torricelli,1608—1647)和維維安尼(V.Viviani,1622—1703)提出氣壓概念,發明了水銀氣壓計。
年,帕斯卡(B.Pascal,1623—1662)發現靜止流體中壓力傳遞的原理(即帕斯卡原理)。
1654年,蓋里克(O.V.Guericke,1602—1686)發明抽氣泵,獲得真空。
1761年,布萊克提出潛熱概念,奠定了量熱學基礎。
1767年,普列斯特利(J.Priestley,1733—1804)根據富蘭克林所做的「導體內不存在靜電荷的實驗」,推得靜電力的平方反比定律。
1775年,伏打(A.Volta,1745—1827)發明起電盤。
1775年,法國科學院宣布不再審理永動機的設計方案。
1780年,伽伐尼(A.Galvani,1737—1798)發現蛙腿筋肉收縮現象,認為是動物電所致,
1791年才發表。1785年,庫侖(C.A.Coulomb,1736—1806)用他自己發明的扭秤,從實驗得到靜電力的平方反比定律。在這以前,米切爾(J.Michell,1724—1793)已有過類似設計,並於1750年提出磁力的平方反比定律。
1787年,查理(J.A.C.Charles,1746—1823)發現氣體膨脹的查理—蓋·呂薩克定律。蓋·呂薩克(Gay-lussac,1778—1850)的研究發表於1802年。
1788年,拉格朗日(J.L.Lagrange,1736—1813)的《分析力學》出版。
1792年,伏打研究伽伐尼現象,認為是兩種金屬接觸所致。
1798年,卡文迪什(H.Cavendish,1731—1810)用扭秤實驗測定萬有引力常數G。倫福德(Count Rumford,即B.Thompson,1753—1841)發表他的摩擦生熱的實驗,這些實驗事實是反對熱質說的重要依據。
1799年,戴維(H.Davy,1778—1829)做真空中的摩擦實驗,以證明熱是物體微粒的振動所致。
1800年,伏打發明伏打電堆。赫謝爾(W.Herschel,1788—1822)從太陽光譜的輻射熱效應發現紅外線。
1801年,里特爾(J.W.Ritter,1776—1810)從太陽光譜的化學作用,發現紫線。楊(T.Young,1773—1829)用干涉法測光波波長,提出光波干涉原理。
1802年,沃拉斯頓(W.H.Wollaston,1766—1828)發現太陽光譜中有暗線。
1808年,馬呂斯(E.J.Malus,1775—1812)發現光的偏振現象。
1811年,布儒斯特(D.Brewster,1781—1868)發現偏振光的布儒斯特定律。
1815年,夫琅和費(J.V.Fraunhofer,1787—1826)開始用分光鏡研究太陽光譜中的暗線。
1815年,菲涅耳(A.J.Fresnel,1788—1827)以楊氏干涉實驗原理補充惠更斯原理,形成惠更斯——菲涅耳原理,圓滿地解釋了光的直線傳播和光的衍射問題。
1819年,杜隆(P.1.Dulong,1785—1838)與珀替(A.T.Petit,1791—1820)發現克原子固體比熱是一常數,約為6卡/度·克原子,稱杜隆·珀替定律。
1820年,奧斯特(H.C.Oersted,1771—1851)發現導線通電產生磁效應。畢奧(J.B.Biot,1774—1862)和沙伐(F.Savart,1791—1841)由實驗歸納出電流元的磁場定律。安培(A.M.Ampère,1775—1836)由實驗發現電流之間的相互作用力,1822年進一步研究電流之間的相互作用,提出安培作用力定律。
1821年,塞貝克(T.J.Seebeck,1770—1831)發現溫差電效應(塞貝克效應)。菲涅耳發表光的橫波理論。夫琅和費發明光柵。傅里葉(J.B.J.Fourier,1768—1830)的《熱的分析理論》出版,詳細研究了熱在媒質中的傳播問題。
1824年,S.卡諾(S.Carnot,1796—1832)提出卡諾循環。
1826年,歐姆(G.S.Ohm,1789—1854)確立歐姆定律。
1827年,布朗(R.Brown,1773—1858)發現懸浮在液體中的細微顆粒不斷地作雜亂無章運動。這是分子運動論的有力證據。
1830年,諾比利(L.Nobili,1784—1835)發明溫差電堆。
1831年,法拉第(M.Faraday,1791—1867)發現電磁感應現象。
1833年,法拉第提出電解定律。
1834年,楞次(H.F.E.Lenz,1804—1865)建立楞次定律。珀耳帖(J.C.A.Peltier,1785—1845)發現電流可以致冷的珀耳帖效應。克拉珀龍(B.P.E.Clapeyron,1799—1864)導出相應的克拉珀龍方程。哈密頓(W.R.Hamilton,1805—1865)提出正則方程和用變分法表示的哈密頓原理。
1835年,亨利(J.Henry,1797—1878)發現自感,1842年發現電振盪放電。
1840年,焦耳(J.P.Joule,1818—1889)從電流的熱效應發現所產生的熱量與電流的平方、電阻及時間成正比,稱焦耳-楞次定律(楞次也獨立地發現了這一定律)。其後,焦耳先後於1843,1845,1847,1849,直至1878年,測量熱功當量,歷經40年,共進行四百多次實驗。1841年,高斯(C.F.Gauss,1777—1855)闡明幾何光學理論。
1842年,多普勒(J.C.Doppler,1803—1853)發現多普勒效應。邁爾(R.Mayer,1814—1878)提出能量守恆與轉化的基本思想。勒諾爾(H.V.Regnault,1810—1878)從實驗測定實際氣體的性質,發現與波意耳定律及蓋·呂薩克定律有偏離。
1843年,法拉第從實驗證明電荷守恆定律。
1845年,法拉第發現強磁場使光的偏振面旋轉,稱法拉第效應。
1846年,瓦特斯頓(J.J.Waterston,1811—1883)根據分子運動論假說,導出了理想氣體狀態方程,並提出能量均分定理。
1849年,斐索(A.H.Fizeau,1819—1896)首次在地面上測光速。
1851年,傅科(J.L.Foucault,1819—1868)做傅科擺實驗,證明地球自轉。
1852年,焦耳與W.湯姆生(W.Thomson,1824—1907)發現氣體焦耳——湯姆生效應(氣體通過狹窄通道後突然膨脹引起溫度變化)。
1853年,維德曼(G.H.Wiedemann,1826—1899)和夫蘭茲(R.Franz)發現,在一定溫度下,許多金屬的熱導率和電導率的比值都是一個常數(即維德曼——夫蘭茲定律)。
1855年,傅科發現渦電流(即傅科電流)。1857年,韋伯(W.E.Weber,1804—1891)與柯爾勞胥(R.H.A.Kohlrausch,1809—1858)測定電荷的靜電單位和電磁單位之比,發現該值接近於真空中的光速。
1858年,克勞修斯(R.J.E.Claüsius,1822—1888)引進氣體分子的自由程概念。普呂克爾(J.Plücker,1801—1868)在放電管中發現陰極射線。
1859年,麥克斯韋(J.C.Maxwell,1831—1879)提出氣體分子的速度分布律。基爾霍夫(G.R.Kirchhoff,1824—1887)開創光譜分析,其後通過光譜分析發現銫、銣等新元素。他還發現發射光譜和吸收光譜之間的聯系,建立了輻射定律。
1860年,麥克斯韋發表氣體中輸運過程的初級理論。
1861年,麥克斯韋引進位移電流概念。
1864年,麥克斯韋提出電磁場的基本方程組(後稱麥克斯韋方程組),並推斷電磁波的存在,預測光是一種電磁波,為光的電磁理論奠定了基礎。
1866年,昆特(A.Kundt,1839—1894)做昆特管實驗,用以測量氣體或固體中的聲速。
1868年,玻爾茲曼(L.Boltzmann,1844—1906)推廣麥克斯韋的分子速度分布律,建立了平衡態氣體分子的能量分布律——玻爾茲曼分布律。
1869,安德紐斯(T.Andrews,1813—1885)由實驗發現氣——液相變的臨界現象。希托夫(J.W.Hittorf,1824—1914)用磁場使陰極射線偏轉。
1871年,瓦爾萊(C.F.Varley,1828—1883)發現陰極射線帶負電。
1872年,玻爾茲曼提出輸運方程(後稱為玻爾茲曼輸運方程)、H定理和熵的統計詮釋。
1873年,范德瓦耳斯(J.D.Van der Waals,1837—1923)提出實際氣體狀態方程。
1875年,克爾(J.Kerr,1824—1907)發現在強電場的作用下,某些各向同性的透明介質會變為各向異性,從而使光產生雙折射現象,稱克爾電光效應。
1876年,哥爾茨坦(E.Goldstein,1850—1930)開始大量研究陰極射線的實驗,導致極墜射線的發現。1876—1878年,吉布斯(J.W.Gibbs,1839—1903)提出化學勢的概念、相平衡定律,建立了粒子數可變系統的熱力學基本方程。
1877年,瑞利(J.W.S.Rayleigh,1842—1919)的《聲學原理》出版,為近代聲學奠定了基礎。
1879年,克魯克斯(W.Crookes,1832—1919)開始一系列實驗,研究陰極射線。斯忒藩(J.Stefan,1835—1893)建立了黑體的面輻射強度與絕對溫度關系的經驗公式,製成輻射高溫計,測得太陽表面溫度約為6000攝氏度;1884年玻爾茲曼從理論上證明了此公式,後稱為斯忒藩—玻爾茲曼定律。霍爾(E.H.Hall,1855—1938)發現電流通過金屬,在磁場作用下產生橫向電動勢的霍爾效應。
1880年,居里兄弟(P.Curie,1859—1906;J.Curie,1855—1941)發現晶體的壓電效應。
1881年,邁克耳孫(A.A.Michelson,1852—1931)首次做以太漂移實驗,得零結果。由此產生邁克耳孫干涉儀,靈敏度極高。
1885年,邁克耳孫與莫雷(E.W.Morley,1838—1923)合作改進斐索流水中光速的測量。巴耳末(J.J.Balmer,1825—1898)發表已發現的氫原子可見光波段中4根譜線的波長公式。
1887年,邁克耳孫與莫雷再次做以太漂移實驗,又得零結果。赫茲(H.Hertz,1857—1894)作電磁波實驗,證實麥克斯韋的電磁場理論。同時,赫茲發現光電效應。
1890年,厄沃(B.R.Eotvos)作實驗證明慣性質量與引力質量相等。里德伯(R.J.R.Rydberg,1854—1919)發表鹼金屬和氫原子光譜線通用的波長公式。
1893年,維恩(W.Wien,1864—1928)導出黑體輻射強度分布與溫度關系的位移定律。勒納德(P.Lenard,1862—1947)研究陰極射線時,在射線管上裝一薄鋁窗,使陰極射線從管內穿出進入空氣,射程約1厘米,人稱勒納德射線。
1895年,洛侖茲(H.A.Lorentz,1853—1928)發表電磁場對運動電荷作用力的公式,後稱該力為洛倫茲力。P.居里發現居里點和居里定律。倫琴(W.K.Rontgen,1845—1923)發現X射線。
1896年,維恩發表適用於短波范圍的黑體輻射的能量分布公式。貝克勒爾(A.H.Becquerel,1852—1908)發現放射性。塞曼(P.Zeeman,1865—1943)發現磁場使光譜線分裂,稱塞曼效應。洛侖茲創立經典電子論。
1897年,J.J.湯姆生(J.J.Thomson,1856—1940)從陰極射線證實電子的存在,測出的荷質比與塞曼效應所得數量級相同。其後他又進一步從實驗確證電子存在的普遍性,並直接測量電子電荷。
1898年,盧瑟福(E.Rutherford,1871—1937)揭示鈾輻射組成復雜,他把「軟」的成分稱為α射線,「硬」的成分稱為β射線。居里夫婦(P.Curie與M.S.Curie,1867—1934)發現放射性元素鐳和釙。
1899年,列別捷夫(A.A.Лeóeдeв,1866—1911)實驗證實光壓的存在。盧梅爾(O.Lummer,1860—1925)與魯本斯(H.Rubens,1865—1922)等人做空腔輻射實驗,精確測得輻射以量分布曲線。
1900年,瑞利發表適用於長波范圍的黑體輻射公式。普朗克(M.Planck,1858—1947)提出了符合整個波長范圍的黑體輻射公式,並用能量量子化假設從理論上導出了這個公式。維拉爾德(P.Villard,1860—1934)發現ν射線。
1901年,考夫曼(W.Kaufmann,1871—1947)從鐳輻射線測β射線在電場和磁場中的偏轉,從而發現電子質量隨速度變化。理查森(O.W.Richardson,1879—1959)發現灼熱金屬表面的電子發射規律。後經多年實驗和理論研究,又對這一定律作進一步修正。
1902年,勒納德從光電效應實驗得到光電效應的基本規律:電子的最大速度與光強無關,為愛因斯坦的光量子假說提供實驗基礎。吉布斯出版《統計力學的基本原理》,創立統計系綜理論。
1903年,盧瑟福和索迪(F.Soddy,1877—1956)發表元素的嬗變理論。
1905年,愛因斯坦(A.Einstein,1879—1955)發表關於布朗運動的論文,並發表光量子假說,解釋了光電效應等現象。1905年,朗之萬(P.Langevin,1872—1946)發表順磁性的經典理論。愛因斯坦發表《關於運動媒質的電動力學》一文,首次提出狹義相對論的基本原理,發現質能之間的相當性。
1906年,愛因斯坦發表關於固體熱容的量子理論。
1907年,外斯(P.E.Weiss,1865—1940)發表鐵磁性的分子場理論,提出磁疇假設。
1908年,昂納斯(H.Kammerlingh—Onnes,1853—1926)液化了最後一種「永久氣體」氦。佩蘭(J.B.Perrin,1870—1942)實驗證實布朗運動方程,求得阿佛伽德羅常數。
1908—1910年,布雪勒(A.H.Bucherer,1863—1927)等人,分別精確測量出電子質量隨速度的變化,證實了洛侖茲-愛因斯坦的質量變化公式。1908年,蓋革(H.Geiger,1882—1945)發明計數管。盧瑟福等人從α粒子測定電子電荷е值。
1906—1917年,密立根(R.A.Millikan,1868—1953)測單個電子電荷值,前後歷經11年,實驗方法做過三次改革,做了上千次數據。1909年,蓋革與馬斯登(E.Marsden)在盧瑟福的指導下,從實驗發現α粒子碰撞金屬箔產生大角度散射,導致1911年盧瑟福提出有核原子模型的理論。這一理論於1913年為蓋革和馬斯登的實驗所證實。1911年,昂納斯發現汞、鉛、錫等金屬在低溫下的超導電性。
1911年,威爾遜(C.T.R.Wilson,1869—1959)發明威爾遜雲室,為核物理的研究提供了重要實驗手段。1911年,赫斯(V.F.Hess,1883—1964)發現宇宙射線。
1912年,勞厄(M.V.Laue,1879—1960)提出方案,弗里德里希(W.Friedrich),尼平(P.Knipping,1883—1935)進行X射線衍射實驗,從而證實了X射線的波動性。能斯特(W.Nernst,1864—1941)提出絕對零度不能達到定律(即熱力學第三定律)。
1913年,斯塔克(J.Stark,1874—1957)發現原子光譜在電場作用下的分裂現象(斯塔克效應)。玻爾(N.Bohr,1885—1962)發表氫原子結構理論,解釋了氫原子光譜。布拉格父子(W.H.Bragg,1862—1942;W.L.Bragg,1890—1971)研究X射線衍射,用X射線晶體分光儀,測定X射線衍射角,根據布拉格公式:2dsinθ=ν算出晶格常數d。
1914年,莫塞萊(H.G.J.Moseley,1887—1915)發現原子序數與元素輻射特徵線之間的關系,奠定了X射線光譜學的基礎。弗朗克(J.Franck,1882—1964)與G.赫茲(G.Hertz,1887—1957)測汞的激發電位。查德威克(J.Chadwick,1891—1974)發現β能譜。西格班(K.M.G.Siegbahn,1886—1978)開始研究X射線光譜學。
1915年,在愛因斯坦的倡議下,德哈斯(W.J.de Haas,1878—1960)首次測量回轉磁效應。愛因斯坦建立了廣義相對論。
1916年,密立根用實驗證實了愛因斯坦光電方程。愛因斯坦根據量子躍遷概念推出普朗克輻射公式,同時提出了受激輻射理論,後發展為激光技術的理論基礎。德拜(P.J.S.Debye,1884—1966)提出X射線粉末衍射法。
1919年,愛丁頓(A.S.Eddington,1882—1944)等人在日食觀測中證實了愛因斯坦關於引力使光線彎曲的預言。阿斯頓(F.W.Aston,1877—1945)發明質譜儀,為同位素的研究提供重要手段。盧瑟福首次實現人工核反應。巴克豪森(H.G.Barkhausen)發現磁疇。
1921年,瓦拉塞克發現鐵電性。
1922年,斯特恩(O.Stern,1888—1969)與蓋拉赫(W.Gerlach,1889—1979)使銀原子束穿過非均勻磁場,觀測到分立的磁矩,從而證實空間量子化理論。
1923年,康普頓(A.H.Compton,1892—1962)用光子和電子相互碰撞解釋X射線散射中波長變長的實驗結果,稱康普頓效應。
1924年,德布羅意(L.de Broglie,1892—1987)提出微觀粒子具有波粒二象性的假設。
1924年,玻色(S.Bose,1894—1974)發表光子所服從的統計規律,後經愛因斯坦補充建立了玻色-愛因斯坦統計。
1925年,泡利(W.Pauli,1900—1976)發表不相容原理。海森伯(W.K.Heisenberg,1901—1976)創立矩陣力學。烏倫貝克(G.E.Uhlenbeck,1900—)和高斯密特(S.A.Goudsmit,1902—1979)提出電子自旋假設。
1926年,薛定諤(E.Schrodinger,1887—1961)發表波動力學,證明矩陣力學和波動力學的等價性。費米(E.Fermi,1901—1954)與狄拉克(P.A.M.Dirac,1902—1984)獨立提出費米—狄拉克統計。玻恩(M.Born,1882—1970)發表波函數的統計詮釋。海森伯發表不確定原理。
1927年,玻爾提出量子力學的互補原理。戴維森(C.J.Davisson,1881—1958)與革末(L.H.Germer,1896—1971)用低速電子進行電子散射實驗,證實了電子衍射。同年,G.P.湯姆生(G.P.Thomson,1892—1970)用高速電子獲電子衍射花樣。
1928年,拉曼(C.V.Raman,1888—1970)等人發現散射光的頻率變化,即拉曼效應。狄拉克發表相對論電子波動方程,把電子的相對論性運動和自旋、磁矩聯系了起來。
1928—1930年,布洛赫(F.Bloch,1905—1983)等人為固體的能帶理論奠定了基礎。
1930—1931年,狄拉克提出正電子的空穴理論和磁單極子理論。
1931年,A.H.威爾遜(A.H.Wilson)提出金屬和絕緣體相區別的能帶模型,並預言介於兩者之間存在半導體,為半導體的發展提供了理論基礎。勞倫斯(E.O.Lawrence,1901—1958)等人建成第一台迴旋加速器。
1932年,考克拉夫特(J.D.Cockcroft,1897—1967)與沃爾頓(E.T.Walton)發明高電壓倍加器,用以加速質子,實現人工核蛻變。尤里(H.C.Urey,1893—1981)將天然液態氫蒸發濃縮後,發現氫的同位素—氘的存在。查德威克發現中子。在這以前,盧瑟福於1920年曾設想原子核中還有一種中性粒子,質量大體與質子相等。據此曾安排實驗,但未獲成果。1930年,玻特(W.Bothe,1891—1957)等人在α射線轟擊鈹的實驗中,發現過一種穿透力極強的射線,誤認為ν射線,1931年約里奧(F.Joliot,1900—1958)與伊倫·居里(Curie,1897—1956)讓這種穿透力極強的射線,通過石蠟,打出高速質子。查德威克接著做了大量實驗,並用威爾遜雲室拍照,以無可辯駁的事實說明這一射線即是盧瑟福預言的中子。安德森(C.D.Anderson,1905—)從宇宙線中發現正電子,證實狄拉克的預言。諾爾(M.Knoll)和魯斯卡(E.Ruska)發明透射電子顯微鏡。海森伯、伊萬年科(д.д.ивaнeнкo)獨立發表原子核由質子和中子組成的假說。
1933年,泡利在索爾威會議上詳細論證中微子假說,提出β衰變。蓋奧克(W.F.Giauque)完成了順磁體的絕熱去磁降溫實驗,獲得千分之幾的低溫。邁斯納(W.Mcissner,1882—1974)和奧克森菲爾德(R.Ochsenfeld)發現超導體具有完全的抗磁性。費米發表β衰變的中微子理論。圖夫(M.A.Tuve)建立第一台靜電加速器。布拉開特(P.M.S.Blackett,1897—1974)等人從雲室照片中發現正負電子對。
1934年,切侖柯夫(П.A.Чepeнkoв)發現液體在β射線照射下發光的一種現象,稱切侖柯夫輻射。約里奧-居里夫婦發現人工放射性。
1935年,湯川秀樹發表了核力的介子場論,預言了介子的存在。F.倫敦和H.倫敦發表超導現象的宏觀電動力學理論。N.玻爾提出原子核反應的液滴核模型。
1938年,哈恩(O.Hahn,1879—1968)與斯特拉斯曼(F.Strassmann)發現鈾裂變。卡皮查(∏.Л.kaпичa,1894—)實驗證實氦的超流動性。F.倫敦提出解釋超流動性的統計理論。
1939年,邁特納(L.Meitner,1878—1968)和弗利胥(O.Jrisch)根據液滴核模型指出,哈恩-斯特拉斯曼的實驗結果是一種原子核的裂變現象。奧本海默(J.R.Oppenheimer,1904—1967)根據廣義相對論預言了黑洞的存在。拉比(I.I.Rabi,1898—1987)等人用分子束磁共振法測核磁矩。
1940年,開爾斯特(D.W.Kerst)建造第一台電子感應加速器。
1940—1941年,朗道(Л.Д.Лaндay,1908—1968)提出氦Ⅱ超流性的量子理論。
1941年,布里奇曼(P.W.Bridgeman,1882—1961)發明能產生10萬巴高壓的裝置。
1942年,在費米主持下美國建成世界上第一座裂變反應堆。
1944—1945年,韋克斯勒(B.И.Bеkcлер,1907—1966)和麥克米倫(E.M.McMillan,1907—)各自獨立提出自動穩相原理,為高能加速器的發展開辟了道路。
1946年,阿爾瓦雷茲(L.W.Alvarez,1911—)製成第一台質子直線加速器。珀塞爾(E.M.Purcell)用共振吸收法測核磁矩,布洛赫(F.Bloch,1905—1983)用核感應法測核磁矩,兩人從不同的角度實現核共振。這種方法可以使核磁矩和磁場的測量精度大大提高。
1947年,庫什(P.Kusch)精確測量電子磁矩,發現實驗結果與理論預計有微小偏差。蘭姆(W.E.Lamb,Jr.)與雷瑟福(R.C.Retherford)用微波方法精確測出氫原子能級的差值,發現狄拉克的量子理論仍與實際有不符之處。這一實驗為量了電動力學的發展提供了實驗依據。鮑威爾(C.F.Powell,1903—1969)等用核乳膠的方法在宇宙線中發現л介子。羅徹斯特和巴特勒(C.Butler,1922—)在宇宙線中發現奇異粒子。H.P.卡爾曼和J.W.科爾特曼等發明閃爍計數器。普里高金(I.Prigogine,1917—)提出最小熵產生原理。
1948年,奈耳(L.E.F.Neel,1904—)建立和發展了亞鐵磁性的分子場理論。張文裕發現μ子系弱作用粒子,並發現了μ-子原子。肖克利(W.Shockley),巴丁(J.Bardeen)與布拉頓(W.H.Brattain)發明晶體三極體。伽柏(D.Gabor,1900—1979)提出現代全息照相術前身的波陣面再現原理。朝永振一郎、施溫格(J.Schwinger)費因曼(R.P.Feynman,1918—1988)等分別發表相對論協變的重正化量子電動力學理論,逐步形成消除發散困難的重正化方法。
1949年,邁耶(M.G.Mayer)和簡森(J.H.D.Jensen)等分別提出核殼層模型理論。
1952年,格拉塞(D.A.Glaser)發明氣泡室,比威爾遜雲室更為靈敏。A.玻爾和莫特爾遜(B.B.Mottelson)提出原子核結構的集體模型。
1954年,楊振寧和密耳斯(R.L.Mills)發表非阿貝耳規范場理論。湯斯(C.H.Townes)等人製成受激輻射的微波放大器——脈塞。
1955年,張伯倫(O.Chamberlain)與西格雷(E.G.Segrè,1905—)等人發現反質子。
1956年,李政道、楊振寧提出弱相互作用中宇稱不守恆。關健雄等人實驗驗證了李政道楊振寧提出的弱相互作用中宇宙不守恆的理論。
1957年,巴丁、施里弗和庫珀發表超導微觀理論(即BCS理論)。
1958年,穆斯堡爾(R.L.Mossbauer)實現ν射線的無反沖共振吸收(穆斯堡爾效應)。
⑻ 請列舉出10名物理學家的發明創造
開爾文:鏡式電流計,雙臂電橋等等
牛頓:反射式望遠鏡等等
伽利略:溫度計和望遠鏡
貝爾:電話
愛迪生:電燈泡
霍金:霍金宇宙模型
伏特:磁電感應環塔(就是環形磁體互不接觸的豎直排列的塔狀結構,即最原始的電池)
奧斯特:電磁鐵
瓦特:蒸汽機
歐姆:電流表,電壓表
⑼ 近代物理之父是誰
近代物理學之父——伽利略
伽利略的主要貢獻可分下列五個方面:
①力學
伽利略是第一個把實驗引進力學的科學家,他利用實驗和數學相結合的方法確定了一些重要的力學定律.1582年前後,他經過長久的實驗觀察和數學推算,得到了擺的等時性定律.接著在1585年因家庭經濟困難輟學.離開比薩大學期間,他深入研究古希臘學者歐幾里得、阿基米德等人的著作.他根據杠桿原理和浮力原理寫出了第一篇題為《天平》的論文.不久又寫了論文《論重力》,第一次揭示了重力和重心的實質並給出准確的數學表達式,因此聲名大振.與此同時,他對亞里士多德的許多觀點提出質疑.
在1589~1591年間,伽利略對落體運動作了細致的觀察.從實驗和理論上否定了統治千餘年的亞里士多德關於「落體運動法則」確立了正確的「自由落體定律」,即在忽略空氣阻力條件下,重量不同的球在下落時同時落地,下落的速度與重量無關.根據伽利略晚年的學生V.維維亞尼的記載,落體實驗是在比薩斜塔上公開進行的:1589年某一天,伽利略將一個重10磅,一個重1磅的鐵球同時拋下,幾乎同時落地,在場的競爭者個個目瞪口呆,在大笑中聳聳肩走了.但在伽利略的著作中並未明確說明實驗是在比薩斜塔上進行的.因此近年來對此存在爭議.
伽利略對運動基本概念,包括重心、速度、加速度等都作了詳盡研究並給出了嚴格的數學表達式.尤其是加速度概念的提出,在力學史上是一個里程碑.有了加速度的概念,力學中的動力學部分才能建立在科學基礎之上,而在伽利略之前,只有靜力學部分有定量的描述.
伽利略曾非正式地提出過慣性定律(見牛頓運動定律)和外力作用下物體的運動規律,這為牛頓正式提出運動第一、第二定律奠定了基礎.在經典力學的創立上,伽利略可說是牛頓的先驅.
伽利略還提出過合力定律,拋射體運動規律,並確立了伽利略相對性原理. 伽利略在力學方面的貢獻是多方面的.這在他晚年寫出的力學著作《關於兩門新科學的談話和數學證明》中有詳細的描述.在這本不朽著作中,除動力學外,還有不少關於材料力學的內容.例如,他闡述了關於梁的彎曲試驗和理論分析,正確地斷定梁的抗彎能力和幾何尺寸的力學相似關系.他指出,對長度相似的圓柱形梁,抗彎力矩和半徑立方成比例.他還分析過受集中載荷的簡支梁,正確指出最大彎矩在載荷下,且與它到兩支點的距離之積成比例.伽利略還對梁彎曲理論用於實踐所應注意的問題進行了分析,指出工程結構的尺寸不能過大,因為它們會在自身重量作用下發生破壞.他根據實驗得出,動物形體尺寸減小時,軀體的強度並不按比例減小.他說:「一隻小狗也許可以在它背上馱兩三隻同樣大小的狗,但我相信一匹馬也許連一匹和它同樣大小的馬也馱不起.」
②天文學
他是利用望遠鏡觀測天體取得大量成果的第一位科學家.這些成果包括:發現月球表面凹凸不平,木星有四個衛星(現稱伽利略衛星),太陽黑子和太陽的自轉,金星、木星的盈虧現象以及銀河由無數恆星組成等.他用實驗證實了哥白尼的「地動說」,徹底否定了統治千餘年的亞里士多德和托勒密的「天動說」.
③哲學
他一生堅持與唯心論和教會的經院哲學作斗爭,主張用具體的實驗來認識自然規律,認為實驗是理論知識的源泉.他不承認世界上有絕對真理和掌握真理的絕對權威,反對盲目迷信.他承認物質的客觀性、多樣性和宇宙的無限性,這些觀點對發展唯物主義的哲學具有重要的意義.但由於歷史的局限性,他強調只有可歸納為數量特徵的物質屬性才是客觀存在的.
伽利略因為支持日心說入獄後,「放棄」了日心說,他說,"考慮到種種阻礙,兩點之間最短的不一定是直線",正是因為他有這樣的思想,暫時的放棄換得永遠的支持,沒有像布魯諾那樣去為科學的真理而犧牲,但卻可以為科學繼續貢獻自己的力量.
④熱學
最早的溫度計是在1593年由義大利科學家伽利略(1564~1642)發明的.他的第一隻溫度計是一根一端敞口的玻璃管,另一端帶有核桃大的玻璃泡.使用時先給玻璃泡加熱,然後把玻璃管插入水中.隨著溫度的變化,玻璃管中的水面就會上下移動,根據移動的多少就可以判定溫度的變化和溫度的高低.溫度計有熱脹冷縮的作用所以這種溫度計,受外界大氣壓強等環境因素的影響較大,所以測量誤差較大.後來伽利略的學生和其他科學家,在這個基礎上反復改進,如把玻璃管倒過來,把液體放在管內,把玻璃管封閉等.
⑤相對性原理
在發現慣性定律的基礎上,伽利略提出了相對性原理:力學規律在所有慣性坐標系中是等價的.力學過程對於靜止的慣性系和運動的慣性系是完全相同的.可以換句話說,在一系統內部所作任何力學的實驗都不能夠決定一慣性系統是在靜止狀態還是在作等速直線運動.伽利略在《對話》中寫道:當你在密閉的運動著的船艙里觀察力學過程時,「只要運動是勻速的,決不忽左忽右擺動,你將發現,所有上述現象絲毫沒有變化,你也無法從其中任何一個現象來確定,船是在運動還是停著不動.即使船運動得相當快,在跳躍時,你將和以前一樣,在船底板上跳過相同的距離,你跳向船尾也不會比跳向船頭來得遠,雖然你跳到空中時,腳下的船底板向著你跳的相反方向移動.你把不論什麼東西扔給你的同伴時,不論他是在船頭還是在船尾,只要你自己站在對面,你也並不需要用更多的力.水滴將象先前一樣,垂直滴進下面的罐子,一滴也不會滴向船尾,雖然水滴在空中時,船已行使了許多拃.魚在水中游向水碗前部所用的力,不比游向水碗後部來得大;它們一樣悠閑地游向放在水碗邊緣任何地方的食餌.最後,蝴蝶和蒼蠅將繼續隨便地到處飛行,它們也決不會向船尾集中,並不因為它們可能長時間留在空中,脫離了船的運動,為趕上船的運動顯出累的樣子.如果點香冒煙,則將看到煙象一朵雲一樣向上升起,不向任何一邊移動.所有這些一致的現象,其原因在於船的運動是船上一切事物所共有的,也是空氣所共有的.」相對性原理是伽利略為了答復地心說對哥白尼體系的責難而提出的.這個原理的意義遠不止此,它第一次提出慣性參照系的概念,這一原理被愛因斯坦稱為伽利略相對性原理,是狹義相對論的先導.教職.
⑽ 近代物理學的發展歷程
伽利略開創了以實驗事實為根據並具有嚴密
邏輯體系
的
近代科學
牛頓形成了一個以實驗為基礎以數學為表達式的
經典力學
體系
普朗克
提出的
量子論
與愛因斯坦的相對論一起,構成了
現代物理學
的基礎