Ⅰ 過程式控制制的特點是什麼
過程式控制制主要有以下5個特點:
1、連續工業生產過程是與化學反應、生化反應、物理反應、相變過程、能量的轉換過程、傳熱傳質過程等復雜的反應或過程相伴隨的。這些過程或反應的進行,必須滿足一定的內部和外部條件。滿足這些條件,並且使這些條件保持穩定,生產過程就能正常、穩定地進行,產品的產量和質量就能得到保證。
所以,過程式控制制主要是對決定生產過程是否正常進行控制,以保證整個生產過程的正常進行。過程式控制制中最常見的就是壓力控制、流量控制、溫度控制、液位或料位控制、成分控制、PH值控制等,這些控制多數都是定值調節。隨著大規模生產的需求及科學技術的發展,更多的參數將被納入到控制的范圍之內。過程式控制制在生產中的地位將變得更加重要。
連續生產過程工業是一個龐大的工業系統,設備多樣化,工作機理各不相同,因而被控對象形式復雜多變,具有慣性大、延時大、時變、非線性、多變數相互耦合等特點,很難得出其精確的動態數學模型,因而控制難度較大。
3、由於生產過程工藝復雜,要求高,過程式控制制的監測系統多,控制系統多,控制方案多,控制系統間既獨立又相互影響。所以必須合理協調各控制系統間相互關聯、相互制約的關系,從整個生產過程的全局出發,求得整個生產過程的最優。
4、連續生產過程的生產條件和環境往往比較特殊,如高溫高壓、低溫真空、易燃易爆、有毒、存在放射性等。因而必須依靠自動化技術,在正常生產、非正常工況、事故工況下,都能確保人員安全以及部隊環境造成污染。
5、連續過程工業設備多,結果復雜,所以干擾因素也多,干擾的形式較復雜。這就要求過程式控制制的各個控制系統具有較強的抗干擾能力,快去克服擾動因素對生產的影響。
6、盡管連續生產過程工業部門間有時差別很大,如電力和化工,但由於被控參數相似或相同,過程式控制制系統中,不少控制系統在工作原理,系統組成上都有許多的相似甚至完全相同的特點。
由於這個原因,過程式控制制系統的自動化裝置都是標准化儀表,如控制器、測量變送器、執行器、記錄儀等。所以過程式控制制又被人們稱為自動化儀表控制。儀表的合理選型及調整也是過程式控制制的一項重要工作。
工業中的過程式控制制是指以溫度、壓力、流量、液位和成分等工藝參數作為被控變數的自動控制。過程式控制制也稱實時控制,是計算機及時的採集檢測數據,按最佳值迅速地對控制對象進行自動控制和自動調節,如數控機床和生產流水線的控制等。
Ⅱ 請問管理學中過程管理理論的提出背景和主要內容
管理過程學派又稱管理職能學派,是孔茨和西里爾·奧唐奈首先提出的。這一理論是在法約爾的一般管理理論基礎上發展而來。法約爾將管理活動分為計劃、組織、指揮、協調和控制等五大管理職能,孔茨和奧唐奈在仔細研究這些管理職能的基礎上,將管理職能分為計劃、組織、人事、領導和控制五項,而把協調作為管理的本質,作為五項職能有效綜合運用的結果。孔茨利用這些管理職能對管理理論進行分析、研究和闡述,最終得以建立起管理過程學派。
管理過程學派的主要特點是將管理理論同管理人員所執行的管理職能,也就是管理人員所從事的工作聯系起來。他們認為,無論組織的性質多麼不同,組織所處的環境有多麼不同,但管理人員所從事的管理職能卻是相同的,管理活動的過程就是管理的職能逐步展開和實現的過程。因此,管理過程學派把管理的職能作為研究的對象,他們先把管理的工作劃分為若干職能,然後對這些職能進行研究,闡明每項職能的性質、特點和重要性,論述實現這些職能的原則和方法。
該學派對後世影響很大,許多管理學教科書的內容都是按照該學派的理論架構編排的,另外,該學派確定的管理職能和管理原則,為訓練管理人員提供了基礎。
Ⅲ 自動控制系統的發展及技術現狀是什麼
1基本概念
如圖4-1所示框圖說明了控制系統的基本概念,動作信號通過(經由)控制系統元件後,提供一個指示,此系統的目的就是將變數c控制於該指示內。一般來說,被控變數為系統的輸出,而動作信號為系統的輸入。舉一個簡單的例子,汽車的方向控制(Steering Control),兩個前輪的方向可視為被控制變數,即輸出;而其方向盤的位置可視為輸入,即動作信號e。再如,若我們要控制汽車的速度,則加速器的壓力總和為動作信號,而速度則視為被控變數。
圖4-13自動化生產線
5)大系統理論的誕生
系統和控制理論的應用從60年代中期開始逐漸從工業方面滲透到農業﹑商業和服務行業,以及生物醫學﹑環境保護和社會經濟各個方面。由於現代社會科學技術的高度發展出現了許多需要綜合治理的大系統,現代控制理論又無法解決這樣復雜的問題,系統和控制理論急待有新的突破。在計算機技術方面,60年代初開始發展資料庫技術,1970年提出關系資料庫,到80年代資料庫技術已經達到相當的水平。60年代末計算機技術和通信技術相結合產生了數據通信。1969年美國國防部高級研究局的阿帕網(ARPA)的第一期工程投入使用取得成功,開創了計算機網路的新紀元。資料庫技術和計算機網路為80年代實現管理自動化創造了良好的條件。管理自動化的一個核心問題是辦公室自動化,這是從70年代開始發展起來的一門綜合性技術,到80年代已初步成熟。辦公室自動化為管理自動化奠定了良好的基礎。
國際自動控制聯合會(IFAC)於1976年在義大利的烏第納召開了第一屆大系統學術會議,於1980年在法國的圖魯茲召開第二屆大系統學術會議。美國電氣與電子工程師學會(IEEE)於1982年10月在美國弗吉尼亞州弗吉尼亞海灘舉行了一次國際大系統專題討論會。1980年在荷蘭正式出版國際性期刊《大系統──理論與應用》。這些活動標志著大系統理論的誕生。
6)人工智慧和模式識別
用機器來模擬人的智能,雖然是人類很早以前就有的願望,但其實現還是從有了電子計算機以後才開始的。1936年,圖靈提出了用機器進行邏輯推理的想法。50年代以來,人工智慧的研究是基於充分發揮計算機的用途而展開的。
早期的人工智慧研究是從探索人的解題策略開始,即從智力難題﹑弈棋﹑難度不大的定理證明入手,總結人類解決問題時的心理活動規律,然後用計算機模擬,讓計算機表現出某種智能。1948年美國數學家維納在《控制論》一書的附註中首先提出製造弈棋機的問題。1954年美國國際商業機器公司(IBM)的工程師塞繆爾應用啟發式程序編成跳棋程序,存儲在電子數字計算機內,製成能積累下棋經驗的弈棋機。1959年該弈棋機擊敗了它的設計者。1956年赫伯特·西蒙和艾倫·紐厄爾等研製了一個稱為邏輯理論家的程序,用電子數字計算機證明了懷特海和羅素的名著《數學原理》第二章52條定理中的33條定理。1956年M.L.明斯基、J.麥卡錫、紐厄爾、西蒙等10位科學家發起在達特茅斯大學召開人工智慧學術討論會,標志人工智慧這一學科正式誕生。1960年人工智慧的4位奠基人,即美國斯坦福大學的麥卡錫、麻省理工學院的明斯基、卡內基梅隆大學的紐厄爾和西蒙組成了第一個人工智慧研究小組,有力地推動了人工智慧的發展。從1967年開始出版不定期刊物《機器智能》,共出版了9集。從1970年開始出版期刊《人工智慧》。從1969年開始每兩年舉行一次人工智慧國際會議(IJCAI)。這些活動進一步促進了人工智慧的發展。70年代以來微電子技術和微處理機的迅速發展,使人工智慧和計算機技術結合起來。一方面在設計高級計算機時廣泛應用人工智慧的成果,另一方面又利用超級微處理機實現人工智慧,大大地加速了人工智慧的研究和應用。人工智慧的基礎是知識獲取﹑表示技術和推理技術,常用的人工智慧語言則是LISP語言和PROLOG語言,人工智慧的研究領域涉及自然語言理解﹑自然語言生成﹑機器視覺﹑機器定理證明﹑自動程序設計﹑專家系統和智能機器人等方面。人工智慧已發展成為系統和控制研究的前沿領域。
1977年E.A.費根鮑姆在第五屆國際人工智慧會議上提出了知識工程問題。知識工程是人工智慧的一個分支,它的中心課題就是構造專家系統。1973—1975年費根鮑姆領導斯坦福大學的一個研究小組研製成功一個用於診治血液傳染病和腦膜炎的醫療專家系統MYCIN,能學習專家醫生的知識,模仿醫生的思維和診斷推理,給出可靠的診治建議。1978年費根鮑姆等人研製成功水平很高的化學專家系統DENDRAL。1982年美國學者W.R.納爾遜研製成功診斷和處理核反應堆事故的專家系統REACTOR。中國也已經研製成功中醫專家系統和蠶育種專家系統。現在專家系統已應用在醫學﹑機器故障診斷﹑飛行器設計﹑地質勘探﹑分子結構和信號處理等方面。
為了擴大計算機的應用,使計算機能直接接受和處理各種自然的模式信息,即語言﹑文字﹑圖像﹑景物等,模式識別研究受到人們的重視。1956年,塞爾弗里奇等人研製出第一個字元識別程序,隨後出現了字元識別系統和圖像識別系統,並形成了以統計法和結構法為核心的模式識別理論,語音識別和自然語言理解的研究也取得了較大進展,為人和計算機的直接通信提供了新的介面。
60年代末到70年代初美國麻省理工學院﹑美國斯坦福大學和英國愛丁堡大學對機器人學進行了許多理論研究,注意到把人工智慧的所有技術綜合在一起,研製出智能機器人,如麻省理工學院和斯坦福大學的手眼裝置﹑日立公司有視覺和觸覺的機器人等。由於機器人在提高生產率,把人從危險﹑惡劣等工作條件下替換出來,擴大人類的活動范圍等方面顯示出極大的優越性,所以受到人們的重視。機器人技術發展很快,並得到越來越廣泛的應用,並在工業生產﹑核電站設備檢查﹑維修﹑海洋調查﹑水下石油開采﹑宇宙探測等方面大顯身手,正在研究中的軍用機器人也具有較大的潛在應用價值。關於機器人的設計﹑製造和應用的技術形成了機器人學。
總結人工智慧研究的經驗和教訓,人們認識到,讓機器求解問題必須使機器具有人類專家解決問題的那些知識,人工智慧的實質應是如何把人的知識轉移給機器的問題。1977年,費根鮑姆首倡專家系統和知識工程,於是以知識的獲取﹑表示和運用為核心的知識工程發展起來。自70年代以來,人工智慧學者已研製出用於醫療診斷﹑地質勘探﹑化學數據解釋和結構解釋﹑口語和圖像理解﹑金融決策﹑軍事指揮﹑大規模集成電路設計等各種專家系統。智能計算機﹑新型感測器﹑大規模集成電路的發展為高級自動化提供了新的控制方法和工具。
50年代以來,在探討生物及人類的感覺和思維機制,並用機器進行模擬方面,取得一些進展,如自組織系統﹑神經元模型﹑神經元網路腦模型等,對自動化技術的發展有所啟迪。同一時期發展起來的一般系統論﹑耗散結構理論﹑協同學和超循環理論等對自動化技術的發展提供了新理論和新方法。
Ⅳ 自動控制理論的始祖是誰或者說是誰開創了控制領域
自動控制理論是眾多人的成果,不斷發展完善,已無法追溯何人是始祖。
最早的自動化控制要追溯到我國古代的自動化計時器和漏壺指南車,而自動化控制技術的廣泛應用則開始於歐洲的工業革命時期。
英國人瓦特在發明蒸汽機的同時,應用反饋原理,於1788年發明了離心式調速器。當負載或蒸汽量供給發生變化時,離心式調速器能夠自動調節進氣閥的開度,從而控制蒸汽機的轉速。
(4)過程式控制制理論的發明者是擴展閱讀:
控制系統分類
1、自動控制系統
為了實現各種復雜的控制任務,首先要將被控制對象和控制裝置按照一定的方式連接起來,組成一個有機的整體,這就是自動控制系統。
在自動控制系統中,被控對象的輸出量即被控量是要求嚴格加以控制的物理量,它可以要求保持為某一恆定值,例如溫度、壓力或飛行軌跡等;
而控制裝置則是對被控對象施加控製作用的相關機構的總體,它可以採用不同的原理和方式對被控對象進行控制,但最基本的一種是基於反饋控制原理的反饋控制系統。
2、反饋控制系統
在反饋控制系統中,控制裝置對被控裝置施加的控製作用,是取自被控量的反饋信息,用來不斷修正被控量和控制量之間的偏差從而實現對被控量進行控制的任務,這就是反饋控制的原理。
Ⅳ 簡述自動控制系統發展的四個階段
1、早期控制
早在古代,勞動人民就憑借生產實踐中積累的豐富經驗和對反饋的直觀認識,發明了許多著閃爍控制理論智慧火花的傑作。如果要追溯自動控制技術的發展史,早在兩千年前人類就有了自動控制技術的萌芽。
2、經典控制理論
自動控制理論是與人類社會發展密切聯系的一門學科,是自動控制科學的核心自從19世紀Maxwell對具有調速器的蒸汽發動機系統進行線性常微分方程描述及穩定性分析以來。
經過20世紀初Nyquist,Bode,Harris,Evans,Wienner,Nichols等人的傑出貢獻,終於形成了經典反饋控制理論基礎,並於50年代趨於成熟。
特點是以傳遞函數為數學工具,採用頻域方法,主要研究單輸入單輸出線性定常控制系統的分析與設計,但它存在著一定的局限性,即對多輸入多輸出系統不宜用經典控制理論解決,特別是對非線性時變系統更是無能為力。
3、現代控制理論
隨著20世紀40年代中期計算機的出現及其應用領域的不斷擴展,促進了自動控制理論朝著更為復雜也更為嚴密的方向發展,特別是在Kalman提出的可控性和可觀測性概念以及提出的極大值理論的基礎上,在20世紀5060年代開始出現了以狀態空間分析(應用線性代數)為基礎的現代控制理論。
現代控制理論本質上是一種時域法,其研究內容非常廣泛,主要包括三個基本內容:多變數線性系統理論最優控制理論以及最優估計與系統辨識理論現代控制理論從理論上解決了系統的可控性可觀測性穩定性以及許多復雜系統的控制問題。
4、智能控制理論
隨著現代科學技術的迅速發展,生產系統的規模越來越大,形成了復雜的大系統,導致了控制對象控制器以及控制任務和目的的日益復雜化,從而導致現代控制理論的成果很少在實際中得到應用經典控制理論現代控制理論在應用中遇到了不少難題,影響了它們的實際應用,其主要原因有三:
1)精確的數學模型難以獲得此類控制系統的設計和分析都是建立在精確的數學模型的基礎上的,而實際系統由於存在不確定性不完全性模糊性時變性非線性等因素,一般很難獲得精確的數學模型;
2)假設過於苛刻研究這些系統時,人們必須提出一些比較苛刻的假設,而這些假設在應用中往往與實際不符;
3)控制系統過於復雜為了提高控制性能,整個控制系統變得極為復雜,這不僅增加了設備投資,也降低了系統的可靠性
第三代控制理論即智能控制理論就是在這樣的背景下提出來的,它是人工智慧和自動控制交叉的產物,是當今自動控制科學的出路之一。
(5)過程式控制制理論的發明者是擴展閱讀
自動控制系統的未來發展前景:
現代化工廠向規模集約化方向發展時,生產工藝對控制系統的可靠性、運算能力、擴展能力、開放性、操作及監控水平等方面提出了越來越高的要求。
傳統的DCS系統已經不能滿足現代工業自動化控制的設計標准和要求。隨著工業自動化控制理論、計算機技術和現代通信技術的迅速發展,自動控制系統的未來發展方向將向智能化、網路化、全集成自動化等方向發展。
Ⅵ 自動控制領域發展過程中,第二代過程式控制制體系中,有哪三大控制論出現,奠定了現代控制的基礎
其實就是現代控制理論的三個基本內容:多變數線性系統理論、最優控制理論以及最優估計與系統辨識理論。
多變數線性系統理論:
2 0世紀50年代以後,隨著航天等技術的發展和控制理論應用范圍的擴大,經典線性控制理論的局限性日趨明顯,它既不能滿足實際需要,也不能解決理論本身提出的一些新問題。這種狀況推動線性系統的研究,在1960年以後從經典階段發展到現代階段。美國學者R.E.卡爾曼首先把狀態空間法應用於對多變數線性系統的研究,提出了能控性和能觀測性這兩個基本概念,並提出相應的判別准則。1963年他又和E.G.吉爾伯特一起得出揭示線性系統結構分解的重要結果,為現代線性系統理論的形成和發展作了開創性的工作。1965年以後,現代線性系統理論又有新發展。出現了線性系統幾何理論、線性系統代數理論和多變數頻域方法等研究多變數系統的新理論和新方法。隨著計算機技術的發展,以線性系統為對象的計算方法和計算機輔助設計問題也受到普遍重視。
最優控制理論:
這方面的開創性工作主要是由貝爾曼(R.E.Bellman)提出的動態規劃和龐特里亞金等人提出的最大值原理。這方面的先期工作應該追溯到維納(N.Wiener)等人奠基的控制論(Cybernetics)。1948年維納發表了題為《控制論—關於動物和機器中控制與通訊的科學》的論文,第一次科學的提出了信息、反饋和控制的概念,為最優控制理論的誕生和發展奠定了基礎。
最優控制理論所研究的問題可以概括為:對一個受控的動力學系統或運動過程,從一類允許的控制方案中找出一個最優的控制方案,使系統的運動在由某個初始狀態轉移到指定的目標狀態的同時,其性能指標值為最優。這類問題廣泛存在於技術領域或社會問題中。
例如,確定一個最優控制方式使空間飛行器由一個軌道轉換到另一軌道過程中燃料消耗最少,選擇一個溫度的調節規律和相應的原料配比使化工反應過程的產量最多,制定一項最合理的人口政策使人口發展過程中老化指數、撫養指數和勞動力指數等為最優等,都是一些典型的最優控制問題。最優控制理論是50年代中期在空間技術的推動下開始形成和發展起來的。蘇聯學者Л.С.龐特里亞金1958年提出的極大值原理和美國學者R.貝爾曼1956年提出的動態規劃,對最優控制理論的形成和發展起了重要的作用。線性系統在二次型性能指標下的最優控制問題則是R.E.卡爾曼在60年代初提出和解決的。
最優估計與系統辨識理論:
根據系統的輸入輸出時間函數來確定描述系統行為的數學模型。現代控制理論中的一個分支。通過辨識建立數學模型的目的是估計表徵系統行為的重要參數,建立一個能模模擬實系統行為的模型,用當前可測量的系統的輸入和輸出預測系統輸出的未來演變,以及設計控制器。對系統進行分析的主要問題是根據輸入時間函數和系統的特性來確定輸出信號。對系統進行控制的主要問題是根據系統的特性設計控制輸入,使輸出滿足預先規定的要求。而系統辨識所研究的問題恰好是這些問題的逆問題。通常,預先給定一個模型類μ={M}(即給定一類已知結構的模型),一類輸入信號u和等價准則J=L(y,yM)(一般情況下,J是誤差函數,是過程輸出y和模型輸出yM的一個泛函);然後選擇使誤差函數J達到最小的模型,作為辨識所要求的結果。系統辨識包括兩個方面:結構辨識和參數估計。在實際的辨識過程中,隨著使用的方法不同,結構辨識和參數估計這兩個方面並不是截然分開的,而是可以交織在一起進行的。
Ⅶ 現代控制理論為什麼在過程式控制制中的應用不很成功
過程式控制制的特點是:被控對象有大滯後,大時間常數,多輸入輸出,時變非線性,強擾動等特性,其控制任務可表述為多目標有約束的動態優化問題。但是現代控制理論則要求有精確的數學模型,更側重於單目標優化問題,更嚴重的問題是,他的發展更多地依賴理論本身還不是工程實踐。
Ⅷ 爾雅行為控制理論是由誰提出來的
行為控制是管理者組織建立的一套用來提高績效的組織控制系統之一,也是激勵員工的方法之一,
其控制機制有三種:
直接監督、目標管理、行政控制(規則和標准操作程序)。
Ⅸ 控制系統的發展經歷了幾個階段各有什麼特點
控制系統其實從20世紀40年代就開始使用了,早期的現場基地式儀表和後期的繼電器構成了控制系統的前身。
70年代中期,由於設備大型化、工藝流程連續性要求高、要控制的工藝參數增多,而且條件苛刻,要求顯示操作集中等,使已經普及的電動單元組合儀表不能完全滿足要求。
在此情況下,業內廠商經過市場調查,確定開發的DCS產品應以模擬量反饋控制為主,輔以開關量的順序控制和模擬量開關量混合型的批量控制,它們可以覆蓋煉油、石化、化工、冶金、電力、輕工及市政工程等大部分行業。
1975年前後,在原來採用中小規模集成電路而形成的直接數字控制器(DDC)的自控和計算機技術的基礎上,開發出了以集中顯示操作、分散控制為特徵的集散控制系統(DCS)。
由於當時計算機並不普及,所以開發DCS應強調用戶可以不懂計算機就能使用DCS;同時,開發DCS還應強調向用戶提供整個系統。此外,開發的DCS應做到與中控室的常規儀表具有相同的技術條件,以保證可靠性、安全性。
在以後的近30年間,DCS先與成套設備配套,而後逐步擴大到工藝裝置改造上,與此同時,也分成大型DCS和中小型DCS兩類產品,使其性能價格比更具有競爭力。
DCS產品雖然在原理上並沒有多少突破,但由於技術的進步、外界環境變化和需求的改變,共出現了三代DCS產品。1975年至80年代前期為第一代產品,80年代中期至90年代前期為第二代產品,90年代中期至21世紀初為第三代產品。
性能要求
為了實現自動控制的基本任務,必須對系統在控制過程中表現出來的行為提出要求。對控制系統的基本要求,通常是通過系統對特定輸入信號的響應來滿足的。例如,用單位階躍信號的過渡過程及穩態的一些特徵值來表示。在確保穩定性的前提下,要求系 統的動態性能和穩態性能好,即:
動態過程平穩(穩定性);響應動作要快(快速性);跟蹤值要准確(准確性)。
Ⅹ 什麼是過程式控制制系統
過程式控制制系統指以保證生產過程的參量為被控制量使之接近給定值或保持在給定范圍內的自動控制系統。
表徵過程的主要參量有溫度、壓力、流量、液位、成分、濃度等。通過對過程參量的控制,可使生產過程中產品的產量增加、質量提高和能耗減少。一般的過程式控制制系統通常採用反饋控制的形式,這是過程式控制制的主要方式。
在石油、化工、冶金、電力、輕工和建材等工業生產中連續的或按一定程序周期進行的生產過程的自動控制稱為生產過程自動化。生產過程自動化是保持生產穩定、降低消耗、降低成本、改善勞動條件、促進文明生產、保證生產安全和提高勞動生產率的重要手段,是20世紀科學與技術進步的特徵,是工業現代化的標志。
(10)過程式控制制理論的發明者是擴展閱讀:
過程式控制制系統發展趨勢:
一、大力推廣應用成熟的先進技術
普及應用具有智能I/O模塊的、功能強、可靠性高的可編程式控制制器(PLC),廣泛使用智能化調節器,採用以位匯流排(Bitbus)、現場匯流排(Fieldbus)技術等先進網路通訊技術為基礎的新型DCS和FCS控制系統。
二、大力研究和發展智能控制系統
智能控制是一種無需人的干預就能夠自主地驅動智能機器實現其目標的過程,也是用機器模擬人類智能的又一重要領域。智能控制系統的類型主要包括:分級梯階智能控制系統、模糊控制系統、專家控制系統、學習控制系統、人工神經網路控制系統和基於規則的仿人工智慧控制系統等。
三、控制與管理結合,向低成本自動化(LowCostAutomation,LCA)方向發展
LCA是一種以現代技術實現常規自動化系統中的主要的、關鍵的功能,而投資較低的自動化系統。在DCS和FCS的基礎上,採用先進的控制策略,將生產過程式控制制任務和企業管理任務共同兼顧,構成計算機集成控制系統(CIPS),可實現低成本綜合自動化系統的方向發展。
參考資料來源:網路—過程式控制制系統