❶ 數學中的元,項,次是什麼意思
數學中的「元」是指未知數,例如常見的一元二次方程、二元一次方程等內。
數學中的「項」代表一由容數與未知數還有運算符號組成的一個基本算術單元。
數學中的「次」就是方程中未知數的乘方數(如x²就叫二次)。
一元二次方程經過整理都可化成一般形式ax²+bx+c=0(a≠0)。其中ax²叫作二次項,a是二次項系數;bx叫作一次項,b是一次項系數;c叫作常數項。
(1)數學術語元次是誰創造的擴展閱讀:
一元二次方程成立必須同時滿足三個條件:
1、是整式方程,即等號兩邊都是整式,方程中如果有分母;且未知數在分母上,那麼這個方程就是分式方程,不是一元二次方程,方程中如果有根號,且未知數在根號內,那麼這個方程也不是一元二次方程(是無理方程)。
2、只含有一個未知數;
3、未知數項的最高次數是2。
❷ 數學方程式里的元次方等術語是誰創造的
是康熙皇帝啊
❸ 請問「數學」這一詞是誰創的
亞里士多德提出, 「數學」一詞的專門化使用是源於畢達哥拉斯的想法, 數學這個名詞是畢達哥拉斯發明的,他是希臘的哲學家和數學家,
❹ 數學方程的" 元""次"是誰 發明的
解:數學方程的元次是康熙首先提出的。
❺ 數學里幾元幾次是如何定義的
幾元就是幾個未知數!比如,含有x叫一元,XY叫二元,xyz,叫3元等等
幾次,是指未知數化簡後可得到的次方數吧!准確的說是未知數的冪最大值!
比如:含有X平方就是2次方程,根號X也是二次方程。
❻ 一元一次方程發明者是誰
一元一次方程式
--- 方程式的由來
十六世紀,隨著各種數學符號的相繼出現,特別是法國數學家韋達創
立了較系統的表示未知量和已知量的符號以後,"含有未知數的等式"
這一專門概念出現了,當時拉丁語稱它為"aequatio",英文為"equation".
十七世紀前後,歐洲代數首次傳進中國,當時譯"equation"為"相等式.
由於那時我國古代文化的勢力還較強,西方近代科學文化未能及時
在我國廣泛傳播和產生較的影響,因此"代數學"連同"相等式"等這
些學科或概念都只是在極少數人中學習和研究.
十九世紀中葉,近代西方數學再次傳入我國.1859年,李善蘭和英國
傳教士偉烈亞力,將英國數學家德.摩爾根的<代數初步>譯出. 李.偉
兩人很注重數學名詞的正確翻譯,他們借用或創設了近四百個數
學的漢譯名詞,許多至今一直沿用.其中,"equation"的譯名就是借
用了我國古代的"方程"一詞.這樣,"方程"一詞首次意為"含有未知
數的等式.
1873年,我國近代早期的又一個西方科學的傳播者華蘅芳,與英國傳
教士蘭雅合譯英國渥里斯的<代數學>,他們則把"equation"譯為"方程
式",他們的意思是,"方程"與"方程式"應該區別開來,方程仍指<九章
算術>中的意思,而方程式是指"今有未知數的等式".華.傅的主張在
很長時間裏被廣泛採納.直到1934年,中國數學學會對名詞進行一審
查,確定"方程"與"方程式"兩者意義相通.在廣義上,它們是指一元n次
方程以及由幾個方程聯立起來的方程組.狹義則專指一元n次方程.
既然"方程"與"方程式"同義,那麼"方程"就顯得更為簡潔明了了.
(本文摘自九章出版社之"數學誕生的故事")
❼ 數學方程式中的元和次是誰創立的
數學方程式中的元和次是中國清朝時期的康熙皇帝創立的。
康熙皇帝是中國歷史上聲名顯赫,又有遠大抱負,聰明好學的一位皇帝。他除了其文治武功之外 ,還十分愛好數學,曾拜比利時的南懷仁等傳教士為師,學習數學 、天文、地理以及拉丁文等,康熙皇帝雖然聰穎過人,但是聽外籍教師講課也有困難,因為南懷仁等人的漢語和滿語水平有限,日常會話勉強對付,但要將嚴謹而高深的科學知識表達出來就顯得力不從心了。而當時課本多是外文,即使中譯本也是半通不通的。這樣,學習中就必然有許多精 力被消耗在語言溝通上,進度不快 。
不過,康熙學習很刻苦,也很有耐心,不懂就請教,直至真正弄懂為止。南懷仁在講方程時,句子冗長,吐音又很不清楚,康熙的腦子常常被搞得暈暈糊糊的,怎樣才能讓老師講得好懂呢?一陣冥思苦想後,一個妙法突然冒出來。他向南懷仁建議 ,將未知數翻譯為「元」,最高次數翻譯為「次」(限整式方程),使方程左右兩邊相等的未知數的值翻譯為「根」(解)⋯⋯南懷仁用筆認真地記了下來 ,隨即用這些新創術語換下自己原先使用的繁瑣詞語 :「求二『元』一『次』方程的『根 』(解 )⋯⋯「如此一來,果然簡單了很多,而且還可以提高教學效率,南懷仁驚疑地盯著康熙,愣怔了一會兒,突然按照西方最親切的禮節一下子將康熙緊緊抱住:「我讀書和教書幾十年,無論是老師還是學生,還從來沒見過一個像您這樣肯動腦筋的人 !」
正因為康熙創造的這幾個數學術語科學而簡潔,十分便於理解和記憶,因此一直延用到今天 。
❽ 小數的名稱是我國元代數學家誰最先提出的
朱世傑(1249年-1314年),字漢卿,號松庭,漢族,燕山(今北京)人氏,元代數學家、教育家,畢生從事數學教育。有「中世紀世界最偉大的數學家」之譽。朱世傑在當時天元術的基礎上發展出「四元術」,也就是列出四元高次多項式方程,以及消元求解的方法。此外他還創造出「垛積法」,即高階等差數列的求和方法,與「招差術」,即高次內插法。主要著作是《算學啟蒙》與《四元玉鑒》。
書中明確提出正負數乘法法則,給出倒數的概念和基本性質,概括出若干新的乘法公式和根式運演算法則,總結了若干乘除捷算口訣,並把設輔助未知數的方法用於解線性方程組.《四元玉鑒》的主要內容是四元術,即多元高次方程組的建立和求解方法.秦九韶的高次方程數值解法和李冶的天元術都被包含在內.
❾ 數學方程中:元.次等術語,是誰創業造的
選康熙創造的
❿ 誰發明的「元」「次」「根」
是 康熙。康熙拜比抄利時的傳教士襲為師,學習數學。但聽他講課很不輕松,而且講方程是句子冗長,,所以康熙就建議 ,吧未知數翻譯成「元」最高次翻譯成「次」方程的解翻譯成「根」 康熙創造的幾個學術用語一直沿用至今!