導航:首頁 > 創造發明 > 向量創造者

向量創造者

發布時間:2021-11-11 13:51:02

① 平面向量的發展歷程

向量(矢量)這個術語作為現代數學-物理學中的一個重要概念,首先是由英國數學家哈密頓使用的。向量的名詞雖來自哈密頓,但向量作為一條有向線段的思想卻由來已久。向量理論的起源與發展主要有三條線索:物理學中的速度和力的平行四邊形法則、位置幾何、復數的幾何表示。
物理學中的速度與力的平行四邊形概念是向量理論的一個重要起源之一。18世紀中葉之後,歐拉、拉格朗日、拉普拉斯和柯西等的工作,直接導致了在19世紀中葉向量力學的建立。同時,向量概念是近代數學中重要和基本的概念之一,有著深刻的幾何背景。它始於萊布尼茲的位置幾何。
現代向量理論是在復數的幾何表示這條線索上發展起來的。18世紀,由於在一些數學的推導中用到復數,復數的幾何表示成為人們探討的熱點。哈密頓在做3維復數的模擬物的過程中發現了四元數。隨後,吉布斯和亥維賽在四元數基礎上創造了向量分析系統,最終被廣為接受。

② 請問大家,那位數學家提出的空間向量用坐標表示

你好,規定了方向和大小的量稱為向量.向量又稱為矢量,最初被應用於物理學.很多物理量如力、速度、位移以及電場強度、磁感應強度等都是向量.大約公元前350年前,古希臘著名學者亞里士多德就知道了力可以表示成向量,兩個力的組合作用可用著名的平行四邊形法則來得到.「向量」一詞來自力學、解析幾何中的有向線段.最先使用有向線段表示向量的是英國大科學家牛頓.
直到19世紀末20世紀初,人們才把空間的性質與向量運算聯系起來,使向量成為具有一套優良運算通性的數學體系.
向量能夠進入數學並得到發展,首先應從復數的幾何表示談起.18世紀末期,挪威測量學家威塞爾首次利用坐標平面上的點來表示復數a+bi,並利用具有幾何意義的復數運算來定義向量的運算.把坐標平面上的點用向量表示出來,並把向量的幾何表示用於研究幾何問題與三角問題.人們逐步接受了復數,也學會了利用復數來表示和研究平面中的向量,向量就這樣平靜地進入了數學.
但復數的利用是受限制的,因為它僅能用於表示平面,若有不在同一平面上的力作用於同一物體,則需要尋找所謂三維「復數」以及相應的運算體系.19世紀中期,英國數學家漢密爾頓發明了四元數(包括數量部分和向量部分),以代表空間的向量.他的工作為向量代數和向量分析的建立奠定了基礎.隨後,電磁理論的發現者,英國的數學物理學家麥克思韋爾把四元數的數量部分和向量部分分開處理,從而創造了大量的向量分析.
祝你好運1

③ matlab怎麼生成列向量

matlab生成列向量的方法如下:

1、直接輸入:

行向量:a=[1,2,3,4,5]

列向量:a=[1;2;3;4;5]

2、用「:」生成向量:

a=J:K 生成的行向量是a=[J,J+1,…,K]

a=J:D:K 生成行向量a=[J,J+D,…,J+m*D],m=fix((K-J)/D)

3、函數linspace 用來生成數據按等差形式排列的行向量:

x=linspace(X1,X2):在X1和X2間生成100個線性分布的數據,相鄰的兩個數據的差保持不變。構成等差數列。

x=linspace(X1,X2,n): 在X1和X2間生成n個線性分布的數據,相鄰的兩個數據的差保持不變。構成等差數列。

4、函數logspace用來生成等比形式排列的行向量:

X=logspace(x1,x2) 在x1和x2之間生成50個對數等分數據的行向量。構成等比數列,數列的第一項x(1)=10x1,x(50)=10x2

X=logspace(x1,x2,n) 在x1和x2之間生成n個對數等分數據的行向量。構成等比數列,數列的第一項x(1)=10x1,x(n)=10x2

註:向量的的轉置:x=(0,5)』

拓展資料

MATLAB是美國MathWorks公司出品的商業數學軟體,用於演算法開發、數據可視化、數據分析以及數值計算的高級技術計算語言和互動式環境,主要包括MATLAB和Simulink兩大部分MATLAB是matrix&laboratory兩個詞的組合,意為矩陣工廠(矩陣實驗室)。是由美國mathworks公司發布的主要面對科學計算、可視化以及互動式程序設計的高科技計算環境。

Matlab是一個高級的矩陣/陣列語言,它包含控制語句、函數、數據結構、輸入和輸出和面向對象編程特點。用戶可以在命令窗口中將輸入語句與執行命令同步,也可以先編寫好一個較大的復雜的應用程序(M文件)後再一起運行。

新版本的MATLAB語言是基於最為流行的C++語言基礎上的,因此語法特徵與C++語言極為相似,而且更加簡單,更加符合科技人員對數學表達式的書寫格式。使之更利於非計算機專業的科技人員使用。而且這種語言可移植性好、可拓展性極強,這也是MATLAB能夠深入到科學研究及工程計算各個領域的重要原因。

MATLAB包括擁有數百個內部函數的主包和三十幾種工具包。工具包又可以分為功能性工具包和學科工具包。功能工具包用來擴充MATLAB的符號計算,可視化建模模擬,文字處理及實時控制等功能。學科工具包是專業性比較強的工具包,控制工具包,信號處理工具包,通信工具包等都屬於此類。

開放性使MATLAB廣受用戶歡迎。除內部函數外,所有MATLAB主包文件和各種工具包都是可讀可修改的文件,用戶通過對源程序的修改或加入自己編寫程序構造新的專用工具包。

④ 向量怎麼產生

補充說明你是什麼意思?是問怎麼創造的還是什麼時候該用?

⑤ 向量是由誰創立的

向量的建立經過了一個漫長的過程,所以不能說具體由哪個人建立起來的.
從數學發展史來看,歷史上很長一段時間,空間的向量結構並未被數學家們所認識,直到19世紀末20世紀初,人們才把空間的性質與向量運算聯系起來,使向量成為具有一套優良運算通性的數學體系。
向量能夠進入數學並得到發展,首先應從復數的幾何表示談起.18世紀末期,挪威測量學家威塞爾首次利用坐標平面上的點來表示復數a+bi,並利用具有幾何意義的復數運算來定義向量的運算.把坐標平面上的點用向量表示出來,並把向量的幾何表示用於研究幾何問題與三角問題.人們逐步接受了復數,也學會了利用復數來表示和研究平面中的向量,向量就這樣平靜地進入了數學。

但復數的利用是受限制的,因為它僅能用於表示平面,若有不在同一平面上的力作用於同一物體,則需要尋找所謂三維「復數」以及相應的運算體系.19世紀中期,英國數學家漢密爾頓發明了四元數(包括數量部分和向量部分),以代表空間的向量.他的工作為向量代數和向量分析的建立奠定了基礎.隨後,電磁理論的發現者,英國的數學物理學家麥克思韋爾把四元數的數量部分和向量部分分開處理,從而創造了大量的向量分析。

三維向量分析的開創,以及同四元數的正式分裂,是英國的居伯斯和海維塞德於19世紀SO年代各自獨立完成的.他們提出,一個向量不過是四元數的向量部分,但不獨立於任何四元數.他們引進了兩種類型的乘法,即數量積和向量積.並把向量代數推廣到變向量的向量微積分.從此,向量的方法被引進到分析和解析幾何中來,並逐步完善,成為了一套優良的數學工具。

⑥ 平面向量的坐標表示什麼

平面向量的坐標表示線段;

平面向量作為在二維平面內既有方向(direction)又有大小(magnitude)的量,物理學中也稱作矢量,與之相對的是只有大小、沒有方向的數量(標量)。平面向量用a,b,c上面加一個小箭頭表示,也可以用表示向量的有向線段的起點和終點字母表示。

(6)向量創造者擴展閱讀:

物理學中的速度與力的平行四邊形概念是向量理論的一個重要起源之一。18世紀中葉之後,歐拉、拉格朗日、拉普拉斯和柯西等的工作,直接導致了在19世紀中葉向量力學的建立。同時,向量概念是近代數學中重要和基本的概念之一,有著深刻的幾何背景。它始於萊布尼茲的位置幾何。

現代向量理論是在復數的幾何表示這條線索上發展起來的。18世紀,由於在一些數學的推導中用到復數,復數的幾何表示成為人們探討的熱點。哈密頓在做3維復數的模擬物的過程中發現了四元數。隨後,吉布斯和亥維賽在四元數基礎上創造了向量分析系統,最終被廣為接受。

閱讀全文

與向量創造者相關的資料

熱點內容
衛生院公共衛生服務考核結果 瀏覽:693
專利權的內容有哪幾項 瀏覽:750
學校矛盾糾紛排查表 瀏覽:294
內地音樂版權 瀏覽:208
公共衛生服務今後工作計劃 瀏覽:457
公共衛生服務考核小組 瀏覽:872
疫情里的科研成果 瀏覽:519
工商局愛國衛生月及健康教育宣傳月活動總結 瀏覽:942
三興商標織造有限公司 瀏覽:657
加強和改進公共服務實施方案 瀏覽:991
迷你世界創造熔岩號角 瀏覽:479
愛奇藝激活碼有效期 瀏覽:507
醫療糾紛官司南方周末 瀏覽:855
公共服務類大樓的物業管理方案 瀏覽:284
電影版權買賣合同範本 瀏覽:167
口罩在商標注冊屬於哪個類目 瀏覽:256
基本公共衛生服務質控小結 瀏覽:668
數字版權的權源 瀏覽:565
駐馬店置地弘潤山轉讓 瀏覽:146
穂康投訴 瀏覽:146