Ⅰ 黃金分割點誰發明
黃金分割的創始人是古希臘的畢達哥拉斯,他在當時十分有限的科學條件下大膽斷言:一條線段的某一部分與另一部分之比,如果正好等於另一部分同整個線段的比即0.618,那麼,這樣比例會給人一種美感。後來,這一神奇的比例關系被古希臘著名哲學家、美學家柏拉圖譽為「黃金分割律」。黃金分割線的神奇和魔力,在數學界上還沒有明確定論,但它屢屢在實際中發揮著意想不到的作用。
Ⅱ 黃金比例是誰發明的
由於來公元前6世紀古希臘的畢源達哥拉斯學派研究過正五邊形和正十邊形的作圖,因此現代數學家們推斷當時畢達哥拉斯學派已經觸及甚至掌握了黃金分割。 公元前4世紀,古希臘數學家歐多克索斯第一個系統研究了這一問題,並建立起比例理論。 公元前300年前後歐幾里得撰寫《幾何原本》時吸收了歐多克索斯的研究成果,進一步系統論述了黃金分割,成為最早的有關黃金分割的論著。 中世紀後,黃金分割被披上神秘的外衣,義大利數家帕喬利稱中末比為神聖比例,並專門為此著書立說。德國天文學家開普勒稱黃金分割為神聖分割。 到19世紀黃金分割這一名稱才逐漸通行。黃金分割數有許多有趣的性質,人類對它的實際應用也很廣泛。最著名的例子是優選學中的黃金分割法或0.618法,是由美國數學家基弗於1953年首先提出的,70年代在中國
Ⅲ 「比例」屬於專利法意義上的發明嗎
外觀設計上即使比例不同,如果屬於慣常設計任不能授予新發明。
但是,如果比例不同能帶來明顯區別性的效果,可以得到保護。
Ⅳ 黃金分割點比例是多少最後晚餐的作者是誰簡譜是誰發明的
1,黃金比例:(根號5-1)/2等於0.618
2,最後晚餐、:(達芬奇)
3,簡譜發明者:簡譜是由法國的醫生兼音樂理論家(舒威)以音樂教育為目的所創立,這簡譜又稱"舒威譜式"。
4,還有別的問題請加我QQ:聯系我
Ⅳ 誰是最早發現黃金比例的人,發現的背景是什麼
由於公元前6世紀古希臘的畢達哥拉斯學派研究過正五邊形和正十邊形的作圖,因此現代數學家們推斷當時畢達哥拉斯學派已經觸及甚至掌握了黃金分割。
公元前4世紀,古希臘數學家歐多克索斯第一個系統研究了這一問題,並建立起比例理論。
公元前300年前後歐幾里得撰寫《幾何原本》時吸收了歐多克索斯的研究成果,進一步系統論述了黃金分割,成為最早的有關黃金分割的論著。
中世紀後,黃金分割被披上神秘的外衣,義大利數家帕喬利稱中末比為神聖比例,並專門為此著書立說。德國天文學家開普勒稱黃金分割為神聖分割。
到19世紀黃金分割這一名稱才逐漸通行。黃金分割數有許多有趣的性質,人類對它的實際應用也很廣泛。最著名的例子是優選學中的黃金分割法或0.618法,是由美國數學家基弗於1953年首先提出的,70年代在中國推廣。
生活應用
有趣的是,這個數字在自然界和人們生活中到處可見:人們的肚臍是人體總長的黃金分割點,人的膝蓋是肚臍到腳跟的黃金分割點。大多數門窗的寬長之比也是0.618…;有些植莖上,兩張相鄰葉柄的夾角是137度28',這恰好是把圓周分成1:0.618……的兩條半徑的夾角。據研究發現,這種角度對植物通風和採光效果最佳。
建築師們對數學0.618…特別偏愛,無論是古埃及的金字塔,還是巴黎的聖母院,或者是近世紀的法國埃菲爾鐵塔,都有與0.618…有關的數據。人們還發現,一些名畫、雕塑、攝影作品的主題,大多在畫面的0.618…處。藝術家們認為弦樂器的琴馬放在琴弦的0.618…處,能使琴聲更加柔和甜美。
數字0.618…更為數學家所關注,它的出現,不僅解決了許多數學難題(如:十等分、五等分圓周;求18度、36度角的正弦、餘弦值等),而且還使優選法成為可能。優選法是一種求最優化問題的方法。如在煉鋼時需要加入某種化學元素來增加鋼材的強度,假設已知在每噸鋼中需加某化學元素的量在1000—2000克之間,為了求得最恰當的加入量,需要在1000克與2000克這個區間中進行試驗。通常是取區間的中點(即1500克)作試驗。然後將試驗結果分別與1000克和2000克時的實驗結果作比較,從中選取強度較高的兩點作為新的區間,再取新區間的中點做試驗,再比較端點,依次下去,直到取得最理想的結果。這種實驗法稱為對分法。但這種方法並不是最快的實驗方法,如果將實驗點取在區間的0.618處,那麼實驗的次數將大大減少。這種取區間的0.618處作為試驗點的方法就是一維的優選法,也稱0.618法。實踐證明,對於一個因素的問題,用「0.618法」做16次試驗就可以完成「對分法」做2500次試驗所達到的效果。因此大畫家達·芬奇把0.618…稱為黃金數。
0.618與戰爭:拿破崙大帝敗於黃金分割線?
0.618,一個極為迷人而神秘的數字,而且它還有著一個很動聽的名字——黃金分割律,它是古希臘著名哲學家、數學家畢達哥拉斯於2500多年前發現的。古往今來,這個數字一直被後人奉為科學和美學的金科玉律。在藝術史上,幾乎所有的傑出作品都不謀而合地驗證了這一著名的黃金分割律,無論是古希臘帕特農神廟,還是中國古代的兵馬俑,它們的垂直線與水平線之間竟然完全符合1比0.618的比例。
Ⅵ 黃金分割比例是誰發現的
古希臘的畢達哥拉斯和他的學派在數學上有很多創造,著名的黃金分割就是他在公元前6世紀發現的。
一天,畢達哥拉斯從一家鐵匠鋪路過,被鋪子中那有節奏的叮叮當當的打鐵聲所吸引,便站在那裡仔細聆聽,似乎這聲音中隱匿著什麼秘密。他走進作坊,拿出尺子量了一下鐵錘和鐵砧的尺寸,發現它們之間存在著一種十分和諧的關系。
回到家裡,畢達哥拉斯拿出一根線,想將它分為兩段。怎樣分才最好呢?經過反復比較,他最後確定按照1∶0.618的比例截斷最優美。
後來,德國的美學家澤辛把這一比例稱為黃金分割律。這個規律的意思是,整體與較大部分之比等於較大部分與較小部分之比。無論什麼物體、圖形,只要它各部分的關系都與這種分割法相符,這類物體、圖形就能給人最悅目、最美的印象。
中世紀後,黃金分割被披上神秘的外衣,義大利數學家帕喬利稱其為神聖比例,並專門為此著書立說。德國天文學家開普勒稱黃金分割為神聖分割。直到19世紀黃金分割這一名稱才逐漸通行。
Ⅶ 黃金分割的發明者是誰
其實有關"黃金分割",我國也有記載。雖然沒有古希臘的早,但它是我國古代數學家獨立創造的,後來傳入了印度。經考證。歐洲的比例演算法是源於我國而經過印度由阿拉伯傳入歐洲的,而不是直接從古希臘傳入的。
因為它在造型藝術中具有美學價值,在工藝美術和日用品的長寬設計中,採用這一比值能夠引起人們的美感,在實際生活中的應用也非常廣泛,建築物中某些線段的比就科學採用了黃金分割,舞台上的報幕員並不是站在舞台的正中央,而是偏在台上一側,以站在舞台長度的黃金分割點的位置最美觀,聲音傳播的最好。就連植物界也有採用黃金分割的地方,如果從一棵嫩枝的頂端向下看,就會看到葉子是按照黃金分割的規律排列著的。在很多科學實驗中,選取方案常用一種0.618法,即優選法,它可以使我們合理地安排較少的試驗次數找到合理的西方和合適的工藝條件。正因為它在建築、文藝、工農業生產和科學實驗中有著廣泛而重要的應用,所以人們才珍貴地稱它為"黃金分割"。
黃金分割〔Golden Section〕是一種數學上的比例關系。黃金分割具有嚴格的比例性、藝術性、和諧性,蘊藏著豐富的美學價值。應用時一般取0.618 ,就像圓周率在應用時取3.14一樣。
Ⅷ 數學的黃金比例是誰發明的
由於公元復前6世紀古希臘的制畢達哥拉斯學派研究過正五邊形和正十邊形的作圖,因此現代數學家們推斷當時畢達哥拉斯學派已經觸及甚至掌握了黃金分割。 公元前4世紀,古希臘數學家歐多克索斯第一個系統研究了這一問題,並建立起比例理論。 公元前300年前後歐幾里得撰寫《幾何原本》時吸收了歐多克索斯的研究成果,進一步系統論述了黃金分割,成為最早的有關黃金分割的論著。 中世紀後,黃金分割被披上神秘的外衣,義大利數家帕喬利稱中末比為神聖比例,並專門為此著書立說。德國天文學家開普勒稱黃金分割為神聖分割。 到19世紀黃金分割這一名稱才逐漸通行。黃金分割數有許多有趣的性質,人類對它的實際應用也很廣泛。最著名的例子是優選學中的黃金分割法或0.618法,是由美國數學家基弗於1953年首先提出的,70年代在中國推廣。
Ⅸ 比例規是誰發明的
比例規又叫扇形圓規,是伽利略在1597年左右發明的。這個儀器是由一個框和一頭邊接在內框上並能開合的兩腳容尺共同構成,每把尺上都有刻度(從框軸開始,以框軸為零點)。
比例規的原理很簡單,僅利用相似三角形的性質(即相似三角形的對應線段成比例),可以解決許多問題。例如:
(1)分已知線段為五個相等的部分;
(2)變更繪圖的比例;
(3)在繪圖中,從圖里的已知量a,b,c求第四比例量(即求x,使得a:b=c:x);
(4)如果以數的平方在一個腳尺上作刻度,便可以求數的平方與平方根;
(5)如以數的立方在一個腳尺上作刻度,便可以求數的立方與立方根;
(6)利用特製的比例規,還可以根據算好的刻度測出單位圓的特定度數的弧所對應的弦長;反之,根據弦長求角度,即作為量角器用。
比例規既是幾何作圖的工具,又可以用於實際測量和繪圖。它在17世紀的歐洲很流行,並被人們通用了200多年。問世不久,就傳入了中國。1630年羅雅谷在中國寫了《比例規解》一書,介紹比例規的用法。此後中國數學家的書中就常有關於比例規的論述。我國故宮博物院內還藏有各種質料和不同類型的比例規幾十具。