導航:首頁 > 創造發明 > 坐標是誰發明的

坐標是誰發明的

發布時間:2021-11-05 16:12:46

❶ 數軸是誰發明

啊,我是大綿羊哦~~~

數軸(number axis)
規定了原點(origin),正方向和單位長度的直線叫數軸。所有的有理數都可以用數軸上的點來表示。也可以用數軸來比較兩個實數的大小。
1)從原點出發朝正方向的射線上的點對應正數,相反方向的射線上的點對應負數,原點對應零。
2)在數軸上表示的兩個數,右邊的數比左邊的數大。
3)正數都大於0,負數都小於0,正數大於一切負數。
數軸三要素:原點,單位長度,正方向
如果要在數軸上的點表示虛數,則需要2條數軸組成直角坐標系.而實數與虛數的和,要表示在兩條數軸之外的二維平面上.
任何一個有理數都可以用數軸上的一個點來表示.
一般取右方向為正方向,數軸上的點對應任意實數,包括無理數。
用數軸比較大小
一般來說,當數軸方向朝右時,右邊的數比左邊的數大.
相反數
與原點距離相同的兩個點所表示的兩個數為相反數.
絕對值
任意一個數與原點的距離就是它的絕對值.同樣,兩個數在數軸上的距離也可以表示為兩個數的差的絕對值.
地理方面【巧用數軸計算時間】
數軸,用數軸上的一段表示全球的經線,這條線段的兩個端點表示180°經線,線段的中點表示0°經線,這樣,全球所有地點的經度位置都可以表示在這條線段上。箭頭方向代表地球自轉方向,因此,從0°經線向東至180°經線是東經,最右邊的時區是東十二區,時間最早;從0°經線向西至180°經線是西經,最左邊的時區是西十二區,時間最遲,東、西十二區剛好相差24小時。在這條數軸上,越往右邊,時間越早,其數值越大,這與數學上數軸的含義是一致的。因此,如果已知圖1中乙地的時間,要求甲地的時間,甲地在乙地的右邊,用加法,即甲地時間等於乙地時間加上甲、乙兩地的時差;反之,要求乙地的時間,乙地在甲地的左邊,用減法,可以記成「右加左減」,同時,由於數軸的方向代表地球自西向東的自轉方向,從這個意義上來說,也可記成「東加西減」。這樣,將加減法的選擇和時間早晚與數軸的數學含義結合起來,就不易出錯了。此外,用這條線段的兩個端點來表示180°經線,可以避免跨越日界線,從而使計算簡化。

不是誰發明的吧,應該是約定俗成。

> <!

不過好像是他!!!!!
自古希臘以來,數學的發展形成兩大主流:一支主流是幾何,它研究圖形及其變換,像點、直線、平面、三角形、多面體等等,都在它的研究之列;一支主流是代數,它研究數學(或是代表它們的字母)的運算,以及怎樣解方程等等,像有理數、虛數、指數、對數、一元二次方程、方程組等等,都在它的研究之列。但是,在笛卡兒之前,這兩大主流各管各地發展,彼此很少相關。笛卡兒企圖在這兩大主流之間「挖」一條「運河」,將它們溝通。

首先,他發明了「坐標系」,這是從一個原點出發互相垂直的兩條數軸,一條X軸,另一條叫Y軸。有了這么一個簡單的坐標系(嚴格講來,這樣的坐標系應稱為」平面直角坐標系」)之後,如果平面上有一點,已知它到此平面坐標系的距離,那麼這一點的位置就可以確定;反過來,如果平面上一點的位置已確定,那麼這一點的位置就可以用它到坐標系的距離來表示。這樣,笛卡兒應用坐標系建立了平面上的點和有順序的實數對(一個表示X,一個表示Y)之間的一一對應關系,從而把幾何研究的點與代數研究的數結合起來了。不僅如此,笛卡兒還用代數方程來描述幾何圖形,用幾何圖形來表示代數方程的計算結

是笛卡兒提出的平面直角坐標系 (也就是互相垂直的兩條數軸)說中有這么一個故事: 有一天,笛卡爾(1596—1650,法國哲學家、數學家、物理學家)生病卧床,但他頭腦一直沒有休息,在反復思考一個問題:幾何圖形是直觀的,而代數方程則比較抽象,能不能用幾何圖形來表示方程呢?這里,關鍵是如何把組成幾何的圖形的點和滿足方程的每一組「數」掛上鉤。他就拚命琢磨。通過什麼樣的辦法、才能把「點」和「數」聯系起來。突然,他看見屋頂角上的一隻蜘蛛,拉著絲垂了下來,一會兒,蜘蛛又順著絲爬上去,在上邊左右拉絲。蜘蛛的「表演」,使笛卡爾思路豁然開朗。他想,可以把蜘蛛看做一個點,它在屋子裡可以上、下、左、右運動,能不能把蜘蛛的每個位置用一組數確定下來呢?他又想,屋子裡相鄰的兩面牆與地面交出了三條線,如果把地面上的牆角作為起點,把交出來的三條線作為三根數軸,那麼空間中任意一點的位置,不是都可以用這三根數軸上找到的有順序的三個數來表示嗎?反過來,任意給一組三個有順序的數,例如3、2、1,也可以用空間中的一個點 P來表示它們。同樣,用一組數(a,b)可以表示平面上的一個點,平面上的一個點也可以用一組二個有順序的數來表示。於是在蜘蛛的啟示下,笛卡爾創建了直角坐標系。 無論這個傳說的可*性如何,有一點是可以肯定的,就是笛卡爾是個勤於思考的人。這個有趣的傳說,就象瓦特看到蒸汽沖起開水壺蓋發明了蒸汽機一樣,說明笛卡爾在創建直角坐標系的過程中,很可能是受到周圍一些事物的啟發,觸發了靈感。 直角坐標系的創建,在代數和幾何上架起了一座橋梁。它使幾何概念得以用代數的方法來描述,幾何圖形可以通過代數形式來表達,這樣便可將先進的代數方法應用於幾何學的研究。 笛卡爾在創建直角坐標系的基礎上,創造了用代數方法來研究幾何圖形的數學分支——解析幾何。他的設想是:只要把幾何圖形看成是動點的運動軌跡,就可以把幾何圖形看成是由具有某種共同特性的點組成的。比如,我們把圓看成是一個動點對定點O作等距離運動的軌跡,也就可以把圓看作是由無數到定點O的距離相等的點組成的。我們把點看作是留成圖形的基本元素,把數看成是組成方程的基本元素,只要把點和數掛上鉤,也就可以把幾何和代數掛上鉤。 把圖形看成點的運動軌跡,這個想法很重要!它從指導思想上,改變了傳統的幾何方法。笛卡爾根據自己的這個想法,在《幾何學》中,最早為運動著的點建立坐標,開創了幾何和代數掛鉤的解析幾何。在解析幾何中,動點的坐標就成了變數,這是數學第一次引進變數。 恩格斯高度評價笛卡爾的工作,他說:「數學中的轉折點是笛卡爾的變數。有了變數,運動進入了數學,有了變數,辯證法進入了數學。」 坐標方法在日常生活中用得很多。例如象棋、國際象棋中棋子的定位;電影院、劇院、體育館的看台、火車車廂的座位及高層建築的房間編號等都用到坐標的概念。 隨著同學們知識的不斷增加,坐標方法的應用會更加廣泛。 坐標系的發展歷史 如果把坐標法理解為通過某一特定系統中的若干數量來決定空間位置的方法,那麼戰國時代魏人石申用距度(或入宿度)和去極度兩個數據來表示恆星在天球上位置的星表,可以說是一種球面坐標系統的坐標法。古希臘的地理學家和天文學家也廣泛地使用球面坐標法。西晉人裴秀(223-271)提出「制圖六體」,在地圖繪制中使用了相當完備的平面網路坐標法。 用坐標法來刻劃動態的、連結的點,是它溝通代數與幾何而成為解析幾何的主要工具的關鍵。阿波羅尼在<<圓錐曲線論>>中,已藉助坐標來描述曲線。十四世紀法國學者奧雷斯姆用「經度」和「緯度」(相當於縱坐標和橫坐標)的方程來刻劃動點的軌跡。十七世紀,費馬和笛卡兒分別創立解析幾何,他們使用的都是斜角坐標系:即選定一條直線作為X軸,在其上選定一點為原點,y的值則由那些與X軸成一固定角度的線段的長表示。 1637年笛卡兒出版了他的著作<<方法論>>,這書有三個附錄,其中之一名為<<幾何學>>,解析幾何的思想就包含在這個附錄里。笛卡兒在<<方法論>>中論述了正確的思想方法的重要性,表示要創造為實踐服務的哲學。笛卡兒在分析了歐幾里得幾何學和代數學各自的缺點,表示要尋求一種包含這兩門科學的優點而沒有它們的缺點的方法。這種方法就是幾何與代數的結合----解析幾何。按笛卡兒自己的話來說,他創立解析幾何學是為了「決心放棄那僅僅是抽象的幾何。這就是說,不再去考慮那些僅僅是用來練習思想的問題。我這樣作,是為了研究另一種幾何,即目的在於解釋自然現象的幾何」。關於解析幾何學的產生對數學發展的重要意義,這里可以引用法國著名數學家拉格朗日的一段話:「只要代數同幾何分道揚鑣,它們的進展就緩慢,它們的應用就狹窄。但當這兩門科學結合成伴侶時,它們就互相吸取新鮮的活力,從而以快速的步伐走向完善」。 十七世紀之後,西方近代數學開始了一個在本質上全新的階段。正如恩格斯所指出的,在這個階段里「最重要的數學方法基本上被確立了;主要由笛卡兒確立了解析幾何,由耐普爾確立了對數,由萊布尼茲,也許還有牛頓確立了微積分」,而「數學中的轉折點是笛卡兒的變數。有了它,運動進入了數學,因而,辯證法進入了數學,因而微分和積分的運算也就立刻成為必要的了」。恩格斯在這里不僅指出了十七世紀數學的主要內容,而且充分闡明了這些內容的重要意義。 解析幾何學的創立,開始了用代數方法解決幾何問題的新時代。從古希臘時起,在西方數學發展過程中,幾何學似乎一直就是至高無上的。一些代數問題,也都要用幾何方法解決。解析幾何的產生,改變了這種傳統,在數學思想上可以看作是一次飛躍,代數方程和曲線、曲面聯系起來了。 最早引進負坐標的英國人沃利斯,最早把解析幾何推廣到三維空間的是法國人費馬,最早應用三維直角坐標系的是瑞士人約翰 貝努利。「坐標」一詞是德國人萊布尼茲創用的。牛頓首先使用極坐標,對於螺線、心形線以及諸如天體在中心力作用下的運動軌跡的研究甚為方便。不同的坐標系統之間可以互換,最早討論平面斜角坐標系之間互換關系的是法國人范斯庫騰。 我們今天常常把直角坐標系叫做笛卡兒坐標系,其實那是經過許多後人不斷完善後的結果

❷ 坐標這個概念的哪個國家的發明的呢

為確定天球上某一點的位置,在天球上建立的球面坐標系。有兩個基本要素:①基本平面。由天球上某一選定的大圓所確定。大圓稱為基圈,基圈的兩個幾何極之一,作為球面坐標系的極。②主點,又稱原點。由天球上某一選定的過坐標系極點的大圓與基圈所產生的交點所確定。
平面坐標系分為三類:
絕對坐標:是以點O為原點,作為參考點,來定位平面內某一點的具體位置,表示方法為:A(X,Y);
相對坐標:是以該點的上一點為參考點,來定位平面內某一點的具體位置,其表示方法為:A(@△X,△Y);
相對極坐標:是指出平面內某一點相對於上一點的位移距離、方向及角度,具體表示方法為:A(@d<α)。

❸ 坐標是誰發明的

偉大的法國數學家笛卡兒(Descartes 1596-1650)創立了直角坐標系.他用平面上的一點到兩條固定直線的距離來確定這個點的位置,用坐標來描述空間上的點.

❹ 誰發明的數軸

自古希臘以來,數學的發展形成兩大主流:一支主流是幾何,它研究圖形及其變換,像點、直線、平面、三角形、多面體等等,都在它的研究之列;一支主流是代數,它研究數學(或是代表它們的字母)的運算,以及怎樣解方程等等,像有理數、虛數、指數、對數、一元二次方程、方程組等等,都在它的研究之列。但是,在笛卡兒之前,這兩大主流各管各地發展,彼此很少相關。笛卡兒企圖在這兩大主流之間「挖」一條「運河」,將它們溝通。

首先,他發明了「坐標系」,這是從一個原點出發互相垂直的兩條數軸,一條X軸,另一條叫Y軸。有了這么一個簡單的坐標系(嚴格講來,這樣的坐標系應稱為」平面直角坐標系」)之後,如果平面上有一點,已知它到此平面坐標系的距離,那麼這一點的位置就可以確定;反過來,如果平面上一點的位置已確定,那麼這一點的位置就可以用它到坐標系的距離來表示。這樣,笛卡兒應用坐標系建立了平面上的點和有順序的實數對(一個表示X,一個表示Y)之間的一一對應關系,從而把幾何研究的點與代數研究的數結合起來了。不僅如此,笛卡兒還用代數方程來描述幾何圖形,用幾何圖形來表示代數方程的計算結

是笛卡兒提出的平面直角坐標系 (也就是互相垂直的兩條數軸)說中有這么一個故事: 有一天,笛卡爾(1596—1650,法國哲學家、數學家、物理學家)生病卧床,但他頭腦一直沒有休息,在反復思考一個問題:幾何圖形是直觀的,而代數方程則比較抽象,能不能用幾何圖形來表示方程呢?這里,關鍵是如何把組成幾何的圖形的點和滿足方程的每一組「數」掛上鉤。他就拚命琢磨。通過什麼樣的辦法、才能把「點」和「數」聯系起來。突然,他看見屋頂角上的一隻蜘蛛,拉著絲垂了下來,一會兒,蜘蛛又順著絲爬上去,在上邊左右拉絲。蜘蛛的「表演」,使笛卡爾思路豁然開朗。他想,可以把蜘蛛看做一個點,它在屋子裡可以上、下、左、右運動,能不能把蜘蛛的每個位置用一組數確定下來呢?他又想,屋子裡相鄰的兩面牆與地面交出了三條線,如果把地面上的牆角作為起點,把交出來的三條線作為三根數軸,那麼空間中任意一點的位置,不是都可以用這三根數軸上找到的有順序的三個數來表示嗎?反過來,任意給一組三個有順序的數,例如3、2、1,也可以用空間中的一個點 P來表示它們。同樣,用一組數(a,b)可以表示平面上的一個點,平面上的一個點也可以用一組二個有順序的數來表示。於是在蜘蛛的啟示下,笛卡爾創建了直角坐標系。 無論這個傳說的可*性如何,有一點是可以肯定的,就是笛卡爾是個勤於思考的人。這個有趣的傳說,就象瓦特看到蒸汽沖起開水壺蓋發明了蒸汽機一樣,說明笛卡爾在創建直角坐標系的過程中,很可能是受到周圍一些事物的啟發,觸發了靈感。 直角坐標系的創建,在代數和幾何上架起了一座橋梁。它使幾何概念得以用代數的方法來描述,幾何圖形可以通過代數形式來表達,這樣便可將先進的代數方法應用於幾何學的研究。 笛卡爾在創建直角坐標系的基礎上,創造了用代數方法來研究幾何圖形的數學分支——解析幾何。他的設想是:只要把幾何圖形看成是動點的運動軌跡,就可以把幾何圖形看成是由具有某種共同特性的點組成的。比如,我們把圓看成是一個動點對定點O作等距離運動的軌跡,也就可以把圓看作是由無數到定點O的距離相等的點組成的。我們把點看作是留成圖形的基本元素,把數看成是組成方程的基本元素,只要把點和數掛上鉤,也就可以把幾何和代數掛上鉤。 把圖形看成點的運動軌跡,這個想法很重要!它從指導思想上,改變了傳統的幾何方法。笛卡爾根據自己的這個想法,在《幾何學》中,最早為運動著的點建立坐標,開創了幾何和代數掛鉤的解析幾何。在解析幾何中,動點的坐標就成了變數,這是數學第一次引進變數。 恩格斯高度評價笛卡爾的工作,他說:「數學中的轉折點是笛卡爾的變數。有了變數,運動進入了數學,有了變數,辯證法進入了數學。」 坐標方法在日常生活中用得很多。例如象棋、國際象棋中棋子的定位;電影院、劇院、體育館的看台、火車車廂的座位及高層建築的房間編號等都用到坐標的概念。 隨著同學們知識的不斷增加,坐標方法的應用會更加廣泛。 坐標系的發展歷史 如果把坐標法理解為通過某一特定系統中的若干數量來決定空間位置的方法,那麼戰國時代魏人石申用距度(或入宿度)和去極度兩個數據來表示恆星在天球上位置的星表,可以說是一種球面坐標系統的坐標法。古希臘的地理學家和天文學家也廣泛地使用球面坐標法。西晉人裴秀(223-271)提出「制圖六體」,在地圖繪制中使用了相當完備的平面網路坐標法。 用坐標法來刻劃動態的、連結的點,是它溝通代數與幾何而成為解析幾何的主要工具的關鍵。阿波羅尼在<<圓錐曲線論>>中,已藉助坐標來描述曲線。十四世紀法國學者奧雷斯姆用「經度」和「緯度」(相當於縱坐標和橫坐標)的方程來刻劃動點的軌跡。十七世紀,費馬和笛卡兒分別創立解析幾何,他們使用的都是斜角坐標系:即選定一條直線作為X軸,在其上選定一點為原點,y的值則由那些與X軸成一固定角度的線段的長表示。 1637年笛卡兒出版了他的著作<<方法論>>,這書有三個附錄,其中之一名為<<幾何學>>,解析幾何的思想就包含在這個附錄里。笛卡兒在<<方法論>>中論述了正確的思想方法的重要性,表示要創造為實踐服務的哲學。笛卡兒在分析了歐幾里得幾何學和代數學各自的缺點,表示要尋求一種包含這兩門科學的優點而沒有它們的缺點的方法。這種方法就是幾何與代數的結合----解析幾何。按笛卡兒自己的話來說,他創立解析幾何學是為了「決心放棄那僅僅是抽象的幾何。這就是說,不再去考慮那些僅僅是用來練習思想的問題。我這樣作,是為了研究另一種幾何,即目的在於解釋自然現象的幾何」。關於解析幾何學的產生對數學發展的重要意義,這里可以引用法國著名數學家拉格朗日的一段話:「只要代數同幾何分道揚鑣,它們的進展就緩慢,它們的應用就狹窄。但當這兩門科學結合成伴侶時,它們就互相吸取新鮮的活力,從而以快速的步伐走向完善」。 十七世紀之後,西方近代數學開始了一個在本質上全新的階段。正如恩格斯所指出的,在這個階段里「最重要的數學方法基本上被確立了;主要由笛卡兒確立了解析幾何,由耐普爾確立了對數,由萊布尼茲,也許還有牛頓確立了微積分」,而「數學中的轉折點是笛卡兒的變數。有了它,運動進入了數學,因而,辯證法進入了數學,因而微分和積分的運算也就立刻成為必要的了」。恩格斯在這里不僅指出了十七世紀數學的主要內容,而且充分闡明了這些內容的重要意義。 解析幾何學的創立,開始了用代數方法解決幾何問題的新時代。從古希臘時起,在西方數學發展過程中,幾何學似乎一直就是至高無上的。一些代數問題,也都要用幾何方法解決。解析幾何的產生,改變了這種傳統,在數學思想上可以看作是一次飛躍,代數方程和曲線、曲面聯系起來了。 最早引進負坐標的英國人沃利斯,最早把解析幾何推廣到三維空間的是法國人費馬,最早應用三維直角坐標系的是瑞士人約翰 貝努利。「坐標」一詞是德國人萊布尼茲創用的。牛頓首先使用極坐標,對於螺線、心形線以及諸如天體在中心力作用下的運動軌跡的研究甚為方便。不同的坐標系統之間可以互換,最早討論平面斜角坐標系之間互換關系的是法國人范斯庫騰。 我們今天常常把直角坐標系叫做笛卡兒坐標系,其實那是經過許多後人不斷完善後的結果

❺ 經緯度是誰何時發明的

經緯度是克羅狄斯·托勒密於公元120年發明了簡易的經緯度。

公元120年,一位青年也在這座古老的圖書館里研究天文學、地理學。他就是克羅狄斯·托勒密。托勒密綜合前人的研究成果,認為繪制地圖應根據已知經緯度的定點做根據,提出地圖上繪制經緯度線網的概念。為此,托勒密測量了地中海一帶重要城市和據點的經緯度,編寫了8卷地理學著作。

其中包括8000個地方的經緯度。為使地球上的經緯線能在平面上描繪出來,他設法把經緯線繪成簡單的扇形,從而繪制出一幅著名的「托勒密地圖」。15世紀初,航海家亨利開始把「托勒密地圖」付諸實踐。但是,經過反復考察,卻發現這幅地圖並不實用。亨利手下的一些船長遺憾地說:「盡管我們對有名的托勒密十分敬仰,但我們發現事實都與他說的相反。」

(5)坐標是誰發明的擴展閱讀:

在地球儀上,由經線和緯線就組成了經緯網;如果把經緯網地球儀展開,就形成了一幅平面的地圖。確定位置,在航空、航天、航海以及氣象等方面都有作用。「船在海上遇到危險時,如何去營救」等等,都要用到經緯網地圖。經度 :為了區分地球上的每一條經線,人們給經線標注了度數,這就是經度。經度每15度1個時區。 實際上經度是兩條經線所在平面之間的夾角。

國際上規定,把通過英國首都倫敦格林威治天文台原址的那一條經線定為0°經線,也叫本初子午線。從0°經線算起,向東、向西各分作180°,以東的180°屬於東經,習慣上用「E」作代號,以西的180°屬於西經,習慣上用「W」作代號。東經180°和西經的180°重合在一條經線上,那就是東西180°經線。緯度:從赤道向北量度為「北緯」(N);向南量度為「南緯」(S)。

在地圖上判讀經度時應注意:從西向東,經度的度數由小到大為東經度;從西向東,經度的度數由大到小,為西經度;除0°和180°經線外,其餘經線都能准確區分是東經度還是西經度。

❻ 坐標系的起源

發明者:迪卡爾,他早上躺在床上自習時,無意中看到天花板上的蟲子在方格中移動的過程中發現可以用方格位置確定蟲子的位置。

❼ 發明軸的人是誰

你想了解的是數軸的發明人嗎?

數軸:
發明數軸的是生於法國安德爾-盧瓦爾省圖賴訥拉海的勒內·笛卡兒,1650年2月11日逝世於瑞典斯德哥爾摩,是法國著名的哲學家、數學家、物理學家。他是西方近代資產階級哲學奠基人之一。 他對現代數學的發展做出了重要的貢獻,因將幾何坐標體系公式化而被認為是解析幾何之父。他還是西方現代哲學思想的奠基人,是近代唯物論的開拓者且提出了「普遍懷疑」的主張。他的哲學思想深深影響了之後的幾代歐洲人,開拓了所謂「歐陸理性主義」哲學。笛卡兒最早提出的平面直角坐標系(也就是互相垂直的兩條數軸),據說還有一段有趣的故事: 有一天,笛卡爾(1596—1650,法國哲學家、數學家、物理學家)生病卧床,但他頭腦一直沒有休息,在反復思考一個問題:幾何圖形是直觀的,而代數方程則比較抽象,能不能用幾何圖形來表示方程呢?這里,關鍵是如何把組成幾何的圖形的點和滿足方程的每一組「數」掛上鉤。他就拚命琢磨。通過什麼樣的辦法、才能把「點」和「數」聯系起來。突然,他看見屋頂角上的一隻蜘蛛,拉著絲垂了下來,一會兒,蜘蛛又順著絲爬上去,在上邊左右拉絲。蜘蛛的「表演」,使笛卡爾思路豁然開朗。他想,可以把蜘蛛看做一個點,它在屋子裡可以上、下、左、右運動,能不能把蜘蛛的每個位置用一組數確定下來呢?他又想,屋子裡相鄰的兩面牆與地面交出了三條線,如果把地面上的牆角作為起點,把交出來的三條線作為三根數軸,那麼空間中任意一點的位置,不是都可以用這三根數軸上找到的有順序的三個數來表示嗎?反過來,任意給一組三個有順序的數,例如3、2、1,也可以用空間中的一個點 P來表示它們。同樣,用一組數(a,b)可以表示平面上的一個點,平面上的一個點也可以用一組二個有順序的數來表示。於是在蜘蛛的啟示下,笛卡爾創建了直角坐標系。
無論這個傳說的可靠性如何,有一點是可以肯定的,就是笛卡爾是個勤於思考的人。這個有趣的傳說,就象瓦特看到蒸汽沖起開水壺蓋發明了蒸汽機一樣,說明笛卡爾在創建直角坐標系的過程中,很可能是受到周圍一些事物的啟發,觸發了靈感。
直角坐標系的創建,在代數和幾何上架起了一座橋梁。它使幾何概念得以用代數的方法來描述,幾何圖形可以通過代數形式來表達,這樣便可將先進的代數方法應用於幾何學的研究。
笛卡爾在創建直角坐標系的基礎上,創造了用代數方法來研究幾何圖形的數學分支——解析幾何。他的設想是:只要把幾何圖形看成是動點的運動軌跡,就可以把幾何圖形看成是由具有某種共同特性的點組成的。比如,我們把圓看成是一個動點對定點O作等距離運動的軌跡,也就可以把圓看作是由無數到定點O的距離相等的點組成的。我們把點看作是留成圖形的基本元素,把數看成是組成方程的基本元素,只要把點和數掛上鉤,也就可以把幾何和代數掛上鉤。
把圖形看成點的運動軌跡,這個想法很重要!它從指導思想上,改變了傳統的幾何方法。笛卡爾根據自己的這個想法,在《幾何學》中,最早為運動著的點建立坐標,開創了幾何和代數掛鉤的解析幾何。在解析幾何中,動點的坐標就成了變數,這是數學第一次引進變數。
恩格斯高度評價笛卡爾的工作,他說:「數學中的轉折點是笛卡爾的變數。有了變數,運動進入了數學,有了變數,辯證法進入了數學。」
坐標方法在日常生活中用得很多。例如象棋、國際象棋中棋子的定位;電影院、劇院、體育館的看台、火車車廂的座位及高層建築的房間編號等都用到坐標的概念。
隨著同學們知識的不斷增加,坐標方法的應用會更加廣泛。 仔細觀察生活,你會發現數軸已經運用到我們生活當中的方方面面!

❽ 坐標軸是誰發明的

不是誰發明的吧,應該是約定俗成.額 > >中,已藉助坐標來描述曲線.十四世紀法國學者奧雷斯姆用「經度」和「緯度」(相當於縱坐標和橫坐標)的方程來刻劃動點的軌跡.十七世紀,費馬和笛卡兒分別創立解析幾何,他們使用的都是斜角坐標系:即選定一條直線作為X軸,在其上選定一點為原點,y的值則由那些與X軸成一固定角度的線段的長表示.1637年笛卡兒出版了他的著作,這書有三個附錄,其中之一名為,解析幾何的思想就包含在這個附錄里.笛卡兒在中論述了正確的思想方法的重要性,表示要創造為實踐服務的哲學.笛卡兒在分析了歐幾里得幾何學和代數學各自的缺點,表示要尋求一種包含這兩門科學的優點而沒有它們的缺點的方法.這種方法就是幾何與代數的結合----解析幾何.按笛卡兒自己的話來說,他創立解析幾何學是為了「決心放棄那僅僅是抽象的幾何.這就是說,不再去考慮那些僅僅是用來練習思想的問題.我這樣作,是為了研究另一種幾何,即目的在於解釋自然現象的幾何」.關於解析幾何學的產生對數學發展的重要意義,這里可以引用法國著名數學家拉格朗日的一段話:「只要代數同幾何分道揚鑣,它們的進展就緩慢,它們的應用就狹窄.但當這兩門科學結合成伴侶時,它們就互相吸取新鮮的活力,從而以快速的步伐走向完善」.十七世紀之後,西方近代數學開始了一個在本質上全新的階段.正如恩格斯所指出的,在這個階段里「最重要的數學方法基本上被確立了;主要由笛卡兒確立了解析幾何,由耐普爾確立了對數,由萊布尼茲,也許還有牛頓確立了微積分」,而「數學中的轉折點是笛卡兒的變數.有了它,運動進入了數學,因而,辯證法進入了數學,因而微分和積分的運算也就立刻成為必要的了」.恩格斯在這里不僅指出了十七世紀數學的主要內容,而且充分闡明了這些內容的重要意義.解析幾何學的創立,開始了用代數方法解決幾何問題的新時代.從古希臘時起,在西方數學發展過程中,幾何學似乎一直就是至高無上的.一些代數問題,也都要用幾何方法解決.解析幾何的產生,改變了這種傳統,在數學思想上可以看作是一次飛躍,代數方程和曲線、曲面聯系起來了.最早引進負坐標的英國人沃利斯,最早把解析幾何推廣到三維空間的是法國人費馬,最早應用三維直角坐標系的是瑞士人約翰 貝努利.「坐標」一詞是德國人萊布尼茲創用的.牛頓首先使用極坐標,對於螺線、心形線以及諸如天體在中心力作用下的運動軌跡的研究甚為方便.不同的坐標系統之間可以互換,最早討論平面斜角坐標系之間互換關系的是法國人范斯庫騰.我們今天常常把直角坐標系叫做笛卡兒坐標系,其實那是經過許多後人不斷完善後的結果 參考資料:等等 28

閱讀全文

與坐標是誰發明的相關的資料

熱點內容
創造力閱讀理解答案 瀏覽:866
金華質監局和工商局合並 瀏覽:334
衛生院公共衛生服務考核結果 瀏覽:693
專利權的內容有哪幾項 瀏覽:750
學校矛盾糾紛排查表 瀏覽:294
內地音樂版權 瀏覽:208
公共衛生服務今後工作計劃 瀏覽:457
公共衛生服務考核小組 瀏覽:872
疫情里的科研成果 瀏覽:519
工商局愛國衛生月及健康教育宣傳月活動總結 瀏覽:942
三興商標織造有限公司 瀏覽:657
加強和改進公共服務實施方案 瀏覽:991
迷你世界創造熔岩號角 瀏覽:479
愛奇藝激活碼有效期 瀏覽:507
醫療糾紛官司南方周末 瀏覽:855
公共服務類大樓的物業管理方案 瀏覽:284
電影版權買賣合同範本 瀏覽:167
口罩在商標注冊屬於哪個類目 瀏覽:256
基本公共衛生服務質控小結 瀏覽:668
數字版權的權源 瀏覽:565