導航:首頁 > 創造發明 > 發明質數的人

發明質數的人

發布時間:2021-11-06 10:56:41

『壹』 歷史上的數學天才!

華羅庚、陳景潤、哥德巴赫、高斯、
華羅庚,1910年11月12日生於江蘇省金壇市金城鎮,1985年6月12日卒於日本東京。
俗話說得好:「溫室里難開出鮮艷芬芳耐寒傲雪的花兒。人只有經過苦難磨練才有望獲得成功。」我國著名大數學家華羅庚的成功就得益於他的坎坷經歷。1924年金壇中學初中畢業,但因家境不好,讀完初中後,便不得不退學去當店員。18歲時患傷寒病,造成右腿殘疾。1930年後在清華大學任教。1936年赴英國劍橋大學訪問、學習。1938年回國後任西南聯合大學教授。1946年赴美國,任普林斯頓數學研究所研究員、普林斯頓大學和伊利諾斯大學教授,1950年回國。歷任清華大學教授,中國科學院數學研究所、應用數學研究所所長、名譽所長,中國數學學會理事長、名譽理事長,全國數學競賽委員會主任,美國國家科學院國外院士,第三世界科學院院士,聯邦德國巴伐利亞科學院院士,中國科學院物理學數學化學部副主任、副院長、主席團成員,中國科學技術大學數學系主任、副校長,中國科協副主席,國務院學位委員會委員等職。曾任一至六屆全國人大常務委員,六屆全國政協副主席。曾被授予法國南錫大學、香港中文大學和美國伊利諾斯大學榮譽博士學位。主要從事解析數論、矩陣幾何學、典型群、自守函數論、多復變函數論、偏微分方程、高維數值積分等領域的研究與教授工作並取得突出成就。40年代,解決了高斯完整三角和的估計這一歷史難題,得到了最佳誤差階估計(此結果在數論中有著廣泛的應用);對G.H.哈代與J.E.李特爾伍德關於華林問題及E.賴特關於塔里問題的結果作了重大的改進,至今仍是最佳紀錄。
從20世紀60年代開始,他把數學方法應用於實際,篩選出以提高工作效率為目標的優選法和統籌法,取得顯著經濟效益。
華羅庚是當代自學成才的科學巨匠,是世界著名的數學家。他是中國解析數論、典型群、矩陣幾何學、自守函數論與多復變函數論等很多方面研究的創始人與開拓者。為以後矩陣幾何學等,作下了奠基。
陳景潤(1933-1996.3.19)中國數學家。

福建省閩侯人。父親是一位郵政工人 ,在眾多的兄弟姐妹中,陳景潤排行第三。1945年陳景潤隨全家從閩西北遷居福州市並進入英華中學讀書。他從小內向而好學,因只知啃書本而被同學們起了一個綽號「booker(書獃子)」。此時,我國著名科學家沈元教授(後來任北京航空學院院長)由於抗戰而南下,曾在該校兼課,他在一堂數學課中,講了17世紀德國數學家哥德巴赫提出的一個猜想。哥德巴赫在1742年曾經猜想任意的大偶數恆可表述為兩個素數這和。別看這道題目外表簡單,內涵卻十分復雜。200多年來,這一問題至今沒有得到完全證明。在19世紀,德、法、俄、英等國的數學家對這一猜想做過無數次努力,但均未獲得有價值的進展。許多人因此望而卻步,被稱為數學皇冠上的明珠。在這群富於幻想。思想活躍的高中學生中,大家一聽而過,唯有陳景潤陷入沉思。他暗下決心,要沿著長滿荊棘的道路上攀登和摘取這顆「數學皇冠上的明珠」。1950年,陳景潤在高中尚未畢業時考入廈門大學,1953年大學畢業後被分配到北京一所名牌中學任教。由於缺乏教書的口才被認為不宜於教書。廈門大學校長王亞南愛惜人才,讓陳景潤回校任圖書資料員。這一環境使他如魚得一般地可以遨遊數學王國。他的第一篇數學論文《關於塔利問題》寄到中科院數學所時,他的數學才能得到著名數學家華羅庚的賞識,邀請陳景潤參加1956年全國數學論文宣讀大會,並於1956年末將他調到中國科學院數學研究所工作,開始在華羅庚的指導下研究數論。他最重要的成就是對「哥德巴赫猜想」取得了(1+2)的世界最先進的結果。出現轉機是在本世紀前半葉,在我國,首先是數學研究所的王元於1956-1957年相繼證明了(3+4)與(2+3);接著山東大學的潘承洞於1962年取得了(1+5)的關鍵性進展。在此後數年間,他們兩人又進一步證明了(1+4)和(1+3)。1966年,陳景潤取得了(1+2)的詳細證明,並創立了「陳氏定理」,受到國際數學界的高度贊揚,得到國際公認。為中國在國際「奧林匹克」大賽中,奪得了一塊金牌。陳景潤本想在他有生之年內,完成(1+1),使數學的基礎理論出現奇光異彩。可惜,在他生命最後的十多年中,帕金森氏綜合症困擾他,令他長期卧病在床而不能實現夙願。但最終解決哥氏猜想的(1+1)還有一段艱巨的路程。據著名數學家楊樂的估計,要到下一世紀才有解決這個難題的可能。
高斯(Johann Carl Friedrich Gauss)(1777年4月30日—1855年2月23日),生於不倫瑞克,卒於哥廷根,德國著名數學家、物理學家、天文學家、大地測量學家。高斯被認為是最重要的數學家,有數學王子的美譽,並被譽為歷史上偉大的數學家之一,和阿基米德、牛頓並列,同享盛名。
高斯1777年4月30日生於不倫瑞克的一個工匠家庭,1855年2月23日卒於格丁根。幼時家境貧困,但聰敏異常,受一貴族資助才進學校受教育。1795~1798年在格丁根大學學習1798年轉入黑爾姆施泰特大學,翌年因證明代數基本定理獲博士學位。從1807年起擔任格丁根大學教授兼格丁根天文台台長直至逝世。
高斯的成就遍及數學的各個領域,在數論、非歐幾何、微分幾何、超幾何級數、復變函數論以及橢圓函數論等方面均有開創性貢獻。他十分注重數學的應用,並且在對天文學、大地測量學和磁學的研究中也偏重於用數學方法進行研究。
1792年,15歲的高斯進入Braunschweig學院。在那裡,高斯開始對高等數學作研究。獨立發現了二項式定理的一般形式、數論上的「二次互反律」(Law of Quadratic Reciprocity)、「質數分布定理」(prime numer theorem)、及「算術幾何平均」(arithmetic-geometric mean)。
1795年高斯進入哥廷根大學。1796年,19歲的高斯得到了一個數學史上極重要的結果,就是《正十七邊形尺規作圖之理論與方法》。
1855年2月23日清晨,高斯於睡夢中去世。
生平
高斯是一對普通夫婦的兒子。他的母親是一個貧窮石匠的女兒,雖然十分聰明,但卻沒有接受過教育,近似於文盲。在她成為高斯父親的第二個妻子之前,她從事女傭工作。他的父親曾做過園丁,工頭,商人的助手和一個小保險公司的評估師。當高斯三歲時便能夠糾正他父親的借債賬目的事情,已經成為一個軼事流傳至今。他曾說,他在麥仙翁堆上學會計算。能夠在頭腦中進行復雜的計算,是上帝賜予他一生的天賦。
高斯用很短的時間計算出了小學老師布置的任務:對自然數從1到100的求和。他所使用的方法是:對50對構造成和101的數列求和(1+100,2+99,3+98……),同時得到結果:5050。這一年,高斯9歲。
哥廷根大學當高斯12歲時,已經開始懷疑元素幾何學中的基礎證明。當他16歲時,預測在歐氏幾何之外必然會產生一門完全不同的幾何學。他導出了二項式定理的一般形式,將其成功的運用在無窮級數,並發展了數學分析的理論。
高斯的老師Bruettner與他助手 Martin Bartels 很早就認識到了高斯在數學上異乎尋常的天賦,同時Herzog Carl Wilhelm Ferdinand von Braunschweig也對這個天才兒童留下了深刻印象。於是他們從高斯14歲起,便資助其學習與生活。這也使高斯能夠在公元1792-1795年在Carolinum學院(今天Braunschweig學院的前身)學習。18歲時,高斯轉入哥廷根大學學習。在他19歲時,第一個成功的用尺規構造出了規則的17角形。
高斯於公元1805年10月5日與來自Braunschweig的Johanna Elisabeth Rosina Osthoff小姐(1780-1809)結婚。在公元1806年8月21日迎來了他生命中的第一個孩子約瑟。此後,他又有兩個孩子。Wilhelmine(1809-1840)和Louis(1809-1810)。1807年高斯成為哥廷根大學的教授和當地天文台的台長。
雖然高斯作為一個數學家而聞名於世,但這並不意味著他熱愛教書。盡管如此,他越來越多的學生成為有影響的數學家,如後來聞名於世的Richard Dedekind和黎曼。
哥德巴赫(Goldbach C.,1690.3.18-1764.11.20)是德國數學家;出生於格奧尼格斯別爾格(現名加里寧城);曾在英國牛津大學學習;原學法學,由於在歐洲各國訪問期間結識了貝努利家族,所以對數學研究產生了興趣;曾擔任中學教師。1725年到俄國,同年被選為彼得堡科學院院士;1725年~1740年擔任彼得堡科學院會議秘書;1742年移居莫斯科,並在俄國外交部任職。
1729年-1764年,哥德巴赫與歐拉保持了長達三十五年的書信往來。
在1742年6月7日給歐拉的信中,哥德巴赫提出了一個命題。他寫道:
"我的問題是這樣的:
隨便取某一個奇數,比如77,可以把它寫成三個素數之和:
77=53+17+7;
再任取一個奇數,比如461,
461=449+7+5,
也是三個素數之和,461還可以寫成257+199+5,仍然是三個素數之和。這樣,我發現:任何大於5的奇數都是三個素數之和。
但這怎樣證明呢?雖然做過的每一次試驗都得到了上述結果,但是不可能把所有的奇數都拿來檢驗,需要的是一般的證明,而不是個別的檢驗。"
歐拉回信說,這個命題看來是正確的,但是他也給不出嚴格的證明。同時歐拉又提出了另一個命題:任何一個大於2的偶數都是兩個素數之和。但是這個命題他也沒能給予證明。
不難看出,哥德巴赫的命題是歐拉命題的推論。事實上,任何一個大於5的奇數都可以寫成如下形式:
2N+1=3+2(N-1),其中2(N-1)≥4.
若歐拉的命題成立,則偶數2(N-1)可以寫成兩個素數之和,於是奇數2N+1可以寫成三個素數之和,從而,對於大於5的奇數,哥德巴赫的猜想成立。
但是哥德巴赫的命題成立並不能保證歐拉命題的成立。因而歐拉的命題比哥德巴赫的命題要求更高。
現在通常把這兩個命題統稱為哥德巴赫猜想
二百多年來,盡管許許多多的數學家為解決這個猜想付出了艱辛的勞動,迄今為止它仍然是一個既沒有得到正面證明也沒有被推翻的命題。
十九世紀數學家康托(Cantor G.F.L.P.,1845.3.3~1918.1.6)耐心地試驗了1000以內所有的偶數,奧培利又試驗了1000~2000的全部偶數,他們都肯定了在所試驗的范圍內猜想是正確的。1911年梅利指出,從4到9000000之間絕大多數偶數都是兩個素數之和,僅有14個數情況不明。後來甚至有人一直驗算到三億三千萬這個數,都肯定了猜想是正確的。
1900年,德國數學家希爾伯特(Hilbert D.,1862.1.23~1943.2.14)在巴黎國際數學家大會上提出了二十三個最重要的問題供二十世紀的數學家來研究。其中第八問題為素數問題;在提到哥德巴赫猜想時,希爾伯特說這是以往遺留的最重要的問題之一。
1921年,英國數學家哈代(Hardy G.H.,1877.2.7~1947.12.1)在哥本哈根召開的數學會議上說過,哥德巴赫猜想的困難程度可以和任何沒有解決的數學問題相比。
近一百年來,哥德巴赫猜想吸引著世界上許多著名的數學家,並在證明上取得了很大的進展。

『貳』 小學質數表是誰研究出來的

100以內的質素表就是100以內的所有質數都放在一起,還要人發明嗎?你問的應該是發明質數的人,質數以前就叫素數,有2、3、5、7、11、13等等

梅森素數的由來

馬林·梅森(Marin Mersenne,1588-1648)是17世紀法國著名的數學家和修道士,也是當時歐洲科學界一位獨特的中心人物。他與大科學家伽利略、笛卡爾、費馬、帕斯卡、羅伯瓦、邁多治等是密友。雖然梅森致力於宗教,但它卻是科學的熱心擁護者,在教會中為了保衛科學事業做了很多有益的工作。他捍衛笛卡爾的哲學思想,反對來自教會的批評;也翻譯過伽利略的一些著作,並捍衛了他的理論;還與煉金術、占星術等偽科學進行斗爭。另外他曾建議用單擺作為時計以測量物體沿斜面滾下所需的時間,從而使惠更斯發明了單擺式時鍾。

梅森對科學所做的主要貢獻是他起了一個不平常的學術思想通道作用。17世紀時,學術刊物和國際會議等還遠遠沒有出現,甚至連科學研究機構都沒有創立,交往廣泛、熱情誠摯和德高望眾的梅森就成了歐洲科學家之間的聯系的橋梁。許多科學家都樂於將成果寄給他,然後再由他轉告給更多人。因此,他被人們譽為「有定期學術刊物之前的科學信息交換站」。梅森和巴黎數學家笛卡爾、費馬、羅伯瓦、邁多治等曾每周一次在梅森寓所聚會,輪流討論數學、物理等問題,這種民間學術組織被稱為「梅森學院」,它就是法蘭西科學院的前身。

1640年6月,費馬在給梅森的一封信中寫道:「在艱深的數論研究中,我發現了三個非常重要的性質。我相信它們將成為今後解決素數問題的基礎。」其中一個性質就是關於形如2^p—1的數(其中p為素數) 。早在公元前300多年,古希臘數學家歐幾里得就開創了研究2^P—1的先河,他在《幾何原本》第九章中論述完全數時指出:如果2^p—1是素數,則2^(p-1) (2^p—1)是完全數。另外,歐幾里得還在這本不朽的名著中證明了素數有無窮多個(素數是指只能被1和自身整除的自然數,如2、3、5、7、11等等)。

義大利數學家卡達迪首先對2^p—1進行了系統的研究;他在1603年宣布的結果中說,對於p=17、19、23、29、31、和37時,2^p—1是素數。前面的兩個數(即17和19)是他本人驗算的結果;而後面的4個數(即23、29、31和37)是他本人推測的結果。但是,1640年費馬使用著名的費馬小定理證明了卡達迪關於p=23和37的結果是錯誤的,過後他又證明了關於p=31的結論是正確的。

梅森在歐幾里得、卡達迪、費馬等人的有關研究的基礎上對2^p—1作了大量的計算、驗證工作,並於1644在他的《物理數學隨感》(Cogitata Physica-Mathematica)一書中斷言:對於P=2、3、5、7、13、17、19、31、67、127、257時,2^p—1是素數;而對於其他所有小於257的數時,2^p—1是合數(一個正整數,除了1和它本身以外,還能被其他正整數整除,這個數就叫作合數)。前面的7個數(即2、3、5、13、17和19)屬於被證實的部分,是他整理前人的工作得到的;而後面的4個數(即31、67、127和257)屬於被猜測的部分。不過,人們對其斷言仍深信不疑,連大數學家萊布尼茲和哥德巴赫都認為它是對的。雖然梅森的斷言中包含著若干錯誤,但他的工作極大地激發了人們研究2^p—1型素數的熱情,使這種特殊素數擺脫作為「完全數」的附庸的地位。可以說,梅森的工作是素數研究的一個轉折點和里程碑。由於梅森學識淵博、才華橫溢、為人熱情以及較為系統而深入地研究2^p—1型的數,為了紀念這位偉人,數學界就把這種數稱為「梅森數」(Mersenne Number),並以Mp記之(其中M為梅森姓氏的首字母),即Mp=2^p—1。如果梅森數為素數,則稱之為「梅森素數」(Mersenne Prime,則2^p—1型素數)。

梅森素數貌似簡單,而研究難度卻很大。它不僅需要高深的理論和純熟的技巧,而且需要進行艱巨的計算。即使屬於「猜測」部分中最小的M31=2^31—1=2147483647,也具有10位數。可以想像,它的證明是十分艱難的。正如梅森推測:「一個人,使用一般的驗證方法,要檢驗一個15位或20位的數字是否為素數,即使終生的時間也是不夠的。」是啊,枯燥、冗長、單調、刻板的運算會耗盡一個人的畢生精力,誰願讓生命的風帆永遠在黑暗中顛簸!人們多麼想知道梅森猜測的根據和方法啊,然而年邁力衰的他來不及留下記載,4年之後就去世了,人們的希望與梅森的生命一起泯滅在流逝的時光之中。看來,偉人的「猜測」只有等待後來的偉人來解決了。

『叄』 質數公式誰發明的

質數公式: 盡管整個素數是無窮的,仍然有人會問「100000以下有多少個素數?」,「一個隨機的100位數多大可能是素數?」。素數定理可以回答此問題。 1、費馬數2^(2^n)+1 被稱為「17世紀最偉大的法國數學家」的費馬,也研究過質數的性質。

『肆』 質數合數奇數偶數是誰發明的

數學家們!

『伍』 第一個發現質數的人歐文(數學家)是哪個國家的

第一個發現質數的人是商高,是中國人。

『陸』 質數是誰發現的

歐文...畢達哥拉斯(∏υθαγ ρα ,約前580年—前500年),古希臘哲學家、數學家和音樂理論家。

『柒』 質數和合數最早是誰提出來的

質數(對應的是合數)的發現應該很久的。公元前的歐幾里得就提出質數有無窮多個。至於最早誰提出,我不知道了

『捌』 人類發現的最大質數是怎麼計算得來的

用要驗證是否為質數的數除以已知的質數,直到除數的平方大於被除數為止,如果結果中沒有整數,那麼此數為質數.應該是只能用電腦硬算的

『玖』 數學中質數最早由誰提出,是為了什麼

質數又稱素數。指在一個大於1的自然數中,除了1和此整數自身外,沒法被其他自然數整除的數。換句話說,只有兩個正因數(1和自己)的自然數即為素數。比1大但不是素數的數稱為合數。1和0既非素數也非合數。合數是由若干個質數相乘而得到的。所以,質數是合數的基礎,沒有質數就沒有合數。這也說明了前面所提到的質數在數論中有著重要地位。歷史上曾將1也包含在質數之內,但後來為了算術基本定理,最終1被數學家排除在質數之外,而從高等代數的角度來看,1是乘法單位元,也不能算在質數之內,並且,所有的合數都可由若干個質數相乘而得到。

哥德巴赫猜想
哥德巴赫猜想(Goldbach Conjecture)大致可以分為兩個猜想(前者稱「強」或「二重哥德巴赫猜想」後者稱「弱」或「三重哥德巴赫猜想」):1、每個不小於6的偶數都可以表示為兩個奇素數之和;2、每個不小於9的奇數都可以表示為三個奇質數之和。
黎曼猜想
黎曼猜想是一個困擾數學界多年的難題,最早由德國數學家波恩哈德·黎曼提出,迄今為止仍未有人給出一個令人完全信服的合理證明。即如何證明「關於質數的方程的所有意義的解都在一條直線上」。 此條質數之規律內的質數經過整形,「關於質數的方程的所有意義的解都在一條直線上」化為球體質數分布。
孿生質數猜想
1849年,波林那克提出孿生質數猜想(the conjecture of twin primes),即猜測存在無窮多對孿生質數。 猜想中的「孿生質數」是指一對質數,它們之間相差2。例如3和5,5和7,11和13,10016957和10016959等等都是孿生質數。 10016957和10016959是發生在第333899位序號質數月的中旬[18±1]的孿生質數。

『拾』 迄今為止人類已經發現了多少素數

素數是這樣的整數,它除了能表示為它自己和1的乘積以外,不能表示為任何其它兩個整數的乘積。例如,15=3*5,所以15不是素數;又如,12=6*2=4*3,所以12也不是素數。另一方面,13除了等於13*1以外,不能表示為其它任何兩個整數的乘積,所以13是一個素數。
有的數,如果單憑印象去捉摸,是無法確定它到底是不是素數的。有些數則可以馬上說出它不是素數。一個數,不管它有多大,只要它的個位數是2、4、5、6、8或0,就不可能是素數。此外,一個數的各位數字之和要是可以被3整除的話,它也不可能是素數。但如果它的個位數是1、3、7或9,而且它的各位數字之和不能被3整除,那麼,它就可能是素數(但也可能不是素數)。沒有任何現成的公式可以告訴你一個數到底是不是素數。你只能試試看能不能將這
個數表示為兩個比它小的數的乘積。
找素數的一種方法是從2開始用「是則留下,不是則去掉」的方法把所有的數列出來(一直列到你不想再往下列為止,比方說,一直列到10,000)。第一個數是2,它是一個素數,所以應當把它留下來,然後繼續往下數,每隔一個數刪去一個數,這樣就能把所有能被2整除、因而不是素數的數都去掉。在留下的最小的數當中,排在2後面的是3,這是第二個素數,因此應該把它留下,然後從它開始往後數,每隔兩個數刪去一個,這樣就能把所有能被3整除的數全都去掉。下一個未去掉的數是5,然後往後每隔4個數刪去一個,以除去所有能被5整除的數。再下一個數是7,往後每隔6個數刪去一個;再下一個數是11,往後每隔10個數刪一個;再下一個是13,往後每隔12個數刪一個。……就這樣依法做下去。
你也許會認為,照這樣刪下去,隨著刪去的數越來越多,最後將會出現這樣的情況;某一個數後面的數會統統被刪去崮此在某一個最大的素數後面,再也不會有素數了。但是實際上,這樣的情況是不會出現的。不管你取的數是多大,百萬也好,萬萬也好,總還會有沒有被刪去的、比它大的素數。
事實上,早在公元前300年,希臘數學家歐幾里得就已證明過,不論你取的數是多大,肯定還會有比它大的素數,假設你取出前6個素數,並把它們乘在一起:2*3*5*7*11*13=30030,然後再加上1,得30031。這個數不能被2、3、5、7、11、13整除,因為除的結果,每次都會餘1。如果30031除了自己以外不能被任何數整除,它就是素數。如果能被其它數整除,那麼30031所分解成的幾個數,一定都大於13。事實上,30031=59*509。
對於前一百個、前一億個或前任意多個素數,都可以這樣做。如果算出了它們的乘積後再加上1,那麼,所得的數或者是一個素數,或者是比所列出的素數還要大的幾個素數的乘積。不論所取的數有多大,總有比它大的素數,因此,素
數的數目是無限的。
隨著數的增大,我們會一次又一次地遇到兩個都是素數的相鄰奇數對,如5,7;11,13;17,19;29,31;41,43;等等。就數學家所能及的數來說,它們總是能找到這樣的素數對。這樣的素數對到底是不是有無限個呢?誰也不知道。數學家認為是無限的,但他們從來沒能證明它。這就是數學家為什麼對素數感興趣的原因。素數為數學家提供了一些看起來很容易、但事實卻非常難以解決的問題,他們目前還沒能對付這個挑戰哩。

迄今為止,人類發現的最大的素數是 224036583-1,這是第 41 個 梅森(Mersenne)素數。

素數也叫質數,是只能被自己和 1 整除的數,例如2、3、5、7、11等。2500 年前,希臘數學家歐幾里德證明了素數是無限的,並提出少量素數可寫成「2 的n次方減 1」的形式,這里 n 也是一個素數。此後許多數學家曾對這種素數進行研究,17 世紀的法國教士馬丁·梅森(Martin Mersenne)是其中成果較為卓著的一位,因此後人將「2的n次方減1」形式的素數稱為梅森素數。

第19~41個梅森素數
序號 素數 位數 發現人 時間
41 224036583-1 7235733 John Findley 2004
40 220996011-1 6320430 Michael Shafer 2003
39 213466917-1 4053946 Michael Cameron 2001
38 26972593-1 2098960 Nayan, Woltman, Kurowski 1999
37 23021377-1 909526 Clarkson, Woltman, Kurowski 1998
36 22976221-1 895932 Spence, Woltman 1997
35 21398269-1 420921 Armengaud, Woltman 1996
34 21257787-1 378632 Slowinski & Gage 1996
33 2859433-1 258716 Slowinski & Gage 1994
32 2756839-1 227832 Slowinski & Gage 1992
31 2216091-1 65050 David Slowinski 1985
30 2132049-1 39751 David Slowinski 1983
29 2110503-1 33265 Welsh & Colquitt 1988
28 286243-1 25962 David Slowinski 1982
27 244497-1 13395 Slowinski & Nelson 1979
26 223209-1 6987 L. Curt Noll 1979
25 221701-1 6533 Nickel & Noll 1978
24 219937-1 6002 Bryant Tuckerman 1971
23 211213-1 3376 Donald B. Gillies 1963
22 29941-1 2993 Donald B. Gillies 1963
21 29689-1 2917 Donald B. Gillies 1963
20 24423-1 1332 Alexander Hurwitz 1961
19 24253-1 1281 Alexander Hurwitz 1961

1995 年,美國程序設計師喬治·沃特曼整理有關梅森素數的資料,編制了一個梅森素數計算程序,並將其放置在網際網路上供數學愛好者使用,這就是「因特 網梅森素數大搜索」計劃。目前有6萬多名志願者、超過20萬台計算機參與這項計劃。該計劃採取分布式計算方式,利用大量普通計算機的閑置時間,獲得相當於 超級計算機的運算能力,第 37、38 和 39 個梅森素數都是用這種方法找到的。美國一家基金會還專門設立了 10 萬美元的獎金,鼓勵第一個找到超過千萬位素數的人。

閱讀全文

與發明質數的人相關的資料

熱點內容
金華質監局和工商局合並 瀏覽:334
衛生院公共衛生服務考核結果 瀏覽:693
專利權的內容有哪幾項 瀏覽:750
學校矛盾糾紛排查表 瀏覽:294
內地音樂版權 瀏覽:208
公共衛生服務今後工作計劃 瀏覽:457
公共衛生服務考核小組 瀏覽:872
疫情里的科研成果 瀏覽:519
工商局愛國衛生月及健康教育宣傳月活動總結 瀏覽:942
三興商標織造有限公司 瀏覽:657
加強和改進公共服務實施方案 瀏覽:991
迷你世界創造熔岩號角 瀏覽:479
愛奇藝激活碼有效期 瀏覽:507
醫療糾紛官司南方周末 瀏覽:855
公共服務類大樓的物業管理方案 瀏覽:284
電影版權買賣合同範本 瀏覽:167
口罩在商標注冊屬於哪個類目 瀏覽:256
基本公共衛生服務質控小結 瀏覽:668
數字版權的權源 瀏覽:565
駐馬店置地弘潤山轉讓 瀏覽:146