『壹』 CT掃描儀是怎麼發明的
醫學科學也是隨科學技術的發展而發展的。公元150年,古羅馬的蓋倫開始了活體解剖,但近似殘酷,因為當時尚未具備麻醉手段。到公元185年,中國的華佗發明了麻沸散,才有可能進行麻醉手術。不過想藉助醫療儀器來了解體內器官的病變,而不用手術,又經過了將近整整1700多年,即到1895年,德國倫琴發現X射線才有可能從體外觀察到人體內臟腑的變化。這種利用X光進行診斷的方法,在當今醫院里仍普遍使用。
倫琴1895年發現X射線是很意外的,他在研究低真空管的放電現象時,發現放在距真空放電管2米遠處的塗有氰氧鉑酸鋇的熒光屏上也發出熒光。他把熒光屏移遠,甚至把真空管用黑紙包起來,熒光屏上仍有熒光。經過反復研究,確定這種看不見的光線是由真空管放電時發出的,能夠在特殊的熒光屏上顯示出來。倫琴用自己的手掌做試驗,在熒光屏上第一次看到了手掌的骨骼。倫琴的這一發現很快被用於行醫。醫生第一次可以不用外科手術就能夠看見人體內病變和受損傷的情況。在此以前,醫師只能憑病人的體表反映,檢查和診斷一些明顯的症狀,而X射線的利用,就能使人體內部的病變反映到熒光屏上。不過利用X光診斷也存在不足。X射線穿透機體組織,在熒光屏上見到的體內組織的重疊影像,醫生就不易准確地從重影判定病變的真實情況,即使進行兩三個甚至更多方位的拍攝,不是不能對體內器官准確地透視,尤其是對軟器官、軟組織,X射線透視實際上沒有什麼實效。健康組織與病變組織在密度上並無太大的變化,所以對軟組織的病變,包括腫瘤很難探測出來。人們對這個課題的研究,又延續了近80年。到1971年,英國的霍斯菲爾德終於成功地推出了帶有計算機的X斷層的掃描診斷機—X—CT,或稱計算機層析X射線掃描儀(CT)。
早期的CT掃描儀,它的射線源和探測器都裝在一個C形磁輪的兩端。通過圍繞病人轉動的射線源和探測器進行掃描,從而得到某一部位的多角度的觀察圖像。這些圖像所反映的軟組織密度值就會輸入到計算機內,在那裡經計算機處理後就能組成二維圖像,就會以灰色陰影圖像顯示到系統監視器上,並由計算機記錄下來。這個層析過程猶如用一把光刀,把人的軀體包括體內器官一片一片切下來。通常的切片厚度僅幾個毫米,從切片的前一片、後一片,切片部分和臨近部分的對比中,來發現軟組織的病變。
最初的CT掃描儀,掃描耗時比較長,一般要1~3分鍾,使用的是單個窄束射線源和探測器。由於掃描時間長,在掃描過程中,受病人呼吸、消化系統的蠕動等的影響,往往會使圖像發生改變。為了解決這個問題,又發明了多元探測器和扇形射線束源。CT掃描儀上裝有800個探測器,使其環繞病人身體作弧形排列,這種布局又稱為橋形台。使用這種系統,整個掃描僅需約8秒且不會受病人動彈的影響,效果明顯提高。
這樣的CT掃描儀,雖然已經能正確地反映軟組織,但有時也會遺漏一些如腫瘤塊的發現。尤其是作腦腫瘤的診斷時,這時由於受制於病人與橋形台的方向的限制,只有與脊柱垂直的平面內進行軸向掃描,才產生最佳成像效果。
為了解決CT掃描存在的這類問題,代表20世紀90年代國際科技水平的新的診斷技術——核磁共振成像系統NMR又誕生了。
英國研製的CT機
核磁共振掃描儀外形和CT掃描儀相似。但病人被推進去的那個圓環上裝的不是X射線設備,而是一個強有力的電磁鐵,一個無線電波發射器和一個無線電波接收器。當電磁鐵通電時,產生一個很強的磁場,而在人體組織分子中最多的氫原子,在強磁場作用下,能迫使病人體內的氫原子核的自旋軸在同一個方向上排列,然後,開啟無線電發射器,讓它發射出低頻的無線電波,氫原子核就從這種無線電波中吸收能量。當發射器關閉時,氫原子核就以信號的形式釋放出所吸收的能量。利用健康機體組織中氫原子發射的無線電信號,與有病變的組織發射頻率和強度不一樣,再通過計算機把來自氫原子核的不同信號變成圖像,就可作出診斷。這里要特別提一下,利用核磁共振不僅能更好地探測到腫瘤,而且能早期發現、早期診斷患者並沒感覺到的疾病。這是因為核磁共振成像的過程,是由穩定的強磁場與被成像部位各機體組織不相同,不同的生理條件也會在圖件上得到反映。這樣,即使患者的疾病還處在生化階段,處在病理、生理、生化失調而症狀未出現時,從圖像上也能被反映出來。核磁共振NMR與CT相比還有一個優點,即沒有明顯的副作用,且骨骼對射線的干擾明顯降低,成了檢驗和診斷腦、肝、腎、心、神經系統疾病的最新、最安全的方法。
『貳』 「CT」是哪個國家發明的
「CT」是英國發明的,由英國電子工程師亨斯菲爾德和一位神經放射學家合作發明的。
CT,即電子計算機斷層掃描,它是利用精確準直的X線束、γ射線、超聲波等,與靈敏度極高的探測器一同圍繞人體的某一部位作一個接一個的斷面掃描,具有掃描時間快,圖像清晰等特點,可用於多種疾病的檢查;根據所採用的射線不同可分為:X射線CT、超聲CT以及γ射線CT等。
CT的工作程序是這樣的:它根據人體不同組織對X線的吸收與透過率的不同,應用靈敏度極高的儀器對人體進行測量,然後將測量所獲取的數據輸入電子計算機,電子計算機對數據進行處理後,就可攝下人體被檢查部位的斷面或立體的圖像,發現體內任何部位的細小病變。
(2)簡述ct發明過程擴展閱讀
發展簡史:
第一代CT機採取旋轉 /平移方式(rotate/translate mode)進行掃描和收集信息。由於採用筆形X線束和只有 1~ 2個探測器,所采數據少,所需時間長,圖像質量差。
第二代CT機掃描方式跟上一代沒有變化,只是將X線束改為扇形,探測器增至30個,擴大了掃描范圍,增加了採集數據,圖像質量有所提高,但仍不能避免因患者生理運動所引起的偽影 (Artifact)。
第三代CT機的控測器激增至300~ 800個,並與相對的X線管只作旋轉運動,收集更多的數據,掃描時間在 5s以內,偽影大為減少,圖像質量明顯提高。
第四代CT機控測器增加到1000~ 2400個,並環狀排列而固定不動,只有X線管圍繞患者旋轉,即旋轉/固定式 (rotate/stationary mode),掃描速度快,圖像質量高。
第五代CT機將掃描時間縮短到50ms,解決了心臟掃描,是一個電子槍產生的電子束(electron beam)射向一個環形鎢靶,環形排列的探測器收集信息。推出的64層CT,僅用0.33s即可獲得病人的身體64層的圖像,空間解析度小於0.4mm,提高了圖像質量,尤其是對搏動的心臟進行的成像。
參考資料來源:網路-CT
『叄』 CT工作原理
CT機掃描部分主要由X線管和不同數目的控測器組成,用來收集信息。X線束對所選回擇的層面進行掃描,答其強度因和不同密度的組織相互作用而產生相應的吸收和衰減。探測器將收集到X線信號轉變為電信號,經模/數轉換器(A/D converter)轉換成數字,輸入計算機儲存和處理,從而得到該層面各單位容積的CT值(CT number),並排列成數字矩陣(Digital matrix)(圖7-2)。這些數字可儲存於硬磁碟(Hard disk)、軟磁碟(Floppy)和磁帶(Magnetic tape,MT)中,也可用列印機印用。數字矩陣經數/模(D/A)轉換器在監視器上轉為圖像,即為該層的橫斷圖像。圖像可用多幅照相機攝於膠片上,供讀片、存檔和會診用。
『肆』 CT技術是誰發明的
1979年,美國的柯馬克和英國的漢斯菲爾德,由於發明了CT,而摘取了諾貝爾生理學獎的桂內冠。現在容,我國許多大醫院都可以做CT檢查了。
所謂CT是指電子計算機X射線斷層攝影機,它是X射線與電子計算機的「混血兒」。目前,CT已發展到第五代,掃描完成一幅圖像的時間已由5分鍾縮短到1/100秒。
『伍』 CT成像的全過程
用的著200字?X線計算機斷層掃描,這個全名就是它的原理。
唉,看在50分的份上,看下面:
CT是用X線束對人體某部一定厚度的層面進行掃描,由探測器接收透過該層面的X線,轉變為可見光後,由光電轉換變為電信號,再經模擬/數字轉換器轉為數字,輸入計算機處理。圖像形成的處理有如對選定層面分成若干個體積相同的長方體,稱之為體素,見圖1-2-1。掃描所得信息經計算而獲得每個體素的X線衰減系數或吸收系數,再排列成矩陣,即數字矩陣,數字矩陣可存貯於磁碟或光碟中。經數字/模擬轉換器把數字矩陣中的每個數字轉為由黑到白不等灰度的小方塊,即象素,並按矩陣排列,即構成CT圖像。所以,CT圖像是重建圖像。每個體素的X線吸收系數可以通過不同的數學方法算出。
『陸』 簡述xct圖像形成過程
提出了一種基於c粕ny運算元的邊緣檢測組合分割演算法用於植物根系xcT圖像的分... 圖像經過邊緣檢測處理後,會形成多個子區域,為了在這些子區域中提取出根系
『柒』 CT是誰發明的
1971年9月,英國電子工程師亨斯費內爾德容,見
http://ke..com/view/2205.htm
『捌』 CT什麼時候開始使用的
CT掃描儀的直接發明者是豪斯菲爾德,但是它的發明過程卻凝聚著多位科學家艱辛的探索和不懈的努力。
在醫學上,人們弄清了為什麼用X射線透過人體,熒屏上會顯出骨頭的黑影。因此,通過X光片,醫生可以了解到病人骨頭的情況以及體內的一些硬質異物。X射線誕生3個月後,就被維也納醫院首次用於為人體拍片。在這之後,世界各地的醫院都開始了X射線的應用。
1955年,美國物理學家科馬克受聘到南非開普敦市一家醫院的放射科工作。在醫院中,科馬克很快便對癌症的放射治療和診斷產生了興趣。當他發現當時的醫生們計算放射劑量時是把非均質的人體當作均質看待時,「怎樣確定適當的放射劑量」就成了科馬克決心攻克的難題。最後,科馬克認為要改進放射治療的程序設計,必須把人體構造和組成特徵用一系列切面圖表現出來。他運用了多種材料、多種形狀的物體直至人體模型做實驗,同時進行理論計算。經過近10年的努力,科馬克終於解決了計算機斷層掃描技術的理論問題。1963年,科馬克首次建議使用X射線掃描進行圖像重建,並提出了精確的數字推算方法。他為CT掃描儀的誕生奠定了基礎。
病人在用CT機接受檢查與科馬克不同,英國科學家豪斯菲爾德一直從事工程技術的研究工作。他於1951年應聘到電器樂器工業有限公司從事研究工作,嘗試將雷達技術應用於工業生產、氣象觀察等方面。不久,他又轉向電子計算機的設計工作。
當時,他任職的電器樂器工業有限公司除計算機外,還生產探測器、掃描儀等電子儀器。豪斯菲爾德的目標是要綜合運用這些技術,生產出具有更大實用價值的新儀器。科馬克的研究成果給了他很大的啟迪和信心。在科馬克等人研究的基礎上,豪斯菲爾德選擇了CT機作為研究的課題。好在他對計算機技術的原理和運用駕輕就熟,CT圖像重建的數學處理方法可以恰當地與他熟悉的計算機技術結合起來,所以研製中的一個個難題很快便迎刃而解了。
1969年,豪斯菲爾德終於設計成功了一種可用於臨床的斷層攝影裝置,並於1971年9月正式安裝在倫敦的一家醫院。10月4日,他與神經放射學家阿姆勃勞斯合作,首次成功地為一名英國婦女診斷出腦部的腫瘤,獲得了第一例腦腫瘤的照片。同年,他們在英國放射學會上發表了論文。1973年,英國放射學雜志對此作了正式報道,這篇論文受到了醫學界的高度重視,被譽為「放射診斷史上又一個里程碑」。從此,放射診斷學進入了CT時代。