A. 小王、小張和小李正在進行一項小發明製作,但在關鍵部位卻卡了殼。小王說:「要是小郭來了多好,這個
(1)赤壁之戰只要小郭來了,這個問題就解決了。 (2)小郭來了。 (3)你們別有用心。 |
B. 節能小發明(簡單的)
向明中學兩項小發明獲中國發明展覽會金獎
幾位高中生在燃氣熱水器和空調上找到節能突破口。昨天,向明中學高中生的兩個節能小發明獲得第15屆中國發明展覽會金獎。
一個獲獎項目是「燃氣熱水節能器」,通過回收強排風熱水器排放出的熱量,達到節能效果。燃氣熱水器熱能利用率較低,燃燒後熱量尚未充分傳遞給自來水,就會匆匆排出室外。中學生發明的新裝置,利用排出的廢熱,預熱進水口的冷自來水。這樣,原來10攝氏度的自來水升溫到50攝氏度至60攝氏度,再進入燃氣熱水器,節省大量燃氣,節能約40%。這一發明受到上海能源協會專家一致好評。
另一個獲獎項目是「空調換氣扇」,學生稱它為「空調伴侶」。裝上換氣扇,室外熱空氣進入室內會自動變冷,不用擔心室外熱空氣進屋而提高室溫,還能保持室內空氣新鮮。使用時把兩個換氣扇分別掛在室內和室外,通過牆上兩個通氣孔進行換氣。換熱過程中能耗為零,不會降低空調製冷功效,經過換氣後的冷空氣還能為空調節能30%。
小小發明家靈感源於何處?「燃氣熱水節能器」發明者是高二學生李正維和高三學生陳妮佳。小李曾做過測試,家中燃氣熱水器排放出的廢氣溫度在100攝氏度以上。小李就琢磨,如何把這些廢氣中的熱量利用起來,達到節能效果。「空調換氣扇」發明者是高二學生陳中健,他平時愛讀報,看到這幾年關於「空調病」的報道很多,查閱有關資料後發現,患空調病是因為長時間呆在密閉房間,「需要有個換氣扇輸送新鮮空氣,但又不能增加能耗。」
從課題確定到發明誕生,三位學生花了10個月時間。其間遇上一些難題,比如換氣扇密封問題,小陳前後做了3個方案,最後在學校黃曾新老師和熱能、機械專家指導下,用特殊工藝巧妙密封。
目前,上海和江蘇幾個企業已向這兩個小發明拋來「綉球」,准備投入資金生產。預計明年初,兩個「節能寶貝」可亮相市場。
C. 六年級數學問題
例1.只修改970405的某一個數字,就可使修改後的六位數能被225整除,修改後的六位數是_____.(安徽省1997年小學數學競賽題)
解:逆向思考:因為225=25×9,且25和9互質,所以,只要修改後的數能分別被25和9整除,這個數就能被225整除。我們來分別考察能被25和9整除的情形。
由能被25整除的數的特徵(末兩位數能被25整除)知,修改後的六位數的末兩位數可能是25,或75.
再據能被9整除的數的特徵(各位上的數字之和能被9整除)檢驗,得9+7+0+4+5=25,25+2=27,25+7=32.
故知,修改後的六位數是970425.
7. 在三位數中,個位、十位、百位都是一個數的平方的共有 個。
【答案】48
【解】百位有1、4、9三種選擇,十位、個位有0、1、4、9四種選擇。滿足題意的三位數共有
3×4×4=48(個)。
12. 已知三位數的各位數字之積等於10,則這樣的三位數的個數是 _____ 個.
【答案】6
【解】 因為10=2×5,所以這些三位數只能由1、2、5組成,於是共有 =6個.
12. 下圖中有五個三角形,每個小三角形中的三個數的和都等於50,其中A7=25,A1+A2+A3+A4=74,A9+A3+A5+A10=76,那麼A2與A5的和是多少?
【答案】25
【解】 有A1+A2+A8=50,
A9+A2+A3=50,
A4+A3+A5=50,
A10+A5+A6=50,
A7+A8+A6=50,
於是有A1+A2+A8+A9+A2+A3+A4+A3+A5+A10+A5+A6+A7+A8+A6=250,
即(A1+A2+A3+A4)+(A9+A3+A5+A10)+A2+A5+2A6+2A8+ A7=250.
有74+76+A2+A5+2(A6+A8) + A7=250,而三角形A6A7A8中有A6+A7+A8=50,其中A7=25,所以A6+A8=50-25=25.
那麼有A2+A5=250-74-76-50-25=25.
【提示】上面的推導完全正確,但我們缺乏方向感和總體把握性。
其實,我們看到這樣的數陣,第一感覺是看到這里5個50並不表示10個數之和,而是這10個數再加上內圈5個數的和。這一點是最明顯的感覺,也是重要的等量關系。
再「看問題定方向」,要求第2個數和第5個數的和,
說明跟內圈另外三個數有關系,而其中第6個數和第8個數的和是50-25=25,
再看第3個數,在加兩條直線第1、2、3、4個數和第9、3、5、10個數時,重復算到第3個數,
好戲開演:
74+76+50+25+第2個數+第5個數=50×5
所以 第2個數+第5個數=25
一、填空題:
1 滿足下式的填法共有 種?
口口口口-口口口=口口
【答案】4905。
【解】由右式知,本題相當於求兩個兩位數a與b之和不小於100的算式有多少種。
a=10時,b在90 99之間,有10種;
a=11時,b在89 99之間,有11種;
……
a=99時,b在1 99之間,有99種。共有
10+11+12+……99=4905(種)。
【提示】算式謎跟計數問題結合,本題是一例。數學模型的類比聯想是解題關鍵。
4 在足球表面有五邊形和六邊形圖案(見右上圖),每個五邊形與5個六邊形相連,每個六邊形與3個五邊形相連。那麼五邊形和六邊形的最簡整數比是_______ 。
【答案】3∶5。
【解】設有X個五邊形。每個五邊形與5個六邊形相連,這樣應該有5X個六邊形,可是每個六邊形與3個五邊形相連,即每個六邊形被數了3遍,所以六邊形有 個。
二、解答題:
1.小紅到商店買一盒花球,一盒白球,兩盒球的數量相等,花球原價是2元錢3個,白球原價是2元錢5個.新年優惠,兩種球的售價都是4元錢8個,結果小紅少花了5元錢,那麼,她一共買了多少個球?
【答案】150個
【解】
用矩形圖來分析,如圖。
容易得,
解得:
所以 2x=150
2.22名家長(爸爸或媽媽,他們都不是老師)和老師陪同一些小學生參加某次數學競賽,已知家長比老師多,媽媽比爸爸多,女老師比媽媽多2人,至少有一名男老師,那麼在這22人中,共有爸爸多少人?
【答案】5人
【解】家長和老師共22人,家長比老師多,家長就不少於12人,老師不多於10人,媽媽和爸爸不少於12人,媽媽比爸爸多,媽媽不少於7人.女老師比媽媽多2人,女老師不少於7+2=9(人).女老師不少於9人,老師不多於10人,就得出男老師至多1人,但題中指出,至少有1名男老師,因此,男老師是1人,女老師就不多於9人,前面已有結論,女老師不少於9人,因此,女老師有9人,而媽媽有7人,那麼爸爸人數是:22-9-1-7=5(人) 在這22人中,爸爸有5人.
【提示】妙,本題多次運用最值問題思考方法,且巧借半差關系,得出不等式的范圍。
正反結合討論的方法也有體現。
3.甲、乙、丙三人現在歲數的和是113歲,當甲的歲數是乙的歲數的一半時,丙是38歲,當乙的歲數是丙的歲數的一半時,甲是17歲,那麼乙現在是多大歲數?
【答案】32歲
【解】如圖。
設過x年,甲17歲,得:
解得 x=10,
某個時候,甲17-10=7歲,乙7×2=14歲,丙38歲,年齡和為59歲,
所以到現在每人還要加上(113-59)÷3=18(歲)
所以乙現在14+18=32(歲)。
7. 甲、乙兩班的學生人數相等,各有一些學生參加數學選修課,甲班參加數學選修課的人數恰好是乙班沒有參加的人數的1/3,乙班參加數學選修課的人數恰好是甲班沒有參加的人數的1/4。那麼甲班沒有參加的人數是乙班沒有參加的人數的幾分之幾?
【答案】
【解】:設甲班沒參加的是4x人,乙班沒參加的是3y人
那麼甲班參加的人數是y人,乙班參加的人數是x人
根據條件兩班人數相等,所以4x+y=3y+x
3x=2y x:y=2:3
因此4x:3y=8:9 故那麼甲班沒有參加的人數是乙班沒有參加的人數的
【另解】列一元一次方程:可假設兩班人數都為「1」,設甲班參加的為x,則甲班未參加的為(1-x);則乙班未參加的為3x,則乙班參加的為(1-3x),可列方程:(1-x)/4=1-3x 求x=3/11。
【提示】方程演算、設而不求、量化思想都有了,這道題不錯。
目標班
名校真卷七
一、填空題:
31 滿足下式的填法共有 種?
口口口口-口口口=口口
【答案】4905。
【解】由右式知,本題相當於求兩個兩位數a與b之和不小於100的算式有多少種。
a=10時,b在90 99之間,有10種;
a=11時,b在89 99之間,有11種;
……
a=99時,b在1 99之間,有99種。共有
10+11+12+……99=4905(種)。
【提示】算式謎跟計數問題結合,本題是一例。數學模型的類比聯想是解題關鍵。
34 在足球表面有五邊形和六邊形圖案(見右上圖),每個五邊形與5個六邊形相連,每個六邊形與3個五邊形相連。那麼五邊形和六邊形的最簡整數比是_______ 。
【答案】3∶5。
【解】設有X個五邊形。每個五邊形與5個六邊形相連,這樣應該有5X個六邊形,可是每個六邊形與3個五邊形相連,即每個六邊形被數了3遍,所以六邊形有 個。
36 用方格紙剪成面積是4的圖形,其形狀只能有以下七種:
如果用其中的四種拼成一個面積是16的正方形,那麼,這四種圖形的編號和的最大值是______.
【答案】19.
【解】為了得到編號和的最大值,應先利用編號大的圖形,於是,可以拼出,由:(7),(6),(5),(1);(7),(6),(4),(1);(7),(6),(3),(1)組成的面積是16的正方形:
顯然,編號和最大的是圖1,編號和為7+6+5+1=19,再驗證一下,並無其它拼法.
【提示】注意從結果入手的思考方法。我們畫出面積16的正方形,先塗上陰影(6)(7),再塗出(5),經過適當變換,可知,只能利用(1)了。
而其它情況,用上(6)(7),和(4),則只要考慮(3)(5)這兩種情況是否可以。
40 設上題答數是a,a的個位數字是b.七個圓內填入七個連續自然數,使每兩個相鄰圓內的數之和等於連線上的已知數,那麼寫A的圓內應填入_______.
【答案】A=6
【解】如圖所示:
B=A-4,
C=B+3,所以C=A-1;
D=C+3,所以D=A+2;
而A +D =14;
所以A=(14-2)÷2=6.
【提示】本題要點在於推導隔一個圓的兩個圓的差,
從而得到最後的和差關系來解題。
43 某個自然數被187除餘52,被188除也餘52,那麼這個自然數被22除的余數是_______.
【答案】8
【解】這個自然數減去52後,就能被187和188整除,為了說明方便,這個自然數減去52後所得的數用M表示,因187=17×11,故M能被11整除;因M能被188整除,故,M也能被2整除,所以,M也能被11×2=22整除,原來的自然數是M+52,因為M能被22整除,當考慮M+52被22除後的余數時,只需要考慮52被22除後的余數. 52=22×2+8這個自然數被22除餘8.
56 有一堆球,如果是10的倍數個,就平均分成10堆,並且拿走9堆;如果不是10的倍數個,就添加幾個球(不超過9個),使這堆球成為10的倍數個,然後將這些球平均分成10堆,並且拿走9堆。這個過程稱為一次操作。如果最初這堆球的個數為
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2…9 8 9 9.
連續進行操作,直至剩下1個球為止,那麼共進行了 次操作;共添加了 個球.
【答案】189次; 802個。
【解】這個數共有189位,每操作一次減少一位。操作188次後,剩下2,再操作一次,剩下1。共操作189次。這個189位數的各個數位上的數字之和是
(1+2+3+…+9)20=900。
由操作的過程知道,添加的球數相當於將原來球數的每位數字都補成9,再添1個球。所以共添球
1899-900+1=802(個)。
60 有一種最簡真分數,它們的分子與分母的乘積都是693,如果把所有這樣的分數從大到小排列,那麼第二個分數是______.
【答案】
【解】把693分解質因數:693=3×3×7×11.為了保證分子、分母不能約分(否則,約分後分子與分母之積就不是693),相同質因數要麼都在分子,要麼都在分母,並且分子應小於分母.分子從大到小排列是11,9,7,1,
68 在1,2,…,1997這1997個數中,選出一些數,使得這些數中的每兩個數的和都能被22整除,那麼,這樣的數最多能選出______個.
【答案】91
【解】有兩種選法:(1)選出所有22的整數倍的數,即:22,22×2,22×3,…,22×90=1980,共90個數;(2)選出所有11的奇數倍的數,即:11,11+22×1,11+22×2…,11+22×90=1991,共91個數,所以,這樣的數最多能選出91個.
二、解答題:
1.小紅到商店買一盒花球,一盒白球,兩盒球的數量相等,花球原價是2元錢3個,白球原價是2元錢5個.新年優惠,兩種球的售價都是4元錢8個,結果小紅少花了5元錢,那麼,她一共買了多少個球?
【答案】150個
【解】
用矩形圖來分析,如圖。
容易得,
解得:
所以 2x=150
2.22名家長(爸爸或媽媽,他們都不是老師)和老師陪同一些小學生參加某次數學競賽,已知家長比老師多,媽媽比爸爸多,女老師比媽媽多2人,至少有一名男老師,那麼在這22人中,共有爸爸多少人?
【答案】5人
【解】家長和老師共22人,家長比老師多,家長就不少於12人,老師不多於10人,媽媽和爸爸不少於12人,媽媽比爸爸多,媽媽不少於7人.女老師比媽媽多2人,女老師不少於7+2=9(人).女老師不少於9人,老師不多於10人,就得出男老師至多1人,但題中指出,至少有1名男老師,因此,男老師是1人,女老師就不多於9人,前面已有結論,女老師不少於9人,因此,女老師有9人,而媽媽有7人,那麼爸爸人數是:22-9-1-7=5(人) 在這22人中,爸爸有5人.
【提示】妙,本題多次運用最值問題思考方法,且巧借半差關系,得出不等式的范圍。
正反結合討論的方法也有體現。
3.甲、乙、丙三人現在歲數的和是113歲,當甲的歲數是乙的歲數的一半時,丙是38歲,當乙的歲數是丙的歲數的一半時,甲是17歲,那麼乙現在是多大歲數?
【答案】32歲
【解】如圖。
設過x年,甲17歲,得:
解得 x=10,
某個時候,甲17-10=7歲,乙7×2=14歲,丙38歲,年齡和為59歲,
所以到現在每人還要加上(113-59)÷3=18(歲)
所以乙現在14+18=32(歲)。
11. 甲、乙兩班的學生人數相等,各有一些學生參加數學選修課,甲班參加數學選修課的人數恰好是乙班沒有參加的人數的1/3,乙班參加數學選修課的人數恰好是甲班沒有參加的人數的1/4。那麼甲班沒有參加的人數是乙班沒有參加的人數的幾分之幾?
【答案】
【解】:設甲班沒參加的是4x人,乙班沒參加的是3y人
那麼甲班參加的人數是y人,乙班參加的人數是x人
根據條件兩班人數相等,所以4x+y=3y+x
3x=2y x:y=2:3
因此4x:3y=8:9 故那麼甲班沒有參加的人數是乙班沒有參加的人數的
【另解】列一元一次方程:可假設兩班人數都為「1」,設甲班參加的為x,則甲班未參加的為(1-x);則乙班未參加的為3x,則乙班參加的為(1-3x),可列方程:(1-x)/4=1-3x 求x=3/11。
【提示】方程演算、設而不求、量化思想都有了,這道題不錯。
2007年重點中學入學試卷分析系列七
24. 著名的數學家斯蒂芬 巴納赫於1945年8月31日去世,他在世時的某年的年齡恰好是該年份的算術平方根(該年的年份是他該年年齡的平方數).則他出生的年份是 _____ ,他去世時的年齡是 ______ .
【答案】1892年;53歲。
【解】 首先找出在小於1945,大於1845的完全平方數,有1936=442,1849=432,顯然只有1936符合實際,所以斯蒂芬 巴納赫在1936年為44歲.
那麼他出生的年份為1936-44=1892年.
他去世的年齡為1945-1892=53歲.
【提示】要點是:確定范圍,另外要注意的「潛台詞」:年份與相應年齡對應,則有年份-年齡=出生年份。
36. 某小學即將開運動會,一共有十項比賽,每位同學可以任報兩項,那麼要有 ___ 人報名參加運動會,才能保證有兩名或兩名以上的同學報名參加的比賽項目相同.
【答案】46
【解】 十項比賽,每位同學可以任報兩項,那麼有 =45種不同的報名方法.
那麼,由抽屜原理知為 45+1=46人報名時滿足題意.
37.
43. 如圖,ABCD是矩形,BC=6cm,AB=10cm,AC和BD是對角線,圖中的陰影部分以CD為軸旋轉一周,則陰影部分掃過的立體的體積是多少立方厘米?(π=3.14)
【答案】565.2立方厘米
【解】設三角形BOC以CD為軸旋轉一周所得到的立體的體積是S,S等於高為10厘米,底面半徑是6厘米的圓錐的體積減去2個高為5厘米,底面半徑是3厘米的圓錐的體積減去2個高為5厘米,底面半徑是3厘米的圓錐的體積。即:
S= ×62×10×π-2× ×32×5×π=90π,
2S=180π=565.2(立方厘米)
【提示】S也可以看做一個高為5厘米,上、下底面半徑是3、6厘米的圓台的體積減去一個高為5厘米,底面半徑是3厘米的圓錐的體積。
4.如圖,點B是線段AD的中點,由A,B,C,D四個點所構成的所有線段的長度均為整數,若這些線段的長度的積為10500,則線段AB的長度是 。
【答案】5
【解】由A,B,C,D四個點所構成的線段有:AB,AC,AD,BC,BD和CD,由於點B是線段AD的中點,可以設線段AB和BD的長是x,AD=2x,因此在乘積中一定有x3。
對10500做質因數分解:
10500=22×3×53×7,
所以,x=5,AB×BD×AD=53×2,AC×BC×CD=2×3×7,
所以,AC=7,BC=2,CD=3,AD=10.
5.甲乙兩地相距60公里,自行車和摩托車同時從甲地駛向乙地.摩托車比自行車早到4小時,已知摩托車的速度是自行車的3倍,則摩托車的速度是 ______ .
【答案】30公里/小時
【解】 記摩托車到達乙地所需時間為「1」,則自行車所需時間為「3」,有4小時對應「3」-「1」=「2」,所以摩托車到乙地所需時間為4÷2=2小時.摩托車的速度為60÷2=30公里/小時.
【提示】這是最本質的行程中比例關系的應用,注意份數對應思想。
6. 一輛汽車把貨物從城市運往山區,往返共用了20小時,去時所用時間是回來的1.5倍,去時每小時比回來時慢12公里.這輛汽車往返共行駛了 _____ 公里.
【答案】576
【解】 記去時時間為「1.5」,那麼回來的時間為「1」.
所以回來時間為20÷(1.5+1)=8小時,則去時時間為1.5×8=12小時.
根據反比關系,往返時間比為1.5∶1=3∶2,則往返速度為2:3,
按比例分配,知道去的速度為12÷(3-2)×2=24(千米)
所以往返路程為24×12×2=576(千米)。
7. 有70個數排成一排,除兩頭兩個數外,每個數的3倍恰好等於它兩邊兩個數之和.已知前兩個數是0和1,則最後一個數除以6的余數是 ______ .
【答案】4
【解】 顯然我們只關系除以6的余數,有0,1,3,2,3,1,0,5,3,,3,5,0,1,3,……
有從第1數開始,每12個數對於6的余數一循環,
因為70÷12=5……10,
所以第70個數除以6的余數為循環中的第10個數,即4.
【提示】找規律,原始數據的生成也是關鍵,細節決定成敗。
8. 老師在黑板上寫了一個自然數。第一個同學說:「這個數是2的倍數。」第二個同學說:「這個數是3的倍數。」第三個同學說:「這個數是4的倍數。」……第十四個同學說:「這個數是15的倍數。」最後,老師說:「在所有14個陳述中,只有兩個連續的陳述是錯誤的。」老師寫出的最小的自然數是 。
【答案】60060
【解】2,3,4,5,6,7的2倍是4,6,8,10,12,14,如果這個數不是2,3,4,5,6,7的倍數,那麼這個數也不是4,6,8,10,12,14的倍數,錯誤的陳述不是連續的,與題意不符。所以這個數是2,3,4,5,6,7的倍數。由此推知,這個數也是(2×5=)10,(3×4=)12,(2×7)14,(3×5=)15的倍數。在剩下的8,9,11,13中,只有8和9是連續的,所以這個數不是8和9的倍數。2,3,4,5,6,7,10,11,12,,13,14,15的最小公倍數是22×3×5×7×11×13=60060。
16. 小王和小李平時酷愛打牌,而且推理能力都很強。一天,他們和華教授圍著桌子打牌,華教授給他們出了道推理題。華教授從桌子上抽取了如下18張撲克牌:
紅桃A,Q,4 黑桃J,8,4,2,7,3,5
草花K,Q,9,4,6,lO 方塊A,9
華教授從這18張牌中挑出一張牌來,並把這張牌的點數告訴小王,把這張牌的花色告訴小李。然後,華教授問小王和小李,「你們能從已知的點數或花色中推斷出這張牌是什麼牌嗎?
小王:「我不知道這張牌。」
小李:「我知道你不知道這張牌。」
小王:「現在我知道這張牌了。」
小李:「我也知道了。」
請問:這張牌是什麼牌?
【答案】方塊9。
【解】小王知道這張牌的點數,小王說:「我不知道這張牌」,說明這張牌的點數只能是A,Q,4,9中的一個,因為其它的點數都只有一張牌。
如果這張牌的點數不是A,Q,4,9,那麼小王就知道這張牌了,因為A,Q,4,9以外的點數全部在黑桃與草花中,如果這張牌是黑桃或草花,小王就有可能知道這張牌,所以小李說:「我知道你不知道這張牌」,說明這張牌的花色是紅桃或方塊。
現在的問題集中在紅桃和方塊的5張牌上。
因為小王知道這張牌的點數,小王說:「現在我知道這張牌了」,說明這張牌的點數不是A,否則小王還是判斷不出是紅桃A還是方塊A。
因為小李知道這張牌的花色,小李說:「我也知道了」,說明這張牌是方塊9。否則,花色是紅桃的話,小李判斷不出是紅桃Q還是紅桃4。
【提示】在邏輯推理中,要注意一個命題真時指向一個結論,而其逆命題也是明確的結論。
10.從1到100的自然數中,每次取出2個數,要使它們的和大於100,則共有 _____ 種取法.
【答案】2500
【解】 設選有a、b兩個數,且a<b,
當a為1時,b只能為100,1種取法;
當a為2時,b可以為99、100,2種取法;
當a為3時,b可以為98、99、100,3種取法;
當a為4時,b可以為97、98、99、100,4種取法;
當a為5時,b可以為96、97、98、99、100,5種取法;
…… …… ……
當a為50時,b可以為51、52、53、…、99、100,50種取法;
當a為51時,b可以為52、53、…、99、100,49種取法;
當a為52時,b可以為53、…、99、100,48種取法;
…… …… ……
當a為99時,b可以為100,1種取法.
所以共有1+2+3+4+5+…+49+50+49+48+…+2+1=502=2500種取法.
【拓展】從1-100中,取兩個不同的數,使其和是9的倍數,有多少種不同的取法?
【解】從除以9的余數考慮,可知兩個不同的數除以9的余數之和為9。通過計算,易知除以9餘1的有12種,余數為2-8的為11種,余數為0的有11種,但其中有11個不滿足題意:如9+9、18+18……,要減掉11。而余數為1的是12種,多了11種。這樣,可以看成,1-100種,每個數都對應11種情況。
11×100÷2=550種。除以2是因為1+8和8+1是相同的情況。
14. 已知三位數的各位數字之積等於10,則這樣的三位數的個數是 _____ 個.
【答案】6
【解】 因為10=2×5,所以這些三位數只能由1、2、5組成,於是共有 =6個.
12. 下圖中有五個三角形,每個小三角形中的三個數的和都等於50,其中A7=25,A1+A2+A3+A4=74,A9+A3+A5+A10=76,那麼A2與A5的和是多少?
【答案】25
【解】 有A1+A2+A8=50,
A9+A2+A3=50,
A4+A3+A5=50,
A10+A5+A6=50,
A7+A8+A6=50,
於是有A1+A2+A8+A9+A2+A3+A4+A3+A5+A10+A5+A6+A7+A8+A6=250,
即(A1+A2+A3+A4)+(A9+A3+A5+A10)+A2+A5+2A6+2A8+ A7=250.
有74+76+A2+A5+2(A6+A8) + A7=250,而三角形A6A7A8中有A6+A7+A8=50,其中A7=25,所以A6+A8=50-25=25.
那麼有A2+A5=250-74-76-50-25=25.
【提示】上面的推導完全正確,但我們缺乏方向感和總體把握性。
其實,我們看到這樣的數陣,第一感覺是看到這里5個50並不表示10個數之和,而是這10個數再加上內圈5個數的和。這一點是最明顯的感覺,也是重要的等量關系。
再「看問題定方向」,要求第2個數和第5個數的和,
說明跟內圈另外三個數有關系,而其中第6個數和第8個數的和是50-25=25,
再看第3個數,在加兩條直線第1、2、3、4個數和第9、3、5、10個數時,重復算到第3個數,
好戲開演:
74+76+50+25+第2個數+第5個數=50×5
所以 第2個數+第5個數=25
13.下面有三組數
(1) ,1.5, (2)0.7,1.55 (3) , ,1.6,
從每組數中取出一個數,把取出的三個數相乘,那麼所有不同取法的三個數乘積的和是多少?
【答案】720
【鋪墊】在一個6×5的方格中,最上面一行依次填寫0、1、3、5、7、9;在最左一列依次填寫0、2、4、6、8,其餘每個格子中的數字等於與他同一行中最左邊的數字與同一列中最上面的數字之和。問:依次填滿數字以後,這30個數字之和是多少?
【解】思路同原題。(2+4+6+8)×6+(1+3+5+7+9)×5=245
因為原題較復雜,也可先講此題,然後再講原題。
【解】 =16×2.25×20=720.
【提示】推導這部分內容,可別忘了幫學生復習一下求一個數所有約數和的公式。融會貫通的機會來了。
家 庭 作 業
1.
【答案】
【解】將分子、分母分解因數:9633=3×3211,35321=11×3211
【提示】用輾轉相除法更妙了。
14. 甲、乙二人分別從A、B兩地同時出發,相向而行,出發時他們的速度比是3:2,他們第一次相遇後,甲的速度提高了20%,乙的速度提高了30%,這樣,當甲到達B地時,乙離A還有14千米,那麼,A、B兩地間的距離是多少千米?
【答案】45千米
【解】設A、B兩地間的距離是5段,根據兩人速度比是3∶2,當他們第一次相遇時,甲走3段,乙走了2段,此後,甲還要走2段,乙還要走3段.當甲、乙分別提高速度後,再者之比是:
【提示】題目很老套了。但考慮方法的靈活性,可以作不同方法的練習。
本題還可以用通比(或者稱作連比)來解。
14÷(27-13)×(27+18)=45(千米)
20. 新年聯歡會上,六年級一班的21名同學參加猜謎活動,他們一共猜對了44條謎語.那麼21名同學中,至少有_______人猜對的謎語一樣多.
【答案】5
【解】 我們應該使得猜對的謎語的條數盡可能的均勻分布,有:
0+0+0+0+1+1+1+1+2+2+2+2+3+3+3+3+4+4+4+4=(0+1+2+3+4)×4=40,現在還有1個人還有4條謎語,0+0+0+0+1+1+1+1+2+2+2+2+3+3+3+3+4+4+4+4+4=44.
所以此時有5個人猜對的謎語一樣多,均為4條.
不難驗證至少有5人猜對的謎語一樣多.
此題難點在入手點,即思考方法,可由學生發言,由其發言引出問題,讓學生們把他們的意見充分表達出來,再在老師的啟發下,糾正問題,解決問題。這樣講法要比老師直接切入解題要好。
【提示】注意如果沒有人數限制,則這里的「至少」應該是1個人。結合21人,應該找到方向了。
26. 某一個工程甲單獨做50天可以完成,乙單獨做75天可以完成,現在兩人合作,但途中乙因事離開了幾天,從開工後40天把這個工程做完,則乙中途離開了 ____ 天.
【答案】25
【解】 乙中途離開,但是甲從始至終工作了40天,完成的工程量為整個工程的40× = .
那麼剩下的1- = 由乙完成,乙需 ÷ =15天完成,所以乙離開了40-15=25天.
D. 叫我小李呀愛發明怎麼被吐槽
叫我小李呀愛發明怎麼被吐槽,因為習慣性叫你這個名字,所以偶爾想改一個名字,別人肯定會不習慣,所以遭到別人的吐槽,這也是很正常的。
E. 來個好心人,幫忙一下,啟示的作文咋寫
仙人掌的啟示
我並不喜歡養花,爸爸媽媽也是,但是為了能夠綠化環境,他們還是從市場里買了幾盆花回來,放在陽台上。還有一盆不怎麼起眼的仙人掌,為什麼叫它「仙人掌」呢?我也不清楚,或許是因為它形態各異,像人一樣有「四肢」吧,所以叫他「仙人掌。」
每天早上,我都會給那些花隨便澆一點水,因為水澆多了,花就容易死。我也聽說過仙人掌不怎麼愛喝水,所以隔三`四天才給它澆一次水。我家的仙人掌呈深綠色,身上長滿了刺,也許是因為不被外界入侵,身上才長了那麼多的刺吧。一條一條的仙人掌,有點像青瓜的形狀,連接在一起,有好象親兄弟一樣擁抱在一起,永不分離。春天來臨了,小草發芽,百花爭艷,蒙蒙小雨,清香的氣息,構成了這一幅美好`完善的春景。但又有誰能注意到那盆仙人掌呢?它不貪圖名利,從不向困難認輸。有時我還發現,仙人掌的土出現了不計其數的裂縫,土質又粗糙又乾燥,但它毫不介意,依然屹立在那毫無色彩`用泥土製成的陶瓷盆上。它這是為了什麼?為的就是能為世界貢獻出一份力量,為世界增添綠意,自己吸收二氧化碳,放出新鮮空氣,使環境變得更清新一些。花雖然美,但它太脆弱了,也太容易破碎了。漸漸的,我在不知不覺中竟然喜歡上仙人掌了,因為它那高貴的品質一直吸引著我,我要像它學習。
秋天來了又去,當寒風呼嘯的秋季來臨之後,草枯萎了,葉邊黃了。但仙人掌卻毫不動搖,還是那麼綠,那麼堅強。它不畏艱難,敢於和困難作斗爭,日日夜夜地在外面與寒風戰斗,最終,它以頑強`剛毅的精神戰勝了寒風。它的那種不畏艱難`堅忍不拔的精神深深地震撼了我,我只要一遇到困難就依賴別人幫自己,從沒試過自己獨立解決生活上的難題。仙人掌的精神激勵著我前進。
仙人掌雖然普通,但它那高貴的品質值得我們學習。我愛仙人掌!因為仙人掌引導著我在人生道路上,不畏艱難,努力拚搏!
寫從什麼事或物中得到了什麼道理,啟示
F. 簡單!!!!!!!!!!!!!!!!!!!!!!!!的節能小發明!!!!!!!!!初二水平
http://..com/question/25421725.html
G. 小李的科研發明取得新成果,公司決定每月獎勵他180元,這使他的收入增加8%。他原來收入多少元
180/8%=2250元
H. 綜合性學習。小王、小張和小李正在進行一項小發明製作,但在關鍵部位卻卡了殼。小王說:「要是小郭來
(1)赤壁之戰;只要小郭來了,這個問題就解決了。 (2)小郭來了。 (3)你們別有用心。 |
I. 王發明欠載
(1)赤壁之戰只要小郭來了,這個問題就解決了。 (2)小郭來了。 (3)你們別有用心。