① 美發方圓三角誰發明的
不是美發有方圓三角,做人也有方圓三角的
② 三角函數的發明者是誰
皮蒂斯楚斯(B.Pitiscus,1561-1613)第一個使用三角學這個詞的數學家,但非三角函數的創版立者。艾布瓦法(權940-997?)給出三角函數的定義,雷蒂弗斯(1514-1576)(哥白尼的好友)使用三角形定義三角函數。其實三角函數是世世代代數學家們的辛勤勞動的結晶,沒有所謂的發明者。
③ 請問三角函數里sin cos tan cot 都是誰發明的,為什麼而發明
sine(正弦)一詞始來於阿拉伯人雷基自奧蒙坦。他是十五世紀西歐數學界的領導人物,他於1464年完成的著作《論各種三角形》,1533年開始發行,這是一本純三角學的書,使三角學脫離天文學,獨立成為一門數學分科。 cosine(餘弦)及cotangent(餘切)為英國人根日爾首先使用,最早在1620年倫敦出版的他所著的《炮兵測量學》中出現。 secant(正割)及tangent(正切)為丹麥數學家托馬斯·芬克首創,最早見於他的《圓幾何學》一書中。cosecant(餘割)一詞為銳梯卡斯所創。最早見於他1596年出版的《宮廷樂章》一書。 1626年,阿貝爾特·格洛德最早推出簡寫的三角符號:「sin」、「tan」、「sec」。1675年,英國人奧屈特最早推出餘下的簡寫三角符號:「cos」、「cot」、「csc」。但直到1748年,經過數學家歐拉的引用後,才逐漸通用起來。
④ 三角板是誰發明的
魯班的另一發明標志是能正確畫出直角的三角板,也被稱為班尺,它能告知工匠哪些尺寸是不規則的,以及根據占卜的規則(風水)哪些是不吉的。這些尺子在今天的香港仍能買到。鋸對於鋸的發明魯班是非常重視的。或是受一片齒形邊的草葉割 破了手指的啟發,或是看到一隻蟋蟀用其鋒利的牙齒切割並吃掉食物而離去。不管怎樣,多數描述如下。魯班和工匠們遇到一個任務,要求他們砍伐大量的木材。一連砍伐幾天,他們都已筋疲力盡,所用的斧頭也鈍了。這時,魯班忽被一片草葉割破了手指,他當即想:照這樣子做成個工具砍伐木材定是個好辦法。他選了一片竹子,用斧子在其邊緣砍了一行牙齒。這個新鋸很容易鋸斷樹皮,當他來回橫鋸此樹時,軟的竹齒很快就磨光了。然而這卻證明了鋸可斷木的原理。於是魯班放下手中活去鐵匠那裡,讓他准備一塊象斧頭一樣硬和鋒利的鐵板,然後弄成齒形。魯班有了這個人工製做的第一個鋸片,將其用在一個木屋架上,便可准確而不費力地切割木材
⑤ 誰發明了三角函數
歷史上沒有統計,是人類智慧的結晶。唐朝就有了三角函數表了。
⑥ 三角函數的發明者是誰
1464,德國人用sine表示正弦.
1620英國人根日耳用cosine表示餘弦.
1640,丹麥人用tangent表示正切,secant表示正割.
1596哥白尼的學生用coscant表示餘切.
1623德國人首先提出用sin簡寫正弦,tan簡寫正切,sec簡寫正割.
1975英國人提出把餘弦,餘切,餘割簡寫為cos,cot,csc.
這一切要歸功於歐拉,在歐拉的推廣下,人們開始使用三角函數.
⑦ 三角函數是誰發明的
迪卡爾
⑧ 三角函數誰發明的
歷史表明,重要數學概念對數學發展的作用是不可估量的,函數概念對數學發展的影響,可以說是貫穿古今、曠日持久、作用非凡,回顧函數概念的歷史發展,看一看函數概念不斷被精煉、深化、豐富的歷史過程,是一件十分有益的事情,它不僅有助於我們提高對函數概念來龍去脈認識的清晰度,而且更能幫助我們領悟數學概念對數學發展,數學學習的巨大作用. (一) 馬克思曾經認為,函數概念來源於代數學中不定方程的研究.由於羅馬時代的丟番圖對不定方程已有相當研究,所以函數概念至少在那時已經萌芽. 自哥白尼的天文學革命以後,運動就成了文藝復興時期科學家共同感興趣的問題,人們在思索:既然地球不是宇宙中心,它本身又有自轉和公轉,那麼下降的物體為什麼不發生偏斜而還要垂直下落到地球上?行星運行的軌道是橢圓,原理是什麼?還有,研究在地球表面上拋射物體的路線、射程和所能達到的高度,以及炮彈速度對於高度和射程的影響等問題,既是科學家的力圖解決的問題,也是軍事家要求解決的問題,函數概念就是從運動的研究中引申出的一個數學概念,這是函數概念的力學來源. (二) 早在函數概念尚未明確提出以前,數學家已經接觸並研究了不少具體的函數,比如對數函數、三角函數、雙曲函數等等.1673年前後笛卡兒在他的解析幾何中,已經注意到了一個變數對於另一個變數的依賴關系,但由於當時尚未意識到需要提煉一般的函數概念,因此直到17世紀後期牛頓、萊布尼茲建立微積分的時候,數學家還沒有明確函數的一般意義. 1673年,萊布尼茲首次使用函數一詞表示「冪」,後來他用該詞表示曲線上點的橫坐標、縱坐標、切線長等曲線上點的有關幾何量.由此可以看出,函數一詞最初的數學含義是相當廣泛而較為模糊的,幾乎與此同時,牛頓在微積分的討論中,使用另一名詞「流量」來表示變數間的關系,直到1689年,瑞士數學家約翰·貝努里才在萊布尼茲函數概念的基礎上,對函數概念進行了明確定義,貝努里把變數x和常量按任何方式構成的量叫「x的函數」,表示為yx. 當時,由於連接變數與常數的運算主要是算術運算、三角運算、指數運算和對數運算,所以後來歐拉就索性把用這些運算連接變數x和常數c而成的式子,取名為解析函數,還將它分成了「代數函數」與「超越函數」. 18世紀中葉,由於研究弦振動問題,達朗貝爾與歐拉先後引出了「任意的函數」的說法.在解釋「任意的函數」概念的時候,達朗貝爾說是指「任意的解析式」,而歐拉則認為是「任意畫出的一條曲線」.現在看來這都是函數的表達方式,是函數概念的外延. (三) 函數概念缺乏科學的定義,引起了理論與實踐的尖銳矛盾.例如,偏微分方程在工程技術中有廣泛應用,但由於沒有函數的科學定義,就極大地限制了偏微分方程理論的建立.1833年至1834年,高斯開始把注意力轉向物理學.他在和W·威伯爾合作發明電報的過程中,做了許多關於磁的實驗工作,提出了「力與距離的平方成反比例」這個重要的理論,使得函數作為數學的一個獨立分支而出現了,實際的需要促使人們對函數的定義進一步研究. 後來,人們又給出了這樣的定義:如果一個量依賴著另一個量,當後一量變化時前一量也隨著變化,那麼第一個量稱為第二個量的函數.「這個定義雖然還沒有道出函數的本質,但卻把變化、運動注入到函數定義中去,是可喜的進步.」 在函數概念發展史上,法國數學家富里埃的工作影響最大,富里埃深刻地揭示了函數的本質,主張函數不必局限於解析表達式.1822年,他在名著《熱的解析理論》中說,「通常,函數表示相接的一組值或縱坐標,它們中的每一個都是任意的……,我們不假定這些縱坐標服從一個共同的規律;他們以任何方式一個挨一個.」在該書中,他用一個三角級數和的形式表達了一個由不連續的「線」所給出的函數.更確切地說就是,任意一個以2π為周期函數,在〔-π,π〕區間內,可以由 表示出,其中 富里埃的研究,從根本上動搖了舊的關於函數概念的傳統思想,在當時的數學界引起了很大的震動.原來,在解析式和曲線之間並不存在不可逾越的鴻溝,級數把解析式和曲線溝通了,那種視函數為解析式的觀點終於成為揭示函數關系的巨大障礙. 通過一場爭論,產生了羅巴切夫斯基和狄里克萊的函數定義. 1834年,俄國數學家羅巴切夫斯基提出函數的定義:「x的函數是這樣的一個數,它對於每個x都有確定的值,並且隨著x一起變化.函數值可以由解析式給出,也可以由一個條件給出,這個條件提供了一種尋求全部對應值的方法.函數的這種依賴關系可以存在,但仍然是未知的.」這個定義建立了變數與函數之間的對應關系,是對函數概念的一個重大發展,因為「對應」是函數概念的一種本質屬性與核心部分. 1837年,德國數學家狄里克萊(Dirichlet)認為怎樣去建立x與y之間的關系無關緊要,所以他的定義是:「如果對於x的每一值,y總有完全確定的值與之對應,則y是x的函數.」 根據這個定義,即使像如下表述的,它仍然被說成是函數(狄里克萊函數): f(x)= 1 (x為有理數), 0 (x為無理數). 在這個函數中,如果x由0逐漸增大地取值,則f(x)忽0忽1.在無論怎樣小的區間里,f(x)無限止地忽0忽1.因此,它難用一個或幾個式子來加以表示,甚至究竟能否找出表達式也是一個問題.但是不管其能否用表達式表示,在狄里克萊的定義下,這個f(x)仍是一個函數. 狄里克萊的函數定義,出色地避免了以往函數定義中所有的關於依賴關系的描述,以完全清晰的方式為所有數學家無條件地接受.至此,我們已可以說,函數概念、函數的本質定義已經形成,這就是人們常說的經典函數定義. (四) 生產實踐和科學實驗的進一步發展,又引起函數概念新的尖銳矛盾,本世紀20年代,人類開始研究微觀物理現象.1930年量子力學問世了,在量子力學中需要用到一種新的函數——δ-函數, 即ρ(x)= 0,x≠0, ∞,x=0. 且 δ-函數的出現,引起了人們的激烈爭論.按照函數原來的定義,只允許數與數之間建立對應關系,而沒有把「∞」作為數.另外,對於自變數只有一個點不為零的函數,其積分值卻不等於零,這也是不可想像的.然而,δ-函數確實是實際模型的抽象.例如,當汽車、火車通過橋梁時,自然對橋梁產生壓力.從理論上講,車輛的輪子和橋面的接觸點只有一個,設車輛對軌道、橋面的壓力為一單位,這時在接觸點x=0處的壓強是 P(0)=壓力/接觸面=1/0=∞. 其餘點x≠0處,因無壓力,故無壓強,即 P(x)=0.另外,我們知道壓強函數的積分等於壓力,即 函數概念就在這樣的歷史條件下能動地向前發展,產生了新的現代函數定義:若對集合M的任意元素x,總有集合N確定的元素y與之對應,則稱在集合M上定義一個函數,記為y=f(x).元素x稱為自變元,元素y稱為因變元. 函數的現代定義與經典定義從形式上看雖然只相差幾個字,但卻是概念上的重大發展,是數學發展道路上的重大轉折,近代的泛函分析可以作為這種轉折的標志,它研究的是一般集合上的函數關系. 函數概念的定義經過二百多年來的錘煉、變革,形成了函數的現代定義,應該說已經相當完善了.不過數學的發展是無止境的,函數現代定義的形式並不意味著函數概念發展的歷史終結,近二十年來,數學家們又把函數歸結為一種更廣泛的概念—「關系」. 設集合X、Y,我們定義X與Y的積集X×Y為 X×Y={(x,y)|x∈X,y∈Y}. 積集X×Y中的一子集R稱為X與Y的一個關系,若(x,y)∈R,則稱x與y有關系R,記為xRy.若(x,y)R,則稱x與y無關系. 現設f是X與Y的關系,即fX×Y,如果(x,y),(x,z)∈f,必有y=z,那麼稱f為X到Y的函數.在此定義中,已在形式上迴避了「對應」的術語,全部使用集合論的語言了. 從以上函數概念發展的全過程中,我們體會到,聯系實際、聯系大量數學素材,研究、發掘、拓廣數學概念的內涵是何等重要.